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Abstract

In this research empirical likelihood methods for comparing two and multi-
ple independent populations based on robust location estimators are developed.
Empirical likelihood (EL) is a nonparametric statistics method that does not re-
quire the normality assumption of the data. New asymptotic results are proven
for the following empirical likelihood-based methods. 1. The difference of two
M-estimators (in particular, two smoothed Huber estimators), 2. the difference
of two trimmed means and 3. EL-based ANOVA method for comparing multi-
ple trimmed means. A simulation study was designed and data examples were
analysed showing that the newly-established methods provide a comparable alter-
native to the classical procedures when the data is normally distributed, demon-
strating similar power and ability to control the type I error. In addition, the
methods have good robustness properties, having an advantage over the classical
procedures when the assumption of normality does not hold.

Keywords: empirical likelihood; robust statistics; M-estimator; smoothed
M-estimator; trimmed mean; two-sample problem; EL ANOVA
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Introduction

Motivation of the research
A common problem in statistical analysis is to compare two populations F1

and F2 based on observations of two samples X1, . . . , Xn1 and Y1, . . . , Yn2 . For
example, one might be interested to find whether a new medicament administered
to the treatment group is more effective than placebo given to a control group.
The most widely used test in such situations is Student’s t-test [28]. In case
X1, . . . , Xn1 and Y1, . . . , Yn2 are independent and identically distributed (i.i.d.)
from N(µ1, σ

2) and N(µ2, σ
2), respectively, Student’s t-test is optimal in the

sense that it is the size α likelihood ratio test for the hypotheses H0 : µ1 = µ2

versus H1 : µ1 > µ2 [3, Chapter 9].
However, the assumption that the observed data is exactly normally dis-

tributed is rarely achievable in practical applications. The data collected can
be sampled from skewed distributions, from distributions with heavy tails, or it
can contain one or several outliers (atypical observations deviating from the most
of the data). The presence of outliers or heavy tails inflates the standard error
of the mean thus decreasing the power of the Student’s t-test. When distribu-
tions differ in skewness, the Student’s t-test is not even asymptotically correct [7].
Bernard L. Welch [33] proposed a modification to Student’s t-test based on ap-
proximate degrees of freedom (ADF) for normal data with variance heterogeneity.
In case of nonnormality the problems persist for the so-called Welch’s test.

Let Yi = (Yi1, Yi2, . . . , Yini), i = 1, . . . , k be independent samples from k pop-
ulations F1, . . . , Fk. For the k-sample case, the classical method to compare the
means is the analysis of variance (ANOVA) F -test. It is based on the normality
assumption and the equality of variances across the k groups. It is well known
that ANOVA F -test cannot handle violations of these assumptions. B. L. Welch
[34] proposed a version of F -test for the heterogeneous variances case, however,
it is not robust to departures from normality and outliers, especially when the
skewness differs among the groups.

Empirical likelihood (EL) was introduced by Art B. Owen in 1988 [20]. EL is a
nonparametric method that does not require assumptions about the distribution
family of the data. A. B. Owen [20] showed that the EL ratio statistic for an
estimator θ(F ) expressed as a function of an unknown distribution F has a lim-
iting chi-square distribution. Analogically to the parametric likelihood case, EL
allows estimating parameters, constructing confidence intervals, and hypothesis
tests. For the one-sample case, a general framework based on smooth estimating
equations was provided by Jin Qin and Jerry Lawless in 1994 [24]. Regarding
the two-sample problem, Yongsong Qin and Lincheng Zhao [25] extended the EL
method for the difference of two univariate parameters in 2000. The properties of
EL for some two-sample problems were analyzed empirically by Jānis Valeinis et
al. [30] and a complementary R program [26] package EL [6] was developed. EL
method, in ANOVA-like setting for comparing means of k independent groups,
was demonstrated by A. B. Owen in 1991 [21]. A general overview on EL methods
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can be found in [22].
EL is defined by constructing a multinomial distribution on the observed data

points. The presence of outliers can greatly lengthen the EL confidence intervals
for the mean in direction of their placement in the sample, and therefore the
resulting coverage probabilities of the interval estimates might be incorrect [10]. A.
B. Owen [22] discussed two approaches towards a more robust empirical likelihood:
first, using estimators θ(F ) that are more robust than the mean, and second, to
construct a more robust likelihood function.

The centre of interest of this thesis is the first of the propositions, namely, to
study the EL method for some robust estimators. In particular, we are interested in
robust estimators of location or centre of the data. Note that robustness signifies
“insensitivity to small deviations from the assumptions” [15, p. 2]. The main
concern of robust statistics is the distributional robustness, i.e., the behaviour
of the methods when the true underlying distribution deviates slightly from the
assumed (usually normal) model.

The discipline of robust statistics developed in 1960s with the work of John W.
Tukey and Peter J. Huber. In 1964 P. J. Huber published the seminal paper “Ro-
bust Estimation of a Location Parameter” [14], inventing a class of M-estimators
that in a sense is a generalization of the maximum likelihood (MLE) estimators.
Consider an estimator θ̂ = θ̂(X1, . . . , Xn) of the parameter θ. P. J. Huber pro-
posed to define θ̂ using a general ρ- or ψ-function:

θ̂ = argmin
θ

n∑
i=1

ρ(Xi, θ) or
n∑

i=1

ψ(Xi, θ) = 0,

where the second formulation can be used if ρ is differentiable in θ with ψ =
(∂/∂θ)ρ(x, θ).

P. J. Huber acquired the conditions for the consistency and asymptotic normal-
ity of the M-estimators and showed that there existed an ‘optimal’ M-estimator in
the neighbourhood of the normal distribution. He considered the class of contami-
nated distributions Pϵ = (1−ϵ)Φ+ϵH, where Φ is the standard normal cumulative
distribution function (cdf) and H is a cdf of any symmetric distribution. Then
the Huber estimator, defined by

ψ(x) = max(−c,min(c, x))

for a given c > 0, has the minimax asymptotic variance among all translation-
equivariant location estimators. Frank Hampel et al. [12] provided a smoothing
principle for a ψ-function of a general M-estimator and showed that the smoothed
estimators have smaller MSE than their non-smoothed counterparts in small and
moderate sample settings.

Another well-known robust location estimator is the trimmed mean that is
obtained by calculating the arithmetic mean after removing a fixed proportion of
the most extreme observations from the sample. Karen K. Yuen [37] provided
a robust test for comparing two population trimmed means, based on a t type
statistic.
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For the robust location estimators discussed above, empirical likelihood meth-
ods for the one-sample case exist. EL method can be applied to certain M-
estimators, including the Huber estimator [20]. Regarding the trimmed mean, a
key assumption for the classical EL approach is the independence of the obser-
vations, however, the trimmed sample consists of dependent observations. As a
solution, Gengsheng Qin and Min Tsao [23] defined the EL ratio directly for the
trimmed sample and proved that the limiting distribution was a scaled chi-square.
They demonstrated that the EL confidence interval for the trimmed mean is more
accurate than the confidence interval based on the normal approximation in a
skewed distribution simulation setting.

Aims of the research
The goal of the thesis is to develop EL-based methods for comparing two or

more independent populations using some well-established robust location param-
eter estimators. Given the good robustness properties of the trimmed mean and
the Huber estimator in the one-sample case, they are good candidates for estab-
lishing robust methods also in the two-sample and ANOVA case. The aims of the
research are as follows:

1. Develop an empirical likelihood method for the difference of two location
M-estimators using the results of Y. Qin and L. Zhao [25]. In particular,
consider the smoothed Huber estimator [12].

2. Develop an empirical likelihood method for the difference of two population
trimmed means by extending the results of G. Qin and M. Tsao [23], using
the approach of Y. Qin and L. Zhao [25].

3. Develop an ANOVA-like empirical likelihood method to compare the
trimmed means of multiple populations, extending the results of G. Qin
and M. Tsao [23], and A. B. Owen [21].

4. Develop a simulation study comparing the performance of the newly-
established empirical likelihood methods for robust location parameter esti-
mators with some widely used classical and robust methods.

5. Study the applications of the newly-developed methods on real data sets
comparing with some classical and robust alternatives.

The thesis is organized as follows. The first two chapters treat the prelimi-
naries. In Chapter 1, the theory of the EL method is presented. The maximum
likelihood is shortly revisited, the EL function is introduced, and details on the
EL estimation for the one- and two-sample cases with smooth unbiased estimating
equations are presented. In Chapter 2, theory regarding robust location estima-
tion is presented. M-estimators, smoothed M-estimators, and trimmed means are
defined and their properties are described.

The original theoretical results of the author are presented in Chapters 3, 4
and 5. In Chapter 3, we present the EL method for the difference of two smoothed
M-estimators. We give the conditions under which the EL ratio can be constructed
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for a difference of general M-estimators, and show that the Huber estimator fits
in this setting. In Chapter 4, the empirical likelihood method for the difference
of two trimmed means is presented. In Chapter 5, the EL ANOVA-like test for
comparing more than two population trimmed means is presented.

In Chapter 6, the simulation study and data analysis results are presented.
In particular, the empirical level and the power of the tests when sampling from
various distributions is explored. The newly-developed EL methods are compared
with some well-known classical and robust methods. Finally, the conclusions and
the theses of the doctoral research are given.

Approbation of the results and contribution of the author
The doctoral thesis research has been presented in twelve scientific conferences

(see Appendix Conferences): eleven international conferences, C1-C10, C12, and
one national conference in Latvia, C11. The original results have been published
in three Scopus/Web of Science indexed scientific papers (see Appendix Author’s
publications). Māra Delesa-Vēliņa proved the asymptotic results, performed the
simulation study and data analysis, and contributed to the writing and editing of
the papers.
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Chapter 1. Empirical likelihood method

1.1 Maximum likelihood method
Definition 1.1.1. [5, p. 315] Let X = (X1, . . . , Xn) be a sample of independent
and identically distributed random variables (i.i.d.) from a population with prob-
ability density function (pdf) or probability mass function (pmf) f(x|θ1, . . . , θk),
θ ∈ Θ ⊂ Rk. Let x = (x1, . . . , xn) be the observed sample values. The likelihood
function is a function of θ

L(θ|x) = L(θ1, . . . , θk|x1, . . . , xn) =
n∏

i=1

f(xi|θ1, . . . , θk). (1.1)

Definition 1.1.2. [5, p. 316] For each observed sample x, let θ̂(x) be a parameter
value at which L(θ|x) attains its maximum as a function of θ, with x held fixed.
An MLE estimator of the parameter θ based on a sample X is θ̂(X).

