

Introduction to the IoT
(Internet of Things)

Coursebook

RTU Press
Riga 2019

Introduction to the IoT. Coursebook. Riga: RTU Press, 2019. 366 pp.

This coursebook provides comprehensive information about Internet of Things and its
infrastructure. Its goal is to introduce IoT to the bachelor and master students, technology
enthusiasts and engineers that are willing to extend their current knowledge. This book can also
assist teachers and educators in preparing a course on IoT technology (full or partial).
Some general knowledge about IT technology is required.

Project Coordinator		 Piotr Czekalski
Scientific Editor 		 Agris Ņikitenko

Proofreading 	 	 Irēna Skārda
Technical Editor		 Irēna Skārda
Graphic Design		 Blanka Czekalska, Małgorzata Wiktorczyk
Images			 Blanka Czekalska, Małgorzata Wiktorczyk
Technical Support		 Tomy Kalm

Published by		 RTU Press
			 1 Kalku Street, Riga, LV-1668
			 Phone: +37167089123
E-mail: 			 izdevnieciba@rtu.lv

Printed by SIA “EVEKO”

Published in accordance with the decision of the Council of Institute of Applied Computer Systems
of Faculty of Computer Science and Information Technology of RTU of 22 March 2019 (Minutes
No. 12300-1/1).

This Intellectual Output was implemented under the Erasmus+ KA2: Strategic Partnerships in the
Field of Education, Training, and Youth – Higher Education. Project IOT-OPEN.EU – Innovative Open
Education on IoT: Improving Higher Education for European Digital Global Competitiveness.
Project number: 2016-1-PL01-KA203-026471.

Erasmus+ Disclaimer
This project has been funded with support from the European Commission. This publication
reflects the views only of the author, and the Commission cannot be held responsible for any use
which may be made of the information contained therein.

Copyright Notice
This content was created by the IOT-OPEN.EU consortium: 2016–2019. The content is Copyrighted
and distributed under CC BY-NC Creative Commons Licence, free for Non-Commercial use.

ISBN 978-9934-22-295-5 (print)
ISBN 978-9934-22-296-2 (pdf)

This book is compiled by DokuWiki and
proofread using Grammarly. This approach
speeds up the publishing process and
more than likely will be generally used in
future to prepare books for publishing.

