
Training
Tesseract OCR
Models for Latvian
Fraktur Scripts
Via
Crowdsourcing

valdis.saulespurens@lnb.lv

R&D at National Library of Latvia

ELAG 2022 conference

OCR improvement
pipeline

• Ingest new data with old model

• Web Application frakturs.lnb.lv
to curate new data

• Train Tesseract with newly
labeled data

• Repeat until needed accuracy

History of Fraktur
in Latvia

Adopted from German Fraktur 17-18th century

Contains extra Latvian only glyphs

Long s with stroke Ꞩ - U+A7A8, ẜ - U+1E9C

Standard until 1908

Still used until 1938

Collection of
Latvian Fraktur
books
and periodicals
at NLL

• Conservative estimates
• 180+ books 19th-20th

century
• 24 000+ periodicals

Previous attempts
at Fraktur OCR

Circa 2010 –
commercial

offering

Low accuracy
– around 90%

Special
symbols a
problem

Tesseract improvements

versions 4.0+

LTSM support

Accuracy gains

Models ->

Need for labeling

Source:knime.com

Use current Tesseract
model to generate OCR

rows of text

Load Fraktur
Model from

UB Mannheim

Collect user entered
labels at

frakturs.lnb.lv

Retrain the model

Use current
model on larger

corpus

NoYes

frakturs.lnb.lv LIFE CYCLE

Add new corpus?

Pre-processing

• Python script

• OCR on folders

• Each page extracted as dictionary

• Cut with Pillow

• Text saved into SQLite database

Web app stack

Use Use boring (proven) technology –
boringtechnology.club

Back
End

Python
Flask/SQLite/Plotly/Pandas/Pillow/pytesseract

Front

End

vanilla Javascript/jQuery/Bootstrap/Plotly

SQLite
Database Schema

Rows of Text • Each row – base for edit

• Text from previous model

SQLite
Views

Front End

• Simple HTML templates

• Javascript/jQuery

• Bootstrap for CSS – no design budget
for this

• Thumbs Up / Down

Javascript
with jQuery

• Keyboard processing of
rare symbols

• Define new jQuery
methods

Deployment
National Library of Latvia Infrastructure VPS - Ubuntu 18.04LTS

Post-processing
– Fine Tuning

• Extract Ground Truth – 2
Matching Votes

• https://github.com/tesseract-
ocr/tesstrain/wiki/GT4HistOCR#fi
netuning-based-on-scriptfraktur

• 50-100k iterations – ideal would
be 1M or more

• Accuracy ~ 99%

https://github.com/tesseract-ocr/tesstrain/wiki/GT4HistOCR#finetuning-based-on-scriptfraktur

Results
• User Activity

• Two campaigns – Thank you Anda Baklane!

• Google Bot in Jan

Statistics • Popular words

• Readability

Key lessons

• Sense of purpose – more
engagement (70+ participants)

• Pareto principle – 80% of edits by
less than 20% of participants

Future

• Streamline adding of new books

• Continuous Integration of new models

• Solve double symbol issue

• Upgrade of Tesseract engine

Thank You !
Questions and
comments