Under certain regularity conditions [5, p. 516] on f(x|θ), the MLE estimators
are functionally invariant, consistent, and asymptotically normal and efficient.
Definition 1.1.3. [5, p. 375] The likelihood ratio test statistic for testing H0 :
θ ∈ Θ0 versus H1 : θ ∈ Θc

0 is

λ(x) =
supΘ0

L(θ|x)
supΘ L(θ|x)

. (1.2)

A likelihood ratio test (LRT) is any test that has a rejection region R of the form
R = {x : λ(x) ≤ c}, where 0 ≤ c ≤ 1.
Theorem 1.1.1. (Wilks’ theorem) [5, Theorem 10.3.3] Let X1, . . . , Xn be a ran-
dom sample from a pdf or pmf f(x|θ). Under certain regularity conditions on
f(x|θ) [5, p. 516], if θ ∈ Θ0 and n→ ∞, then

−2 log λ(X)
d−→ χ2

q−p,

where the degrees of freedom of the chi-square distribution are determined by the
number of free parameters q specified by θ ∈ Θ and the number of free parameters
p specified by θ ∈ Θ0, where p < q.

There is a general equivalence between the hypothesis testing and the interval
estimation that allows to construct interval estimates by test inversion.
Theorem 1.1.2. [5, Theorem 9.2.2] For each θ0 ∈ Θ, let A(θ0) be the acceptance
region of a level α test of H0 : θ = θ0. For each x ∈ X , define a set C(x) in the
parameter space by

C(x) = {θ0|x ∈ A(θ0)}.
Then the random set C(X) is a 1 − α confidence set. Conversely, let C(X) be a
1− α confidence set. For any θ0 ∈ Θ, define

A(θ0) = {x|θ0 ∈ C(x)}.

Then A(θ0) is the acceptance region of a level α test of H0 : θ = θ0.
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1.2 Empirical likelihood method
A detailed exposure of empirical likelihood function can be found in [20]. For a
probability distribution function F , denote F (x−) = P (X < x) and so P (X =
x) = F (x)− F (x−).

Definition 1.2.1. [22, p. 6] Let X1, . . . , Xn be i.i.d. random variables with a
common unknown distribution F . The empirical likelihood L(F ) of the cumulative
distribution function F is given by

L(F ) =

n∏
i=1

(F (Xi)− F (Xi−)) =

n∏
i=1

pi, (1.3)

where pi = P (X = Xi) and
∑n

i=1 pi = 1.

Theorem 1.2.1. [22, Theorem 2.1.] Let X1, . . . , Xn ∈ R be i.i.d. random
variables with a common cdf F0. Let Fn(x) =

1
n

∑n
i=1 IXi≤x for −∞ < x <∞ be

their ecdf and let F be any distribution function. If F ̸= Fn, then L(F ) < L(Fn).

Definition 1.2.2. [22, p. 10] The empirical (or nonparametric) likelihood ratio
for a distribution F is given by

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

npi.

Suppose we are interested in some parameter θ expressed as a real-valued func-
tional T on distributions, i.e., θ = T (F ), F ∈ F where F is a set of distributions.

Definition 1.2.3. [22, p. 11] The profile empirical likelihood ratio function is
given by

R(θ) = sup{R(F )|T (F ) = θ, F ∈ F}. (1.4)

Empirical likelihood hypothesis test rejects H0 : T (F0) = θ0 if R(θ0) < r0
for some threshold r0. The empirical likelihood confidence region for the true
unknown parameter θ0 = T (F0) is in the form {θ|R(θ) ≥ r0}.

Example 1.2.1. Consider a hypothesis test about the population mean µ∗ =
EFXi:

H0 : µ = µ∗, H1 : µ ̸= µ∗.

In the functional form, µ∗ =
∫
xdF (x), F ∈ F . F is a class of multinomial

distributions placing nonnegative weights on the observations Xi. Thus for a
fixed µ∗ we optimize F = (p1, . . . , pn), where pi ≥ 0, and

∑n
i=1 pi = 1. The

functional form under F becomes
∑n

i=1 piXi = µ∗, and the profile empirical
likelihood function is given by

R(µ) = sup
p

{
n∏

i=1

npi |
n∑

i=1

piXi = µ∗, pi ≥ 0,

n∑
i=1

pi = 1

}
. (1.5)

Theorem 1.2.2. [22, Theorem 2.2.] Let X1, . . . , Xn be i.i.d. random variables
with common distribution function F0. Let µ0 = EF0Xi, and suppose that 0 <

VarXi <∞. Then −2 logR(µ0)
d−→ χ2

1 as n→ ∞.
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A 1− α confidence interval for the mean is given by

Cα = {µ ∈ R|−2 logR(µ) ≤ χ2
1,1−α},

where χ2
1,1−α denotes the 1−α quantile of χ2

1 distribution. The interval Cα is an
asymptotic coverage interval, i.e.,

P (µ0 ∈ Cα) → (1− α) as n→ ∞.

1.3 Empirical likelihood method in the two-sample case
Empirical likelihood method for various differences of univariate parameters of two
populations was introduced by Y. Qin and L. Zhao [25]. Consider the two-sample
problem, whereX1, . . . , Xn1 are i.i.d. random variables with unknown distribution
F1, and Y1, . . . , Yn2 are i.i.d. random variables with unknown distribution F2. Let
θ0 and θ1 be univariate parameters associated with the distributions F1 and F2,
respectively. We are interested in the difference of the parameters, ∆0 = θ1 − θ0.
Assume that the information about F1, F2, θ0 and θ1 is given by two estimating
functions w1(X, θ0,∆0) and w2(Y, θ0,∆0) satisfying

EF1w1(X, θ0,∆0) = 0, EF2w2(Y, θ0,∆0) = 0, (1.6)

where ∆0 is the true parameter of interest and θ0 is considered a nuisance param-
eter.

Example 1.3.1. The difference of means. Denote θ0 =
∫
xdF1(x), θ1 =∫

ydF2(y) and ∆0 =
∫
ydF2(y) −

∫
xdF1(x). The estimating functions have the

following form

w1(X, θ0,∆0) = X − θ0, w2(Y, θ0,∆0) = Y − θ0 −∆0.

Example 1.3.2. The difference of distribution functions. For a given t0, 0 <
t0 < 1, consider θ0 = F1(t0), θ1 = F2(t0), and ∆0 = F2(t0)− F1(t0). Then

w1(X, θ0,∆0) = IX≤t0 − θ0, w2(Y, θ0,∆0) = IY ≤t0 − θ0 −∆0.

In the two-sample case, the empirical likelihood function is defined as

L(F1, F2) =

n1∏
i=1

(F1(Xi)− F1(Xi−))

n2∏
j=1

(F2(Yj)− F2(Yj−)) =

n1∏
i=1

pi

n2∏
j=1

qj , (1.7)

where pi = P (X = Xi) and qj = P (Y = Yi). L(F1, F2) has maximum value
n−n1
1 n−n2

2 , i.e., it is maximized when F1 and F2 are the respective empirical cu-
mulative distribution functions Fn1 and Fn2 . Thus the profile empirical likelihood
ratio is in the form

R(∆, θ) = sup
p,q

{
n1∏
i=1

n1pi

n2∏
j=1

n2qj |
n1∑
i=1

piwi(Xi, θ,∆) = 0,

n2∑
j=1

qjw2(Yj , θ,∆) = 0

}
,

(1.8)
where pi ≥ 0,

∑n1
i=1 pi = 1, qj ≥ 0 and

∑n2
i=1 qj = 1. To solve for pi, qj in (1.8)

for a fixed ∆ and θ , method of Lagrange multipliers can be used (see [25] for
details), and we have
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pi =
1

n1(1 + λ1(∆, θ)w1(Xi, θ,∆))
, i = 1, . . . , n1, (1.9)

qj =
1

n2(1 + λ2(∆, θ)w2(Yj , θ,∆))
, j = 1, . . . , n2. (1.10)

The Lagrange multipliers λ1 = λ1(∆, θ) and λ2 = λ2(∆, θ) can be determined by
solving

n1∑
i=1

w1(Xi, θ,∆)

1 + λ1(∆, θ)w1(Xi, θ,∆)
= 0,

n2∑
j=1

w2(Yj , θ,∆)

1 + λ2(∆, θ)w2(Yj , θ,∆)
= 0. (1.11)

Inserting pi and qj from (1.9) - (1.10) in (1.8) and taking the logarithm, we obtain
the empirical log likelihood ratio function as

logR(∆, θ) = −
n1∑
i=1

log(1 + λ1(∆, θ)w1(Xi, θ,∆))

−
n2∑
j=1

log(1 + λ2(∆, θ)w2(Yj , θ,∆)). (1.12)

To solve for θ̂(∆) that maximizes R(∆, θ), set (∂/∂θ){logR(∆, θ)} = 0, and
obtain

n1∑
i=1

λ1(∆, θ)α1(Xi, θ,∆)

1 + λ1(∆, θ)w1(Xi, θ,∆)
+

n2∑
j=1

λ2(∆, θ)α2(Yj , θ,∆)

1 + λ2(∆, θ)w2(Yj , θ,∆)
= 0, (1.13)

where α1 = ∂w1/∂θ and α2 = ∂w2/∂θ.
Assumption 1.3.1. [25, p. 26]
(C1) θ0 ∈ Ω, and Ω is an open interval.

(C2) EF1w
2
1(X, θ,∆) > 0 and EF2w

2
2(Y, θ,∆) > 0, α1(X, θ,∆) and α2(Y, θ,∆)

are continuous in the neighborhood of θ0, α1(X, θ,∆) and w3
1(X, θ,∆)

are bounded by some integrable function G1(X) in this neighborhood,
α2(Y, θ,∆) and w3

2(Y, θ,∆) are bounded by some integrable function G2(Y )
in this neighborhood, and EF1α1(X, θ,∆) and EF2α2(Y, θ,∆) are non-zero.

(C3) n2/n1 → k (as n1, n2 → ∞) and 0 < k <∞.
Theorem 1.3.1. [25, Theroem 1] Under Assumption 1.3.1, there exists a root
θ̂(∆) of (1.13) such that θ̂(∆) is a consistent estimate of θ0, R(∆, θ) attains its
maximum at θ̂(∆), and

−2 logR(∆0, θ̂(∆0))
d−→ χ2

1 as n1, n2 → ∞.