Table of Contents

1. Versions .. 8

2. Preface .. 9

2.1. Project Information .. 9

3. Introduction .. 10

3.1. Definition of IoT ...10

3.1.1. What is IoT? ...10

3.1.2. "Thing" .. 11

3.2. Enabling Technologies ...12

3.2.1. Small-Scale Computer Systems...12

3.2.2. Medium-Scale Computer Systems ...12

3.2.3. Access to the Internet..13

3.2.4. IP Addressing Evolution..13

3.2.5. Data Storage and Processing ..13

3.2.6. Mobile Devices..13

3.3. Mobility – New Paradigm for IoT Systems ..13

3.3.1. Cloud Computing ..14

3.3.2. Fog Computing ...14

3.3.3. Cognitive IoT Systems ...14

3.4. Hints for Further Readings on Development Boards, Kits and Sites15

3.5. Data Management Aspects in IoT ..16

3.6. Application Domains and Their Specifics...17

4. IoT Hardware Overview...20

4.1. Most Noticeable Platforms..20

4.2. Embedded Systems Communication Protocols ..20

4.2.1. Analog... 21

4.2.2. Digital ... 21

4.2.3. SPI.. 21

4.2.4. TWI (I2C) .. 22

4.2.5. 1-Wire ... 24

4.3. Arduino Overview ...28

4.3.1. Overview of the Hardware Device Used ..29

4.3.2. Digital Input/Output Pins..30

4.3.3. Pulse Width Modulation ..30

4.3.4. Analog Pins .. 30

4.3.5. Power and Other Pins ..31

2

4.3.6. Memory ... 31

4.3.7. Interface.. 31

4.3.8. Size of the Board ..32

4.3.9. Arduino Shields...32

4.3.10. Sensors and Sensing..34

4.3.11. Drivers and Driving..57

4.3.12. IoT Application Example Projects ...71

4.3.13. Setting Up Development/Experimenting Environment72

4.3.14. Arduino Programming Fundamentals ..77

4.4. Espressif SoC Overview ... 107

4.4.1. Espressif SoC.. 108

4.4.2. Espressif SoC Networking... 121

4.4.3. ESP Programming Fundamentals ... 122

4.4.4. ESP8266 Wifi Scanner.. 150

4.4.5. ESP32 Wifi Scanner ... 151

4.5. Raspberry Pi Overview .. 164

4.5.1. Raspberry Pi General Information .. 166

4.5.2. Raspberry Pi Sensors ... 180

4.5.3. Raspberry Pi Drivers and Driving ... 196

4.5.4. Raspberry Pi OS Guide ... 208

4.5.5. Programming Fundamentals Raspbian OS... 210

4.5.6. Programming Fundamentals Windows 10 IOT Core 226

5. Introduction to the IoT Communication and Networking 263

5.1. Networking Overview .. 264

5.2. Communication Models.. 266

5.2.1. Device to Device and Industry 4.0 Revolution 267

5.2.2. Device to Gateway .. 269

5.2.3. Device to Cloud... 270

5.3. Media Layers – Wired Networking ... 271

5.4. Media Layers – Wireless Protocols ... 273

5.4.1. PHY + MAC + LLC Layers ... 274

5.4.2. NET (NWY) Layer .. 280

5.5. Host Layer Protocols ... 284

5.5.1. MQTT .. 284

5.5.2. CoAP ... 288

6. Data and Information Management in the Internet of Things 290

6.1. IoT Data Lifecycle ... 291

3

6.2. IoT Data Management Versus Traditional Database Management Systems.. 293

6.3. IoT Data Sources.. 294

6.4. Main IoT Domains Generating Data ... 295

6.5. Infrastructure and Architectures for Iot Data Processing: Cloud, Fog, and Edge
Computing ... 296

6.6. IoT Data Storage Models and Frameworks.. 298

6.7. IoT Data Processing Models and Frameworks.. 298

6.8. IoT Data Semantics .. 301

6.9. IoT Data Visualisation ... 302

7. IoT Security and Privacy ... 303

7.1. Types of Vulnerabilities of IoT .. 304

7.2. Monitoring of Vulnerabilities ... 306

7.3. Malware Detection in IoT ... 308

7.4. IoT Security Protocols ... 312

7.5. IoT Privacy .. 317

7.6. Privacy Preservation.. 320

7.7. IoT Privacy Preservation Threats... 320

7.8. Support of Confidentiality and Methods of Authentication 326

8. Introduction to the IoT Energy Consumption .. 332

8.1. Power Efficiency in IoT .. 333

8.2. Minimum Energy Performance Standards (MEPS) 333

8.2.1. Vertical MEPS ... 333

8.2.2. Horizontal MEPS.. 334

8.2.3. Clustered MEPS... 334

8.2.4. Electronic Components and Their Power Requirements: Motors, Sensors,
Microcontrollers.. 334

8.2.5. IoT Software Platform.. 335

8.2.6. IoT Battery Management Systems ... 336

9. Emerging Technologies in IoT .. 337

9.1. ROS – A New Framework in IoT .. 337

9.1.1. What is ROS? ... 337

9.1.2. ROS Features ... 337

9.1.3. Operating Systems.. 339

9.1.4. ROS Architecture... 339

9.1.5. Introduction to ROS Programming ... 342

9.1.6. IoT bridge .. 349

9.2. Autonomous Transport Systems ... 353

4

9.3. Blockchain ... 353

9.3.1. In Search of Consensus.. 354

9.3.2. Mechanisms of Reaching Consensus... 357

9.3.3. Ethereum: The New Generation of Internet....................................... 358

9.3.4. Conclusions .. 359

10. Bibliography .. 360

5

Authors

IOT-OPEN.EU consortium partners collective scholar literature. The full list of contributors
is juxtaposed below.