The proof can be found in [25]. The confidence intervals for the true pa-
rameter ∆0 can be obtained by test inversion and have the following form
{∆ |R(∆, θ̂(∆)) > c}, where the constant c can be calibrated using Theorem
1.3.1.
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Chapter 2. Robust estimation of a location parameter

In this chapter we consider the model of location and the related estimators
of location. We define the M-estimator of location (in particular, the Huber es-
timator) and the trimmed mean, and we give the properties there-of. A detailed
exposition of robust estimation of location can be found in [18].
2.1 M-estimators of location
Definition 2.1.1. [18, p. 17] Let X1, . . . Xn be i.i.d. random variables with
distribution function F that depend on an unknown parameter θ through the
model

Xi = θ + ui, i = 1, . . . , n, (2.1)
where the errors ui are i.i.d and have the distribution function F0, and F0(u) =
1 − F0(−u). The model (2.1) is called the location model, and θ is referred to as
the location parameter.
Definition 2.1.2. [18, p. 25] Consider the location model (2.1). Given a function
ρ, an M-estimator of location parameter θ is defined as

θ̂ = argmin
θ

n∑
i=1

ρ(Xi − θ). (2.2)

If ρ is differentiable in θ, and ψ(x, θ) = (∂/∂θ)ρ(x, θ), then θ̂ is the solution to
n∑

i=1

ψ(Xi − θ) = 0. (2.3)

Example 2.1.1. MLE of the location parameter. Note that choosing ρ(x, θ) =
− log fθ(x−θ) and ψ(x, θ) = −(∂/∂θ) log fθ(x−θ) in (2.2) and (2.3), respectively,
we obtain an MLE of a location parameter θ of fθ. If Fθ is N(0, 1), apart from a
constant, ρ(x, θ) = (x− θ)2/2 and ψ(x, θ) = x− θ, and we obtain θ is the mean.
If Fθ is the exponential distribution with the density fθ(x) = 1/2 exp(−|x|), we
have ρ(x, θ) = |x− θ|, and we obtain the median.
Example 2.1.2. Huber estimator. For a given positive constant k, the Huber
estimator is defined by (2.2) or (2.3) with

ρ = ρk(x) =


2kx− k2, x > k

x2, −k ≤ x ≤ k

−2kx− k2, x < −k
(2.4)

with derivative 2ψk(x), where

ψ = ψk(x) =


k, x > k

x, −k ≤ x ≤ k

−k, x < −k.
(2.5)
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The Huber estimator is the maximum likelihood estimator for the Huber’s
least favorable distribution given by the density

fk(x) =


(1− ϵ)ϕ(k) exp(−k(x− k)), x > k

(1− ϵ)ϕ(x), −k ≤ x ≤ k

(1− ϵ)ϕ(k) exp(k(x+ k)), x < −k,
(2.6)

where k and ϵ are related through the formula

2ϕ(k)/k − 2Φ(−k) = ϵ/(1− ϵ), (2.7)

where ϕ and Φ denote the pdf and cdf of standard normal distribution.
For k → 0 one obtains the sample median, while k → ∞ leads to the sam-

ple mean as the limiting cases. P. J. Huber [14] proved that this estimator
has minimax asymptotic variance among the class of contaminated distributions
Pϵ = (1 − ϵ)Φ + ϵH, where Φ is the standard normal cdf and H is a cdf of a
symmetric distribution. It was advocated in [14] that Huber estimator is not too
sensitive to the choice of k, and that any value of k between 1 and 2 yields satis-
factory results for all contamination rates ϵ < 0.2. A common proposal is to take
k = 1.35, which corresponds to a 95% efficiency of the Huber estimator compared
to the sample mean at the standard normal distribution [18, 22].

Any location M-estimator θ̂ given by (2.2) or (2.3) is shift equivariant [18],
however, it is not necessarily scale equivariant. A lack of scale equivariance can
create problems, since the estimator value may be heavily dependent on the mea-
surement units.

Definition 2.1.3. A scale equivariant M-estimator for the location parameter θ
with a previous estimation of dispersion is defined as the solution to the equation

n∑
i=1

ψ

(
Xi − θ

σ̂

)
= 0, (2.8)

where σ̂ is a previously computed dispersion estimator.
Intuitively, the dispersion estimator σ̂ in (2.8) should be robust itself. A

popular robust choice for σ̂ is the normalized median absolute deviation about the
median (MADN).

Definition 2.1.4. [18, p. 36] The median absolute deviation about the median
(MAD) is defined by

MAD(X) = MAD(X1, . . . , Xn) = Med{|X −Med(X)|}, (2.9)

where Med denotes the sample median. The normalized MAD (MADN) is defined
as

MADN(X) = MAD(X)/0.6745,

where the choice of the constant 0.6745 is motivated by the fact that at the
standard normal distribution MAD is equal to 0.6745, thus the MADN is equal
to the standard deviation.
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For each n let σ̂n be a dispersion estimator and denote θ̂n the solution (assumed
unique) of

n∑
i=1

ψ

(
Xi − θ

σ̂n

)
= 0.

Assumption 2.1.1. (Consistency of an M-estimator of location with a prelimi-
nary dispersion estimate) [18, p. 385]
(A1) ψ is monotone and bounded with a bounded derivative.

(A2) There exists σ such that σ̂n
p−→ σ.

(A3) The equation E(ψ(Xi − θ)/σ) = 0 has a unique solution θ0.

Theorem 2.1.1. [18, Theorem 10.12] If Assumption 2.1.1 holds, then

θ̂n
p−→ θ0.

Define ui = Xi − θ0 and

a = Eψ2
(ui

σ

)
, b = Eψ′

(ui

σ

)
, c = Eψ

(ui

σ

)
ψ′
(ui

σ

)
. (2.10)

Assumption 2.1.2. (Asymptotic normality of M-estimators with preliminary
scale) [18, p. 385]
(A1) Quantities defined in (2.10) exist and b ̸= 0.

(A2)
√
n(σ̂n − σ) converges to some distribution.

(A3) c = 0.
Theorem 2.1.2. [18, Theorem 10.13] Under Assumption 2.1.2,

√
n(θ̂n − θ0)

d−→ N(0, ν) with ν = σ2 a

b2
.

Definition 2.1.5. [12, p. 325] Consider i.i.d. random variables X1, . . . , Xn from
a distribution Fθ,σ with uni-modal symmetric density

fθ,σ(x) =
1

σ
f

(
x− θ

σ

)
,

and consider a score function ψ̃(x) of a general ψ-function of an M-estimator

ψ̃(x) =

∫
ψ(x+ u)dQn(u), (2.11)

where Qn is the distribution of the initial non-smooth M-estimator based on n
i.i.d observations from an assumed underlying distribution. Then the smoothed
M-estimator of the location parameter θ is defined as a solution t of

n∑
i=1

ψ̃

(
Xi − t

σ

)
= 0. (2.12)
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Remark 2.1.1. Due to the asymptotic normality of M-estimators in Theorem
2.1.2, Qn can be approximated by N(0, V/n), where V is the asymptotic variance
of the initial non-smooth M-estimator. For the maximum likelihood estimators,
Qn may be chosen as the corresponding distribution under which the maximum
likelihood estimator is derived. For Huber estimator, it is Huber’s least favourable
distribution fk from (2.6).

Proposition 2.1.1. [12, p. 326] Taking the fk from (2.6) as the density of Qn

in (2.11), the ψ̃-function defining the smoothed Huber estimator can be expressed
in the explicit form as

ψ̃k(x) = kΦ

(
x− k

σn

)
− k

(
1− Φ

(
x+ k

σn

))
+ x

(
Φ

(
x+ k

σn

)
− Φ

(
x− k

σn

))
+ σn

(
ϕ

(
x+ k

σn

)
− ϕ

(
x− k

σn

))
, (2.13)

where σn =
√
V/n and k is the tuning constant defining the non-smoothed Huber

estimator (2.5).
2.2 Trimmed mean
Definition 2.2.1. [23, p. 2199] Let X1, X2, . . . , Xn be i.i.d. random sample from
population F0 and let X(1), X(2), . . . , X(n) be ordered statistics. The trimmed
mean is defined as

X̄αβ =
1

m

s∑
i=r

X(i), (2.14)

where 0 ≤ α < 1/2, 0 ≤ β < 1/2 are trimming proportions from the left and the
right side, respectively, r = ⌊nα⌋+ 1, s = n− ⌊nβ⌋, and m = n− ⌊nα⌋ − ⌊nβ⌋.

The result for the asymptotic distribution of the trimmed mean was provided
by S. Stigler in [27]. Let

A = F−1
0 (α)− F−1

0 (α−) and B = F−1
0 (1− β)− F−1

0 ((1− β)−) (2.15)

represent the jumps of F−1
0 at the trimming proportions. For any 0 < p < 1 denote

ξp := F−1
0 (p) and introduce a distribution function H(x) obtained by truncating

F0 as follows:

H(x) =


0, x < ξα
F0(x)−α
1−α−β

, ξα ≤ x ≤ ξ1−β

1, x > ξ1−β .

(2.16)

Let µαβ and σ2
αβ denote the mean and the variance of the distribution H, respec-

tively.

Theorem 2.2.1. [27, p. 473] Let 0 < α < 1− β < 1 and n→ ∞. Then
√
n(X̄αβ − µαβ)

d−→W, where

W =
1

1− α− β
[Z + (ξα − µαβ)Z1 + (ξ1−β − µαβ)Z2 −Amax(0, Z1) +Bmax(0, Z2)] ,
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A and B are the quantities defined in (2.15), the random variable Z is N(0, (1−
α − β)σ2

αβ), Z is independent from the random vector (Z1, Z2), and (Z1, Z2) is
N(0, C), where

C =

(
α(1− α) −αβ
−αβ β(1− β)

)
.

For the proof of the Theorem 2.2.1, see [27] or [1].

Remark 2.2.1. If A = 0 and B = 0 in Theorem 2.2.1 (in other words, the
trimming is done at uniquely defined percentiles of distribution F0), the asymptotic
distribution W of the trimmed mean has a simpler form. In such case, EW = 0
and

VarW =
1

(1− α− β)2

(
σ2
αβ +α(1−α)(ξα−µαβ)

2−2αβ(ξα−µαβ)(ξ1−β −µαβ)

+ β(1− β)(ξ1−β − µαβ)
2

)
=: τ2αβ ,

thus
√
n(X̄αβ − µαβ)

d−→ N(0, τ2αβ).
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Chapter 3. Empirical likelihood method for the
difference of two location M-estimators

The aim of this chapter is to establish the two-sample empirical likelihood
method for the difference of two M-estimators. The new results presented in this
chapter have been published in M. Delesa-Vēliņa et al. [32].

A. B. Owen [20] provided assumptions under which the empirical likelihood
confidence intervals can be constructed for M-estimates, and showed that these
hold for the Huber estimator. However, the two-sample EL method described in
Chapter 1.3 cannot be applied directly to Huber estimator, since the condition
(C1) in Assumption 1.3.1 that necessitates a continuous derivative of the esti-
mating function does not hold for Huber estimator’s ψ-function (2.5). Thus the
smoothing principle of the ψ-function described in Chapter 2 is used.

As it was noted in Chapter 2, the M-estimates defined by (2.2) or (2.3) are
not scale-equivariant and the results may depend on the measurement units to a
large extent. Thus the scale-equivariant M-estimators defined by (2.8) are pre-
ferred. However, the real value of the scale parameter σ in (2.8) is not known
in practical situations. Thus the scale parameter is interpreted as an additional
nuisance parameter for the EL maximization problem. We use the plug-in empir-
ical likelihood that allows possibly infinite-dimension nuisance parameters in the
estimating equations. The plug-in EL was formalized for the one-sample case by
Nils L. Hjort et al. [13]. J. Valeinis [29] generalized the conditions for the plug-in
EL method for the two-sample case.
3.1 Main results
Consider the two-sample problem defined in Chapter 1.3: X1, . . . , Xn1 are i.i.d.
random variables with unknown distribution F1, and Y1, . . . , Yn2 are i.i.d. random
variables with unknown distribution F2, and we are interested in the difference of
two M-estimators θ0 and θ1 of the samples X and Y , respectively. The estimating
functions in (1.6) - (1.6) have the form

w1(X,∆0, θ0, σ
0
1 , σ

0
2) = ψ

(
X − θ0
σ0
1

)
, (3.1)

w2(Y,∆0, θ0, σ
0
1 , σ

0
2) = ψ

(
Y −∆0 − θ0

σ0
2

)
,

where ψ corresponds to a general ψ-function of an M-estimator defined in (2.8),
σ1 and σ2 are the scale parameters for the samples X and Y with true values of
σ0
1 and σ0

2 , respectively, θ denotes the location parameter for the sample X with
the true value θ0.

The two-sample problem setting in Chapter 1.3 is for fixed estimating functions
w1 and w2, but in our case (3.1) involves additional nuisance parameters θ, σ1,
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σ2, and V1 and V2 indirectly. We define the profile EL function

R(∆, θ, σ1, σ2) = nn1
1 nn2

2 sup
p,q

{ n1∏
i=1

pi

n2∏
j=1

qj | pi ≥ 0, qj ≥ 0,

n1∑
i=1

pi = 1,

n2∑
j=1

qj = 1,

n1∑
i=1

piψ

(
Xi − θ

σ1

)
= 0,

n2∑
j=1

qjψ

(
Yj −∆− θ

σ2

)
= 0

}
. (3.2)

A unique solution to (3.2) exists, provided that 0 is both inside the convex hull
of the w1(Xi,∆, θ, σ1, σ2)’s and the convex hull of the w2(Yj ,∆, θ, σ1, σ2)’s. The
maximum may be found by using the standard Lagrange multipliers method,
where the Lagrange multipliers now depend not only on ∆ and θ, but also
on the nuisance parameters σ1 and σ2, i.e., λ1 = λ1(∆, θ, σ1, σ2) and λ2 =
λ2(∆, θ, σ1, σ2). Lagrange multipliers can be determined in therms of ∆(θ) from
the equations (1.11)-(1.11) with the estimating functions defined by (3.1), i.e.,
from

n1∑
i=1

ψ
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) = 0,

n2∑
j=1

ψ
(

Yj−∆−θ

σ2

)
1 + λ2ψ

(
Yj−∆−θ

σ2

) = 0. (3.3)

We define the empirical log likelihood ratio (multiplied by minus two) as

W(∆, θ, σ1, σ2) = −2 logR(∆, θ, σ1, σ2) =

= 2

n1∑
i=1

log

(
1 + λ1ψ

(
Xi − θ

σ1

))
+ 2

n2∑
j=1

log

(
1 + λ2ψ

(
Yj −∆− θ

σ2

))
.

To find an estimator θ̂ = θ̂(∆, σ1, σ2) for θ that maximizes R(∆, θ, σ1, σ2), set

∂

∂θ
W(∆, θ, σ1, σ2) =

n1∑
i=1

λ1ψ
′
(

Xi−θ
σ1

)
1 + λ1ψ

(
Xi−θ
σ1

) +

n2∑
j=1

λ2ψ
′
(

Yj−∆−θ

σ2

)
1 + λ2ψ

(
Yj−∆−θ

σ2

) = 0, (3.4)

where ψ′ = (∂/∂θ)ψ.

Let σ̂1 and σ̂2 be two estimators for the scale parameters σ1 and σ2 respectively.
We present the assumptions for a general ψ-function of M-estimator defined in
(2.8):

Assumption 3.1.1.

(A1) θ0 ∈ Ω and Ω is an open interval.

(A2) Eψ2 ((Xi − θ)/σ̂1) > 0, Eψ2 ((Yj − θ −∆)/σ̂2) > 0, ψ′ ((Xi − θ)/σ̂1),
ψ′ ((Yj − θ −∆)/σ̂2) are continuous in the neighborhood of θ0,
ψ′ ((Xi − θ)/σ̂1) and ψ3 ((Xi − θ)/σ̂1) are bounded by some inte-
grable function G1(X) in this neighborhood, ψ′ ((Yj − θ −∆)/σ̂2) and
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ψ3 ((Yj − θ −∆)/σ̂2) are bounded by some integrable function G2(Y )
in this neighborhood, and Eψ′ ((Xi − θ)/σ̂1), Eψ′ ((Yj − θ −∆)/σ̂2) are
nonzero.

(A3) n2/n1 → k (as n1, n2 → ∞) and 0 < k <∞.

Assumption 3.1.2.

(B1) σ̂1
p−→ σ0

1 , σ̂2
p−→ σ0

2 .

(B2) Eψ2
(

Xi−θ0
σ0
1

)
= V1 <∞, Eψ2

(
Yj−θ0−∆0

σ0
2

)
= V2 <∞.

(B3) E
((

Xi−θ0
σ0
1

)
ψ′
(

Xi−θ0
σ0
1

))
= 0, E

((
Yj−θ0−∆0

σ0
2

)
ψ′
(

Yj−θ0−∆0

σ0
2

))
= 0.

(B4) E
((

Xi−θ0
σ0
1

)
ψ
(

Xi−θ0
σ0
1

)
ψ′
(

Xi−θ0
σ0
1

))
<∞,

E
((

Yj−θ0−∆0

σ0
2

)
ψ
(

Yj−θ0−∆0

σ0
2

)
ψ′
(

Yj−θ0−∆0

σ0
2

))
<∞.

Assumption 3.1.3.

(C1) n1
−1∑n1

i=1 ψ
′
(

Xi−θ0
σ̂1

)
p−→M1,

n2
−1∑n2

j=1 ψ
′
(

Yj−∆0−θ0
σ̂2

)
p−→M2.

(C2) 1√
n1

∑n1
i=1 ψ

(
Xi−θ0

σ̂1

)
d−→ U1, where U1 ∼ N(0, V1),

1√
n2

∑n2
j=1 ψ

(
Yj−θ0−∆0

σ̂2

)
d−→ U2, where U2 ∼ N(0, V2).

(C3) n−1
1

∑n1
i=1 ψ

2
(

Xi−θ0
σ̂1

)
p−→ V1,

n2
−1∑n2

j=1 ψ
2
(

Yj−θ0−∆0

σ̂2

)
p−→ V2.

Remark 3.1.1. Assumption 3.1.1 is very similar to Assumption 1.3.1, except
that now the conditions need to hold for the estimating functions with the nuisance
parameters σ̂1 and σ̂2. Part (A1) states that the true parameter θ0 should be in
an open interval. Part (A2) was also used in [24] and describes the smoothness
conditions for the estimating functions. Part (A3) requires that the sample sizes
are asymptotically comparable.

Assumption 3.1.2 is necessary to establish the asymptotic distribution of the
location M-estimator with a preliminary scale, see Assumptions 2.1.1 and 2.1.2.
(B1) holds for a suitable scale estimator under mild (smoothness) conditions on
the underlying distribution. (B2) holds for a bounded ψ-function. (B3) holds for
F1, F2 symmetric and ψ odd.

Assumption 3.1.3 contains technical assumptions for the plug-in empirical like-
lihood, similarly as in [13] and [29]. It allows establishing the limiting distribution
of the plug-in EL ratio assuming that the solution to the EL maximisation problem
exists. To establish the existence of the solution, stronger assumptions would be
necessary, since it would require almost sure convergence instead of convergence
in probability of the nuisance parameter estimators in (B1), see J. Valeinis [29]
for the details.
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Lemma 3.1.1 comments on the relationship between the Assumptions 3.1.1 -
3.1.3, the main Theorem 3.1.1 that establishes the EL method for the difference
of two general M-estimators, and Lemma 3.1.2 that states the conditions under
which the smoothed Huber estimator fits in the setting of Theorem 3.1.1.

Lemma 3.1.1. (M. Delesa-Vēliņa et al. [32]) For a general ψ-function of an
M-estimator satisfying Assumptions 3.1.1 and 3.1.2, Assumption 3.1.3 holds.

Theorem 3.1.1. (M. Delesa-Vēliņa et al. [32]) Assume that the EL maximization
problem has a solution θ̂(∆, σ̂1, σ̂2) determined by (3.4). Then, for a general ψ-
function of an M-estimator satisfying Assumptions 3.1.1 and 3.1.3, as n1, n2 → ∞,

−2 logR(∆0, θ̂(∆0, σ̂1, σ̂2), σ̂1, σ̂2)
d−→ χ2

1.

Lemma 3.1.2. (M. Delesa-Vēliņa et al. [32]) Let ψ̃k be the score function (2.13)
defining the smoothed Huber M-estimator and let σ̂1 and σ̂2 be the mean absolute
deviation (MAD) dispersion estimates (2.9) of samples X and Y , respectively.
Assume that the underlying distributions F1 and F2 of X and Y are symmetric.
Then Assumptions 3.1.1 and 3.1.2 hold for ψ = ψ̃k.