ITMO University

▪ Aleksandr Kapitonov, Ph. D., Assoc. Prof.

▪ Dmitrii Dobriborsci, M. sc., Eng.

▪ Igor Pantiukhin, M. sc., Eng.

▪ Valerii Chernov, Eng.

ITT Group

▪ Raivo Sell, Ph. D., ING-PAED IGIP

▪ Rim Puks, Eng.

▪ Mallor Kingsepp, Eng.

Riga Technical University

▪ Agris Nikitenko, Ph. D., Eng.

▪ Karlis Berkolds, M. sc., Eng.

▪ Anete Vagale, M. sc., Eng.

▪ Rudolfs Rumba, M. sc., Eng.

Silesian University of Technology

▪ Piotr Czekalski, Ph. D., Eng.

▪ Krzysztof Tokarz, Ph. D., Eng.

▪ Oleg Antemijczuk, M. sc., Eng.

▪ Jarosław Paduch, M. sc., Eng.

Tallinn University of Technology

▪ Raivo Sell, Ph. D., ING-PAED IGIP

University of Messina

▪ Salvatore Distefano

▪ Rustem Dautov

▪ Riccardo Di Pietro

▪ Antonino Longo Minnolo

Graphic Design and Images

▪ Blanka Czekalska, M. sc., Eng., Arch.

▪ Małgorzata Wiktorczyk, B. sc.

▪ Ritankar Sahu

6

Reviewers

▪ Fabio Bonsignorio, Ph. D., Eng.– Professor at Scuola Superiore Sant'Anna, Institute
of Biorobotics

▪ Artur Pollak, M. sc., Eng. – CEO at APAGroup

▪ Ivars Parkovs, M. sc., Eng. – R&D Senior Engineer at “SAF Tehnika” Ltd.

▪ Janis Lacaunieks, M. sc., Eng. – R&D Engineer at “SAF Tehnika” Ltd.

7

1. Versions
This page keeps track of the content reviews and versions done as a continuous
maintenance process

Table 1: Versions and Content Updates

Version Change
Date Content updates summary Other

comments

1 v 0.1 01.01.2019 Fixed pre-publish version

2 v 0.2 07.03.2019 Updated content on BLE

3 v 0.3 12.03.2019 Corrected Python syntax in RPi samples

4 v 0.4 24.05.2019

Changed RPI versions table from image to
textual, reformatted ROS, removed ROS logos,
removed Arduino logo, added figure 208
graphics

Awaiting
ITMO
contribution
on captions of
the
Blockchain
figures.

5 v 0.4.1 24.05.2019

Corrected long lines in the code listings and
corrected numbering and style in IoT Security
chapter. Minor formatting and error corrections
in the Python Data types chapter. Added
captions in Blockchain section.

6 v 0.5 25.05.2019 Converted RPI models table to the number of
small ones

7 v 0.6 27.05.2019

Some minor and major corrections. Moved
chapter 6 source list to the Bibliography and
removed fixed text links to other chapters to
cancel their rendering in final PDF.

8 v 0.7 29.05.2019 Corrected Designers list

1. Versions

8

2. Preface
This book and its offshoots were prepared to provide comprehensive information about
the Internet of Things. Its goal is to introduce IoT to the bachelor students, master
students, technology enthusiasts and engineers that are willing to extend their current
knowledge. This book is also designated for teachers and educators willing to extend
their knowledge and prepare a course on IoT technology (full or partial).

We (authors) assume that persons willing to study this content do possess some general
knowledge about IT technology, i.e. understand what embedded system is, know the
general idea of programming and are aware of wired and wireless networking as it exists
nowadays.