Remark 3.1.2. For the proofs, see M. Delesa-Vēliņa et al. [32].
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Chapter 4. Empirical likelihood method for the
difference of trimmed means

In this Chapter a new empirical likelihood method for the difference of two
trimmed means is developed. The results provided in this Chapter have been
previously published in M. Delesa-Vēliņa et al. [8].

In chapter 4.1, preliminary results on the EL method for the trimmed means
in the one-sample case are given. A. B. Owen’s EL method was established for
independent observations, while the observations of the trimmed sample are de-
pendent. As a solution G. Qin and M. Tsao [23] proposed to estimate the EL
ratio directly for the trimmed sample and consequently established the impact of
the dependence on the limiting distribution of the EL ratio, obtaining a scaled
chi-square distribution.

In Chapter 4.2 a new EL-based inference method for the difference of two
trimmed means is developed, extending the results of G. Qin and M. Tsao [23]
to the two-sample case using the tools of Y. Qin and L. Zhao [25] described in
Chapter 1.
4.1 Empirical likelihood method for the trimmed mean in the one-

sample case
Consider the setting of Chapter 2.2: let X1, X2, . . . , Xn be i.i.d. with distribution
function F0, and X(1), X(2), . . . , X(n) be ordered statistics. Let X̄αβ be the sample
trimmed mean as defined by (2.14), i.e.,

X̄αβ =
1

m

s∑
i=r

X(i),

where 0 < α < 1/2, 0 < β < 1/2 are trimming proportions from the left and the
right side, respectively, r = ⌊nα⌋+1, s = n−⌊nβ⌋, and m be the effective sample
size, m = n− ⌊nα⌋ − ⌊nβ⌋.

According to Theorem 2.2.1, the asymptotic value of the sample trimmed mean
X̄αβ is

µαβ =
1

1− α− β

∫ ξ1−β

ξα

xdF0.

Let weights pi = 0 for i < r and i > s, pi ≥ 0 for r ≤ i ≤ s and
∑s

i=r pi = 1.
Define the profile empirical likelihood ratio for the trimmed mean as

R(µαβ) = sup

{ s∏
i=r

mpi : pi ≥ 0,

s∑
i=r

pi = 1,

s∑
i=r

piX(i) = µαβ

}
.

Theorem 4.1.1. [23, Theorem 2.1]
Assume F0 is continuous, F ′

0(ξα) > 0 and F ′
0(ξ1−β) > 0, and let µ0

αβ be the
true value of the trimmed mean µαβ. Then

−2a logR(µ0
αβ)

d−→ χ2
1,
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where
a = σ2

αβ/((1− α− β)τ2αβ),

σ2
αβ =

1

(1− α− β)

∫ ξ1−β

ξα

x2dF0(x)− µ2
αβ , (4.1)

and

τ2αβ =
1

(1− α− β)2
((1− α− β)σ2

αβ + β(1− β)(ξ1−β − µαβ)
2

− 2αβ(ξα − µαβ)(ξ1−β − µαβ) + α(1− α)(ξα − µαβ)
2). (4.2)

[23] provided a consistent estimator for the scaling constant a by

â = σ̂2
αβ/((1− α− β)τ̂2αβ),

where

σ̂2
αβ =

1

(1− α− β)

∫ ξ̂1−β

ξ̂α

x2dFn(x)− X̄2
αβ , (4.3)

τ̂2αβ =
1

(1− α− β)2
((1− α− β)σ̂2

αβ + β(1− β)(ξ̂1−β − X̄αβ)
2

− 2αβ(ξ̂α − X̄αβ)(ξ̂1−β − X̄αβ) + α(1− α)(ξ̂α − X̄αβ)
2), (4.4)

ξ̂p = inf{x : Fn(x) ≥ p} for any 0 < p < 1, and Fn(x) is the empirical distribution
function.
4.2 Main results
Consider the two-sample EL problem described in Chapter 1.3 where i.i.d. random
variables X1, . . . , Xn1 and Y1, . . . , Yn2 have unknown distribution functions F1 and
F2, respectively.

We are interested in the difference of two trimmed means with trimming pro-
portions 0 < α < 1/2, 0 < β < 1/2. Thus for (1.6) - (1.6) consider the parameters

θ0 =
1

1− α− β

∫ ξ1−β

ξα

xdF1 =: µαβ1, θ1 =
1

1− α− β

∫ ξ1−β

ξα

ydF2 =: µαβ2,

and
∆0 = µαβ2 − µαβ1.

Consider the respective sample means

X̄αβ =
1

m1

s1∑
i=r1

X(i), Ȳαβ =
1

m2

s2∑
j=r2

Y(j),

where r1 = ⌊n1α⌋+1, s1 = n1 −⌊n1β⌋, r2 = ⌊n2α⌋+1, s2 = n2 −⌊n2β⌋, and m1

and m2 are the effective sample sizes after trimming, i.e., m1 = n1−⌋n1α⌋−⌊n1β⌋,
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m2 = n2 − ⌊n2α⌋ − ⌊n2β⌋. Similarly as in Theorem 4.1.1, let weights pi = 0 for
i < r1, i > s1, and qj = 0 for j < r2 and j > s2. Define the estimating functions

w1(X,µαβ1,∆0) = X − µαβ1, w2(Y, µαβ1,∆0) = Y −∆0 − µαβ1.

Finally, define the profile empirical likelihood ratio function for the difference ∆
of the trimmed means as

R(∆, µt) = sup
pi,qj

{ m1∏
i=1

m1pi

m2∏
j=1

m2qj |pi ≥ 0, qj ≥ 0,

s1∑
i=r1

pi = 1,

s2∑
j=r2

qj = 1,

s1∑
i=r1

piw1(X(i), µt,∆) = 0,

s2∑
j=r2

qjw2(Y(j), µt,∆) = 0

}
, (4.5)

where µt is considered as a nuisance parameter and has the real value µαβ1. This
setting is similar to the one described in Chapter 1.3, with a distinction that
additional restrictions pi = 0 for i < r1, i > s1, and qj = 0 for j < r2, j > s2 are
added. A unique solution of (4.5) exists, provided that 0 is inside the convex hull
of the points w1(X(i), µt,∆)’s and w2(Y(j), µt,∆)’s, r1 ≤ i ≤ s1, r2 ≤ j ≤ s2, and
may be found using the Lagrange multipliers method. Similarly to (1.9) - (1.10)
we have

pi =
1

m1(1 + λ1w1(X(i), µt,∆))
, i = r1, . . . , s1,

qj =
1

m2(1 + λ2w2(Y(j), µt,∆))
, j = r2, . . . , s2,

where the Lagrange multipliers λ1 = λ1(µt,∆) and λ2 = λ2(µt,∆) can be deter-
mined in terms of µt by the equations

s1∑
i=r1

w1(X(i), µt,∆)

1 + λ1w1(X(i), µt,∆)
= 0,

s2∑
j=r2

w2(Y(j), µt,∆)

1 + λ2w2(Y(j), µt,∆)
= 0.

The empirical likelihood profile log ratio is defined as

W(∆, µt) = −2 logR(∆, µt) (4.6)

= 2

s1∑
i=r1

log(1 + λ1w1(X(i), µt,∆)) + 2

s2∑
j=r2

log(1 + λ2w2(Y(j), µt,∆)).

To find an estimator µ̂t = µ̂t(∆) for the nuisance parameter µt that maximizes
R(∆, µt) for a fixed parameter ∆, set (∂/∂µt)W(∆, µt) = 0. Noting that the
derivatives of w1 and w2 with respect to µt are equal to −1, we obtain the empirical
likelihood equation

∂

∂µt
W(∆, µt) =

s1∑
i=r1

−λ1

1 + λ1w1(X(i), µt,∆)
+

s2∑
j=r2

−λ2

1 + λ2w2(Y(j), µt,∆)
= 0.

(4.7)

Assumption 4.2.1.
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(A1) F1, F2 is continuous, F ′
1(ξα) > 0, F ′

1(ξ1−β) > 0, F ′
2(ξα) > 0, F ′

2(ξ1−β) > 0.

(A2) µαβ1 ∈ Ω, where Ω is an open interval.

(A3) n2/n1 → k as n1, n2 → ∞, and 0 < k <∞.

Remark 4.2.1. Assumption 4.2.1 condition (A1) comes from Theorem 4.1.1 and
ensures that the samples are trimmed so that the corresponding percentiles of the
population distributions F1 and F2 are uniquely defined. Notice that it is assumed
that the trimming proportions α and β are positive. To allow α or β to be equal
to zero, an additional condition E(X2) < ∞ and E(Y 2) < ∞ should be imposed,
and the proof of Theorem 4.2.1 would require a slight change. Conditions (A2)
and (A3) are inherited from assumptions for the EL method in the general two
sample case, Assumption 1.3.1.

Theorem 4.2.1. (M. Delesa-Vēliņa et al. [32]) Under Assumption 4.2.1 there
exists a root µ̂t(∆0) of (4.7) such that µ̂t(∆0) is a consistent estimator for µαβ1,
R(∆0, µt) attains its local maximum value at µ̂t(∆0), and

−2a2 logR(∆0, µ̂t(∆0))
d−→ χ2

1

as n1, n2 → ∞, with the scaling constant

a2 =
n1n2(m2σ

2
1 +m1σ

2
2)

m1m2(n2τ21 + n1τ22 )
,

where (σ2
1 = σ2

αβ1, τ21 = τ2αβ1) and (σ2
2 = σ2

αβ2, τ22 = τ2αβ2) are the parameters
defined in (4.1) and (4.2), associated with the underlying distribution functions F1

and F2, respectively.

Remark 4.2.2. A consistent estimator for the scaling constant a2 from Theorem
4.2.1 is provided by

â2 =
n1n2(m2σ̂

2
1 +m1σ̂

2
2)

m1m2(n2τ̂21 + n1τ̂22 )
,

where the parameter estimators σ̂2
1, τ̂21 , and σ̂2

2, τ̂22 are defined as in the one-sample
case in (4.3) and (4.4) with the empirical distributions Fn1(x), Fn2(y), and the
trimmed means X̄αβ, Ȳαβ, respectively.