We believe this book is constituting a comprehensive manual to the IoT technology;
however, it is not a full encyclopedy nor exhausts market review. The reason for it
is pretty simple – IoT is so rapidly changing technology, that new devices, ideas and
implementations appear every single day. Even so, once you read this book, you will
be able to quickly move over IoT environment and market, chasing ideas with ease and
implementing your own IoT infrastructure.

We also believe this book will help adults that took their technical education some time
ago to update their knowledge.

We hope this book will let you find new brilliant ideas both in your professional life as
well as see a new hobby or even startup innovative business.

Note: the sky is no longer the limit, so keep exploring with IoT!

2.1. Project Information
This Intellectual Output was implemented under the Erasmus+ KA2: Strategic
Partnerships in the Field of Education, Training, and Youth – Higher Education.
Project IOT-OPEN.EU – Innovative Open Education on IoT: Improving Higher Education
for European Digital Global Competitiveness.
Project number: 2016-1-PL01-KA203-026471.

Erasmus+ Disclaimer
This project has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Copyright Notice
This content was created by the IOT-OPEN.EU consortium: 2016–2019.
The content is Copyrighted and distributed under CC BY-NC Creative Commons Licence,
free for Non-Commercial use.

In case of commercial use, please contact IOT-OPEN.EU consortium representative.

2. Preface

9

https://en.wikipedia.org/wiki/Creative_Commons_license
https://home.roboticlab.eu/_detail/en/iot-open/ccbync.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/ccbync.png?id=en%3Abook

3. Introduction
Here comes the Internet of Things. The name that recently makes red-hot people in
business, researchers, developers, geeks and … students. The name that non-technology
related people consider as kind of magic and even danger for their privacy. The name
that the EU set as one of the emerging technologies and analysts estimate the worldwide
market is expected to hit well over 500 billion US dollars in 2022.

What is IoT (Internet of Things) then? Surprisingly, the answer is not straightforward.

▪ Definition of IoT

▪ Enabling Technologies

▪ Mobility – New Paradigm for IoT Systems

▪ Hints for Further Readings on Development Boards, Kits and Sites

▪ Embedded Systems Communication Protocols

▪ Data Management Aspects in IoT

▪ Application Domains and Their Specifics

3.1. Definition of IoT
Let us roll back to 1970s first. In 1973 the first RFID device was patented. This device,
even if does not look nor reminds modern IoT devices, was the key enabling technology.
The low power (actually here passive) solution with remote antenna large enough to
collect energy from the electromagnetic field and power the device brought an idea
of uniquely identifiable items. That somehow mimics well known EAN barcodes and
their evolution we use nowadays like QR codes, but here every single thing has a
different identity, while EAN barcodes present class of products, not an individual one.
The possibility to identify a unique identity remotely became a fundamental of the
IoT as we know today. Please note RFID is not the only technology standing behind
IoT. In 1990s rapid expansion of wireless networks, including broadband solutions
like cellular-based transfers with its consequent generations brought the possibility to
connect devices located in various, even distant geographical locations. Paralelly we
experienced an exponential increase in the number of devices connected to the global,
Internet network, including the Smartphone revolution that started around mid of the
first decade of the XXI century. On the hardware level, microchips and processors
became physically smaller and more energy efficient yet offering growing computing
capabilities and memory size increase, along with significant price drops. All those facts
drove the appearance of small, network-oriented, cheap and energy efficient electronic
devices.