Remark 4.2.3. An approximate 1− p confidence interval for the true difference
of trimmed means ∆0 can be obtained by test inversion and has the form

{∆ : −2â2 logR(∆, µ̂t(∆)) ≤ χ2
1,1−p},

where χ2
1,1−p denotes the 1− p quantile of the χ2

1 distribution.

Proof. For the proof, see M. Delesa-Vēliņa et al. [8].
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Chapter 5. Empirical likelihood-based ANOVA method
for the trimmed means

The goal of this chapter is to develop an empirical likelihood based ANOVA
method for comparing multiple population trimmed means. The new results de-
scribed in this chapter have been previously published in Delesa-Velina et al. [31].

Consider the problem of comparing more than two populations: let Yi =
(Yi1, Yi2, . . . , Yini), i = 1, 2, . . . , k, be independent random samples from k differ-
ent distributions with population means µi. The classical approach is to test the
null hypothesis of equal population means

H0 : µ1 = . . . = µk =: µ. (5.1)

Under the assumption of equal variances (homoscedasticity) and normally dis-
tributed data in each group, i.e. Yij ∼ N(µi, σ), one can use the classical ANOVA
F test.

It is well known that the ANOVA F -test can not handle the variance hetero-
geneity since the problems of controlling the probability of type I error arise. B.
L. Welch [34] proposed an approximate degrees of freedom (ADF) type procedure
that can deal with variance heterogeneity for normally distributed data. However,
problems still arise when the variance heterogeneity appears in combination with
nonnormal data and unbalanced sample designs (see, for example, [35]). K. Yuen
et al. [37] suggested a robust modification to the Welch’s test using trimmed
means and Winsorized variances together with ADF statistics. It was demon-
strated in [16] that such an approach offers a better control over the probability
of a type I error for one-way ANOVA under distributions of various degree of
skewness and unbalanced sample sizes. A. B. Owen [21] proposed an empirical
likelihood-based ANOVA method for independent groups to test the hypothesis
of equality of means. We take advantage of the good robustness properties of the
trimmed means in the one-sample case and propose an EL-based ANOVA type
method to test the hypothesis of equality of more than two trimmed means.

We first present the A. B. Owen’s EL ANOVA method in Chapter 5.1. The
main result on comparing multiple population trimmed means in the empirical
likelihood setting is presented in Chapter 5.2.
5.1 Empirical likelihood-based ANOVA method
To present the EL ANOVA method, we follow [21]. Let observations Yij ∈ R,
where i = 1, . . . , k, j = 1, . . . , ni and N =

∑k
i=1 ni denotes the total number of

observations.
Consider N random pairs (I, Y ), where I ∈ {1, . . . , k} and Y ∈ Rd. The

observation Yij is represented by a pair where I = i and Y = Yij . Let F be a
distribution on (I, Y ) pairs. The data are not i.i.d from F , because I in each pair
is a non-random categorical predictor. Define the likelihood

L(F ) =

n∏
i=1

ni∏
j=1

vij ,
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where vij = F{(i, Yij)}. The weights vij can be factorized into vij = vj|ivi·, where
vi· =

∑ni
j=1 vij , and vj|i = vij/vi·. The EL ratio function can be then expressed

as

R(F ) =

k∏
i=1

ni∏
j=1

Nvi·vj|i

=

(
k∏

i=1

(
Nvi·
ni

)ni
)(

k∏
i=1

ni∏
j=1

nivj|i

)
. (5.2)

In ANOVA analysis, we are usually interested in F only through vj|i, thus
we can take vi· = ni/N . The first product in (5.2) becomes equal to one and
the maximization of R(F ) is only subject to constraints on vj|i.This leads to the
likelihood ratio function

R(F ) = Rk(F1, . . . Fk).

A triangular array EL theorem [22, Theorem 4.1.] can be used to establish the
inference for ANOVA type hypotheses.

Proposition 5.1.1. (EL ANOVA for the equality of means) [21, p. 1739] Suppose
E(Yij) = µ0. Let

R(µ) = max
vj|i

{ k∏
i=1

nk∏
j=1

nivj|i

∣∣∣ n1∑
j=1

vj|1Y1j = . . . =

nk∑
j=1

vj|kYkj = µ,

nk∑
j=1

vj|i = 1, vj|i ≥ 0, i = 1, . . . , k

}
(5.3)

and define n0 = min1≤i≤k ni. If µ = µ0 + O(n
−1/2
0 ) and for each i = 1, . . . k,

VarYi1 is finite and nonzero, then

−2 logmax
µ

R(µ) =

k∑
i=1

ni(Ȳi· − µ̂)2/s2i +Op(n
−1/2
0 )

d−→ χ2
k

as n0 → ∞, where Ȳi· = n−1
i

∑
j Yij, s2i = n−1

i

∑
j(Yij − Ȳi·)

2, and µ̂ is the EL
estimator of the common mean µ0 given by

µ̂ =

∑k
i=1 niȲi·/s

2
i∑k

i=1 ni/s2i
.

Note that µ̂, the EL estimator of the common mean µ0, is not the mean of all
Yij as in the classical ANOVA case. Instead, µ̂ weights the group means inversely
to the group variances. The convex hull condition for the EL ANOVA case is

min
j
Yij ≤ µi ≤ max

j
Yij , i = 1, . . . , k.
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5.2 Main results
We are interested in the null hypothesis

HT
0 : µαβ1 = µαβ2 = . . . = µαβk =: µαβ , (5.4)

where
µαβi =

1

1− α− β

∫ ξ1−β

ξα

xdFi0,

and µαβ represents the common population trimmed mean.
Let Yi(1), Yi(2), . . . , Yi(ni) denote the order statistics of the ith sample, i =

1, . . . , k. Set ri = ⌊niα⌋ + 1 and si = ni − ⌊niβ⌋, where 0 < α < 1/2 and
0 < β < 1/2 represent the proportion of the observations trimmed from the left
and the right tails, respectively. Then mi = ni − ⌊niα⌋ − ⌊niβ⌋ is the effective
sample size after trimming of the ith group. The group-specific sample trimmed
means and trimmed variances are given by

Ȳαβi =
1

mi

si∑
j=ri

Yi(j), S2
αβi =

1
mi

∑si
j=ri

(Yi(j) − Ȳαβi)
2.

Analogically to the EL ANOVA setting in (5.3), we are only interested in the
weights conditioned on the ith sample, vj|i. For the sake of simplicity, we will
write vij instead of vj|i from now on. Next, we use the same idea as developed
in Chapter 4, defining the EL ratio function directly over the trimmed samples,
forcing weights vij = 0 for all i = 1, . . . , k and j < ri, j > si. Thus define the EL
ratio as

R(µαβ) = sup
vij

{
k∏

i=1

si∏
j=ri

mivij ,

si∑
j=ri

vij = 1,

si∑
j=ri

vij(Yi(j) − µαβ) = 0, i = 1, . . . , k

}
.

Theorem 5.2.1. (M. Delesa-Vēliņa et al. [31]) Let µαβ0 be the common
population trimmed mean. Assume that Fi0 is continuous, F ′

i0(ξα) > 0 and
F ′
i0(ξ1−β) > 0 for each i = 1, . . . , k. If µαβi = µαβ0 + O(n

−1/2
0 ), i = 1, . . . , k,

where n0 = min1≤i≤k ni, then under HT
0 (5.4),

k∑
i=1

aili :=

k∑
i=1

aimi(Ȳαβi − Ȳαβ)
2/S2

αβi +Op(n
−1/2
0 )

d−→ χ2
(k−1)

as n0 → ∞, where Ȳαβ is the EL estimator of the common trimmed mean,

Ȳαβ =

∑k
i=1 Ȳαβimi/S

2
αβi∑k

i=1mi/S2
αβi

+ op(n
−1/2
0 ),

and the scaling factors are given by

ai = σ2
αβi/((1− α− β)τ2αβi) . (5.5)

The quantities σ2
αβi and τ2αβi for the ith trimmed sample are given by (4.1) and

(4.2).

Proof. The proof can be found in [31].
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Chapter 6. Simulation and data analysis results

In this chapter, performance of the newly-established empirical likelihood
methods for robust location estimators is analyzed in situations where the classical
assumptions regarding the normality and variance homogeneity do not hold. The
effects of the shape of the distribution (skewness, heavy tails or outliers with or
without variance heterogeneity) are investigated in simulation setting regarding
the ability to control the type I error, empirical coverage of confidence intervals
and the power of the tests. The application of the methods to some real data
sets are considered. The newly-established methods are compared to well-known
methods of classical and robust statistics.

The performance of the newly-established EL methods has been analyzed be-
fore in author’s publications [31], [32] and [8]. In this chapter the conclusions
drawn before are recapitulated, and some further comparative analysis is carried
out. The results for the EL-based methods were computed using R package EL [6]
as well author’s custom-made R functions.
6.1 EL method for the difference of two smoothed Huber estimators
In Delesa-Vēliņa et. al. [32], the difference of two smooth Huber estimators
was considered. The simulation study involved data generated from symmetrical
heavy-tailed distributions, double exponential and Huber’s least favorable distri-
bution. Note that Lemma 3.1.2 stipulates that the asymptotic results of Theorem
3.1.1 hold for the smoothed Huber estimator if the underlying distributions F1

and F2 are symmetric. However, we were interested to evaluate the effects of
departure from the symmetry assumption empirically, since skewed distributions
are common in practical settings, thus asymmetric gamma distribution with and
without uniformly distributed contamination was considered as well. Data sets
of equal sample size (50 and 100) with and without variance heterogeneity were
considered. The focus of the simulation study was the empirical coverage of 95%
confidence intervals and the power of the tests.

Computation of the smoothed M-estimate (2.11) requires the asymptotic vari-
ance V of the initial non-smooth M-estimator. Regarding the estimation of V ,
two variants of the test for the difference of two smoothed Huber estimators were
analyzed: first, V was set equal to 2.046 as recommended in [12], and second,
V was estimated for the particular distribution using Monte Carlo simulations.
MAD was used as a preliminary estimate of the scale parameter σ of the under-
lying distribution as required by Lemma 3.1.2. For comparison, hypothesis tests
regarding the difference of means were included, namely, Student’s t-test and EL
test for the difference of means of Example 1.3.1.

Regarding the results of the empirical coverage, the results were as follows. 1.
For the symmetrical distributions (double exponential and Huber’s least favorable
distribution) all methods gave similar results, the empirical coverage being close to
the nominal 95%. This held regardless of the degree of the variance heterogeneity.
2. Regarding the uncontaminated gamma distribution, the empirical coverage
of the methods based on the means and the method based on the smoothed

29



Huber estimator with V estimated was again close to the nominal 95%. However,
for the method based on the smoothed Huber estimator with V = 2.046, the
empirical coverage was lower, being only 0.879 for moderate shape difference (σ =
3) and 0.832 for large shape difference (σ = 20) when n = 100. 3. For gamma
distributions with 6% or 20% of contamination, the new EL method based on the
V estimated had overall better empirical coverage than Student’s t-test and EL
test for the difference of means. 4. The EL method based on V = 2.046 gave
inconsistent results.

The empirical power was analyzed sampling from two gamma distributions of
differing shapes and means, with and without uniformly distributed contamina-
tion. In the case with no contamination, the EL method for the difference of the
means and the EL method for the difference of two smoothed Huber estimators
with V estimated had similar power and outperformed the t-test. With V = 2.046,
the EL method for the difference of smoothed Huber estimators had substantially
lower power. In the case involving uniform contamination, the EL method for the
difference of two means was not very robust and had power similar to t test. The
EL method for two smoothed Huber estimators with simulated V had the highest
power.

Based on these findings, it was concluded that for symmetrical distributions,
the asymptotic variance V of the initial non-smooth Huber estimator can be
considered a tuning parameter, and can be fixed to a constant as recommended
in [12]. However, for skewed distributions it is not the case and estimating V
should be preferable. In practical situations V could be estimated using the
nonparametric bootstrap method.
6.2 EL method for the difference of two trimmed means
The EL method for the comparison of two trimmed means was considered in M.
Delesa-Vēliņa et al. [8]. The simulation study involved various aspects of violation
of the classical assumptions: underlying distributions of various shapes, as well as
unbalanced sample sizes and variance heterogeneity combined. The empirical level
and the power of the tests was analyzed. The standard normal distribution, t2-
distribution, skewed χ2

3 and χ2
1 distributions, as well as two contaminated normal

distributions were considered under balanced (n1 = n2) and unbalanced (n2 =
2n1) sample size scenarios. ,

Methods included for the comparison were: Student’s t-test, Welch’s test [33]
and EL test (Example 1.3.1) – for the comparison of means; Yuen’s test [37] with
bootstrap-t approximation [36, Table 5.6] – for the comparison of the trimmed
means, as well as the EL ANOVA method for comparing trimmed means de-
scribed in Chapter 5. Regarding the trimmed means, two trimming versions were
considered: 10% and 20% trimming. For Yuen’s test, the R package WRS2 [17]
function yuenbt was used.

Comparison with the EL test for the difference of two smoothed Huber esti-
mators was not included in the study in Delesa-Velina et al. [8], but has been
included in the thesis and is reported below. Regarding the smoothed Huber es-
timators, two versions of the test – with the asymptotic variance V of the initial
non-smoothed Huber estimate fixed to 2.046 (panel ELHubVF) and V estimated
by 10,000 Monte Carlo simulations (panel ELHubVE) were considered. We ex-
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clude the comparison with the EL ANOVA method for the trimmed means from
the results below and comment on it in Chapter 6.3. We present here only the
results for the balanced sample size scenario.

As the first aspect, the empirical level was explored as a function of the sample
size for two equal underlying distributions, see Figure 6.1. Horizontal dotted
lines indicate the simulation error as two standard deviation intervals around
the nominal level, the standard deviation being calculated as

√
α(1− α)/5000

yielding the interval (0.047, 0.053). For both newly-established EL two-sample
methods, the simulation results confirm the convergence of empirical level to the
nominal under the null hypothesis for N(0, 1) and t2 distributions, as well as
for contaminated normal distributions. For heavy-tailed distributions, such as
contaminated normal and t2-distribution, the convergence of the EL tests for the
trimmed means and smoothed Huber estimators is considerably faster than that
of the tests based on the means. In some settings, the EL test for the difference
of 10% trimmed means converges faster to the empirical level than the test for
the 20% trimmed means, and thus it would be preferable to use 10% trimming
in small samples (under 30). The EL-based methods for the comparison of the
trimmed means converge to the nominal level more slowly than Yuen’s test with
a bootstrap-t approximation.

For skewed distributions, the results depend on the test used. The EL method
for the trimmed means converge to the nominal level, although more slowly than
Yuen’s test. For the moderately skewed χ2

3 distribution, the EL Huber test with V
estimated converged to the nominal level less quickly than the tests based on the
trimmed means, while the version with V fixed did not converge to the nominal
level at all. This result is concordant with findings in Velina et. al. [32], where it
was concluded that fixing V = 2.046 yields empirical coverage lower than nominal
when the underlying distributions are skewed and of differing shapes. For the very
skewed χ2

1 distribution, the empirical level of the tests based on Huber estimators
did not converge to the nominal at all. This might seem in contrast to the results
of [32], however, the interpretation of this result may lay in the degree of skewness
of the distributions – none of the distributions considered in [32] were as skewed
as χ2

1.
As the second aspect, the power of the tests was investigated under vari-

ous location differences ∆0, where ∆0 = j · 0.04 · δ, j = 1, . . . , 25. The value
δ = F−1(0.841)− F−1(0.5) was chosen as the difference between the 84.13% and
50% percentile of the underlying distribution F being considered, thus allowing to
compare power analysis results between different types of distributions. Such ap-
proach has been previously used in [9]. The same distributions as for the empirical
level simulations are considered. Sample size n1 = 50 was chosen as being suffi-
cient for most of the tests to control the empirical type I error for the distributions
considered.

Power simulation results are presented in Figure 6.2. Regarding the newly-
established EL test for the difference of trimmed means, its power close to that of
Student’s t-test under the standard normal distribution, while exceeds it consid-
erably for most of the nonnormal distribution settings, except for the moderately
skewed χ2

3 distribution. Moreover, the new test has a comparable power to that
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Figure 6.1: Empirical level of the tests as a function of the total sample size n1 + n2

for various distributions, balanced sample sizes. Top: N(0, 1) distribution
(left), t2-distribution (right). Middle: 5% contaminated normal distribu-
tion 0.95N(0, 1)+0.05N(0, 25) (left), 10% contaminated normal distribution
0.9N(0, 1) + 0.1N(0, 100) (right). Bottom: χ2

3 distribution (left), χ2
1 distri-

bution (right). Tests considered: Student’s t-test (t), Welch’s test (Welch),
Yuen’s test for the trimmed means with bootstrap-t approximation (Yuen),
EL test for the means (EL Means), EL test for the difference of trimmed
means (ELTM), EL test for the difference of smoothed Huber estimators,
with V = 2.046 fixed (ELHubVF) and V simulated (ELHubVE). Colour in-
dicates the relevant hypothesis tested – violet for methods comparing means,
blue and green for 10% and 20% trimmed means, respectively, yellow for
smoothed Huber estimators.
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Figure 6.2: Power of the tests as a function of location difference ∆0 for various dis-
tributions, balanced sample sizes n1 = n2 = 50. Top: N(0, 1) distribution
(left), t2-distribution (right). Middle: 5% contaminated normal distribu-
tion 0.95N(0, 1)+0.05N(0, 25) (left), 10% contaminated normal distribution
0.9N(0, 1) + 0.1N(0, 100) (right). Bottom: χ2

3 distribution (left), χ2
1 distri-

bution (right). Tests considered: Student’s t-test (t), Welch’s test (Welch),
Yuen’s test for the trimmed means with bootstrap-t approximation (Yuen),
EL test for the means (EL Means), EL test for the difference of trimmed
means (ELTM), EL test for the difference of smoothed Huber estimators,
with V = 2.046 fixed (ELHubVF) and V simulated (ELHubVE). Color indi-
cates the relevant hypothesis tested – violet for methods comparing means,
blue and green for 10% and 20% trimmed means, respectively, yellow for
smoothed Huber estimators.
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of Yuen’s test, in some cases even exceeding it. The power of the test of two
smoothed Huber estimators is similar to that of the test of the trimmed means,
and in case of the N(0, 1) and 5% contaminated normal distribution it exceeds
most of the tests based on the trimmed means. The power of the test at the very
skewed χ2

1 distribution is higher than the rest of the tests, but this is a result of
an incorrect test level at H0.

Table 6.1: Empirical level of tests and robustness by Bradley’s criterion under unbal-
anced and heterogeneous designs for standard normal and χ2

3 distributions.
Small sample designs (panel small) and large sample designs (panel large) are
presented separately. pos indicates positive variance and sample size pairings,
neg indicates negative pairings, and equal refers to equal variances. Tests
considered are: Student’s t-test (t), Welch’s test (Welch), Yuen’s test for the
trimmed means with bootstrap-t approximation (Yuen), EL test for the means
(EL Means), EL test for the difference of trimmed means (ELTM), EL test
for the difference of smoothed Huber estimators, with V = 2.046 fixed (EL-
HubVF) and V simulated (ELHubVE).

Standard normal distribution
Empirical level of tests # robust

sample size small large small large
variance pairings equal pos neg equal pos neg
t 0.049 0.020 0.113 0.049 0.019 0.107 4 2
Welch t 0.050 0.050 0.049 0.049 0.050 0.051 10 10
EL Means 0.060 0.061 0.068 0.050 0.051 0.054 9 10
ELTM 10% 0.047 0.050 0.054 0.052 0.052 0.055 10 10
ELTM 20% 0.077 0.077 0.102 0.053 0.054 0.057 2 10
Yuen 10% 0.050 0.051 0.047 0.049 0.050 0.051 10 10
Yuen 20% 0.050 0.050 0.049 0.049 0.050 0.051 10 10
ELHubVF 0.061 0.060 0.063 0.052 0.051 0.053 10 10
ELHubVE 0.060 0.058 0.062 0.051 0.051 0.053 10 10

χ2
3 distribution

Empirical level of tests # robust
sample size small large small large
variance pairings equal pos neg equal pos neg
t 0.048 0.035 0.129 0.052 0.022 0.110 6 2
Welch 0.049 0.064 0.069 0.052 0.051 0.055 9 10
EL Means 0.070 0.071 0.082 0.054 0.051 0.054 6 10
ELTM 10% 0.051 0.054 0.058 0.053 0.052 0.053 10 10
ELTM 20% 0.078 0.078 0.105 0.055 0.052 0.056 3 10
Yuen 10% 0.047 0.052 0.048 0.050 0.049 0.050 10 10
Yuen 20% 0.048 0.051 0.052 0.051 0.048 0.050 10 10
ELHubVF 0.084 0.080 0.079 0.070 0.071 0.071 1 9
ELHubVE 0.075 0.071 0.070 0.057 0.057 0.057 6 10

As the third aspect, the robustness of the tests under the normal and χ2
3 dis-

tribution with various degrees of heterogeneity combined with unbalanced sample
sizes was analyzed. The following unbalanced designs were considered: two small
sample designs, (n1, n2) = (15, 25) and (n1, n2) = (25, 35), and two large-sample
designs, (n1, n2) = (80, 120) and (n1, n2) = (160, 240). For the degree of het-
erogeneity, the ratio of the variances of the two populations were chosen 1:16
and 1:36, and the equal case 1:1 for comparison. Three possible unbalanced de-
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sign and variance pairing conditions were considered – positive, where the largest
variance is associated with the largest sample size, negative, where the smallest
variance is associated with the largest sample size, and equal for the comparison.
To ensure that the null hypothesis remained true for all the settings of variance
heterogeneity being considered, χ2

3 variates were standardized to have the theoret-
ical location parameter 0 and standard deviation 1 prior to scaling to the desired
variance ratio. Instead of reporting the result of each simulation experiment, the
results are grouped over (i) small and large sample designs, and (ii) variance pair-
ing conditions (positive, negative and equal). We evaluated the test performance
by Bradley’s liberal criterion for robustness [4]. Namely, the test is considered
robust if its empirical type I error α̂ falls into the interval 0.5α ≤ α̂ ≤ 1.5α. We
counted the number of designs where each test passes the robustness condition,
i.e., where it yields an empirical type I error in the interval [0.025, 0.075].

The results are reported in Table 6.1. The robustness by Bradley’s criterion
of the new test for the difference of 10% trimmed means was confirmed for all
unbalanced and variance heterogeneity designs both for the normal and the χ2

3

distribution. However, the EL test for 20% trimmed means failed to be robust
for most of the small sample settings, despite showing good results for the large
sample settings. Regarding the tests based on the smoothed Huber estimators,
they were robust to heterogeneity and unbalanced sample sizes under the normal
distribution. For the skewed χ2

3 distribution, the test can be considered robust
only for large sample sizes, the version with V estimated being more precise than
the version with V fixed.
6.3 EL-based ANOVA method for the trimmed means
The performance of the empirical likelihood ANOVA method for the trimmed
means has been analyzed previously in M. Delesa-Vēliņa et al. [31, 32] in detail.
The study in [31] explored the properties of EL ANOVA method for the trimmed
means with 5%, 10% and 20% symmetric trimming. The empirical probability of
a type I error of the method under various skewed distributions was considered.
For comparison, the classical ANOVA F -test, Welch heteroscedastic ANOVA F -
test [34] and EL ANOVA test for the means [21], as well as Yuen’s test [36, Table
7.1] for the trimmed means were included in the study.

The study involved a comparison of three groups of equal sizes ranging from
n = 20 to n = 500. We recorded the rate of empirical type I errors under
H0 sampling from χ2

3 distribution, lognormal distribution, gamma distribution
with shape parameter a = 2 and scale parameter σ = 1, and the skew-normal
distribution [2] with location parameter ξ = 0, scale parameter ω = 1, and slant
parameter α = 1. For the scenario with heterogeneous variances, we further
transformed the simulated data as to have the ratios between variances to be
either 1:4:9 or 1:1:36.

See [31] for the results of the study. Regarding the newly-established EL
ANOVA test for the trimmed means, the simulations with three groups sampled
from skewed distributions with equal variances show that the test converges to
the empirical level for all distributions considered. Scenario with heterogeneous
variances suggests that the test is rather oversized for small sample sizes (below
100). For large sample sizes, the test converges to the empirical level. For all
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heterogeneous settings, the EL-based ANOVA for the trimmed means is more
robust than the classical F -test, having the empirical rejection rates closer to the
nominal level.

The study in M. Delesa-Vēliņa et al. [8] provided additional insight in the
performance of the EL ANOVA method for the trimmed means in case of com-
paring two groups. Simulations with two groups suggest that the ANOVA-like
EL test for the trimmed means converges to the empirical level also when data
is sampled from heavy tailed distributions or distributions containing outliers. In
addition, it has good power properties, exceeding the power of the methods based
on the means when the data distributions are not normal. Similarly as in the
case of three groups, the case of two groups reveals that EL ANOVA test for the
trimmed means is not robust to the combination of variance heterogeneity and
skewness for small sample sizes. It should be noted, however, that the simulation
results with two groups give only a limited view on the behavior of ANOVA-like
methods.
6.4 Analysis of data sets
We explore a number of real data sets exhibiting various departures from normal-
ity. We are interested in testing the null hypothesis of equal location parameters
of two or more populations, using the newly-established EL-based methods as well
as some well known classical and robust methods for the comparison. See thesis
Chapter 6.3 as well as M. Delesa-Vēliņa et al. [31, 32, 8] for the data analysis
results.

For the two-sample methods, we observed that the tests based on the trimmed
means could lead to the opposite conclusion about H0 in comparison to the tests
based on the means. We observed that the p-values of the EL test and Yuen’s test
for the difference of trimmed means were quite close, and this was true also for
small sized samples. The confidence intervals of the EL-based tests were somewhat
shorter. Regarding the test for the difference of two smoothed Huber estimators,
we noted that the p-values can be quite different depending on the value of the
asymptotic variance V , especially if the underlying distribution is substantially
skewed. This is in line with our simulation results, and once again suggests that
using EL test for the two smoothed Huber estimators should be avoided for very
skewed data sets. In cases of moderate skewness the Huber test with V estimated
yields p-values close to the EL test for the means.

Regarding the ANOVA methods, we noted that, for each trimming proportion,
the p-values from the EL ANOVA for trimmed means and Yuen’s test are very
similar. Interestingly, the p-values from the EL ANOVA for means and Welch’s
heteroscedastic ANOVA test were also very similar between themselves. The tests
based on the trimmed means could lead to different conclusions in comparison to
the tests based on the means.
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Conclusions

The main aims of the research have been achieved. New EL-based methods
for comparing two and more populations based on robust location parameter
estimators have been developed:

1. An EL-based method for comparing two location M-estimators;

2. An EL-based method for comparing two population trimmed means;

3. An EL-based ANOVA method for comparing more than two population
trimmed means.

The conditions for the use of the methods were established and the asymptotic
results were proven. Using the approach of Y. Qin and L. Zhao [25], it was shown
that under particular conditions the limiting law of the EL log likelihood ratio
for the difference of two M-estimators is the χ2

1 distribution, similarly as in the
case of the difference of the means. It was shown that the smoothed Huber
estimator fits under the established conditions. The smoothing principle provided
by F. Hampel et al. [11] is important, since it allows to construct smooth EL
estimating functions essential for the conditions to hold.

We generalized the one-sample EL for the trimmed mean by G. Qin and M.
Tsao [23] to the two-sample and ANOVA case. The limiting law of the EL log
likelihood ratio for the difference of the trimmed means is a scaled χ2

1, and is
essentially related to the asymptotic distribution of the trimmed mean established
by S. Stigler [27]. In the case of the EL ANOVA-like method for the trimmed
means, there are scaling constants involved for each of the k populations, and the
resulting limiting law is χ2

k−1. This result is related to the EL ANOVA for the
equality of means established by A. B. Owen in [21].

Simulation study was realized to explore the behaviour of the methods when
sampling from various types of probability distributions, especially when the clas-
sical assumptions of normality and variance equality do not hold. We observe
that EL methods based on the trimmed means are robust to distributional skew-
ness, heavy tails, outliers and variance heterogeneity combined with unbalanced
sample sizes, in a sense that the empirical type I error converges to the nominal
level. For the difference of smoothed Huber estimators, however, the robustness
was not confirmed for very skewed distributions, but held for distributions with
moderate skewness, heavy tails and outliers. It should be noted that the power
of the methods considerably exceeds that of the methods based on the means.

For extension of the thesis research, there are several options. First, one might
consider the difference of other M-estimators than the smoothed Huber estimator.
Second, one might consider the EL method for the non-smooth criterion functions
developed by in [19]. Their approach has the potential of wider application,
however, it has a slower theoretical convergence rate. To the best of our knowledge,
the comparison of the smooth and the non-smooth approaches for the two-sample
and ANOVA problems has not been done and would be of interest in the future.
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Theses

1. Empirical likelihood method for comparing two location M-
estimators was developed, conditions for the application of the
method were established and the asymptotic results were proven.
It was shown that the conditions hold for the difference of two
smoothed Huber estimators. Simulation study showed that the
method has good robustness properties when sampling from dis-
tributions containing outliers or heavy tails.
Simulation study showed that the method version with asymptotic variance
parameter V confirms the robustness of the level of the test (i.e., the empir-
ical level of the test is close to the nominal) when sampling from symmetric,
heavy tailed and moderately skewed distributions. This method has a higher
power than the methods based on the means when normality does not hold.
This method is robust to the combination of variance heterogeneity and un-
balanced sample design for normal distribution settings, and for large sample
settings also for chi squared distribution settings. [32]

2. Empirical likelihood method for comparing two trimmed means
was developed and the asymptotic results were proven. Simu-
lation study when sampling from symmetric, heavy tailed and
skewed distributions confirmed the good robustness properties of
the method.
The empirical level of the new test is robust and, moreover, it has higher
power than the classical tests when sampling from skewed or heavy-tailed
distributions. EL test for the difference of 10% trimmed means was robust
to the combination of variance heterogeneity and unbalanced sample sizes
both for normal and chi squared distribution settings. [8]

3. Empirical likelihood-based ANOVA method for comparing more
than two population trimmed means was developed and the
asymptotic results were proven. Simulation study involving
skewed distributions demonstrated the good robustness proper-
ties of the method in comparison to the classical F -test.
Simulation study with three groups involving skewed distributions confirmed
that the test level was robust. The test empirical level is closer to the nominal
than that of the classical F -test when the variances are not equal.
Simulation study with two groups showed that the new method has higher
power than the ANOVA methods based on the means when the underlying
distribution is severely skewed, contains outliers or is heavy-tailed. The
EL ANOVA method for 10% trimmed means is robust to combination of
unbalanced sample sizes and variance heterogeneity both in normal and chi
squared distribution settings when the sample size is large. [31], [8]
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