3.1.1. What is IoT?

Phrase “Internet of Things” has been used for the first time in 1999 by Kevin Ashton
– an expert on digital innovation. Formally IoT was introduced by the International
Telecommunication Union (ITU) in the ITU Internet report in 2005 [1]. The understanding
and definitions of IoT changed during the years, but now all agree that this cannot be
seen as the technology issue only. According to IEEE “Special report: Internet of Things”
[2] released in 2014, IoT is:

3. Introduction

10

https://home.roboticlab.eu/en/iot-open/introduction/definition_of_iot_in_the_context_of_modern_technology
https://home.roboticlab.eu/en/iot-open/introduction/overview_of_the_enabling_technologies_behind_the_iot
https://home.roboticlab.eu/en/iot-open/introduction/mobility_as_a_new_paradigm_of_communicating_devices
https://home.roboticlab.eu/en/iot-open/introduction/hints_for_further_readings_on_development_boards_kits_and_sites
https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_iot_communication_and_protocols
https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_data-related_design_questions_of_iot
https://home.roboticlab.eu/en/iot-open/introduction/application_domains_and_their_specifics

IEEE Definition of IoT

A network of items – each embedded with sensors – which are connected to the
Internet.

It relates to the physical aspects of IoT only. Internet of Things also address other
aspects that cover many areas [3]:

▪ enabling technologies,

▪ software,

▪ applications and services,

▪ business models,

▪ social impact.

We also cannot forget the management of elements of the IoT system and security and
privacy aspects. IEEE, as one of the most prominent standardisation organisations, also
work on standards related to the IoT. The primary document is IEEE P2413™ [4]. It
covers the technological architecture of IoT as three-layered: sensing at the bottom,
networking and data communication in the middle, and applications on the top. It is
essential to understand that the IoT systems are not only the small, local range systems.
ITU-T has defined IoT as:

ITU-T Definition of IoT

A global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies.

In the book [5] by European Commission we can read similar description of what
IoT is: “The IoT is the network of physical objects that contain embedded technology
to communicate and sense or interact with their internal states or the external
environment.” IoT has an impact on many areas of human activity: manufacturing,
transportation, logistics, healthcare, home automation, media, energy saving,
environment protection and many more. In this course, we will consider the technical
aspects mainly.

3.1.2. "Thing"

In IoT world, the “thing” is always equipped with some electronic element that can
be as simple as the RFID tag, active sensor sending data to the global network, or
autonomous device that can react on environmental changes. In CERP-IoT book “Visions
and Challenges” [6] in the context of “Internet of Things” a “thing” could be defined as:

CERP-IoT Definition of “Thing”

A real/physical or digital/virtual entity that exists and moves in space and time and is
capable of being identified. Things are commonly identified either by assigned
identification numbers, names and location addresses.

We can also find other terms used in the literature like “smart object”, “device” or
“nodes” [7].

3.1. Definition of IoT

11

Passive Thing

We can imagine that almost everything in our surroundings is tagged with an RFID
element. They do not need a power supply; they respond with the short message, usually
containing the identification number. Modern RFID’s can achieve the 6 to 7 meters of the
range. Using the active RFID reader, we can easily locate lost keys, know if we still have
the butter in the fridge, in which wardrobe there is our favourite t-shirt.

Active Thing

If the “thing” includes the sensor, it can send interesting data about current conditions.
We can sense the environmental parameters like temperature, humidity, air pollution,
pressure, localisation data, water level, light, noise, movement. This data, using different
methods and protocols, can be sent to the central collector that connects to the Internet
and further to the database or cloud. There the data can be processed, and using Artificial
Intelligence algorithms can be used to decide actions that could be taken in different
situations. Active things can also receive control signals from the main controller to
control the environment: turn on/off the heating or light, water flowers, turn on the
washing machine when there is sunlight enough to generate the required amount of
electricity.

Autonomous Thing

This thing does not even require the controller to realise the proper decision. An
autonomous vacuum cleaner can clean our house while it detects that we aren’t present
at home, and the floor needs to be cleaned. The fridge can order our favourite beverage
once it detects that the last bottle is almost empty.

3.2. Enabling Technologies
In this chapter, we describe modern technologies that appeared in the last few years,
enabling the idea of IoT to be widely implementable. In the [8] we can read that “The
confluence of efficient wireless protocols, improved sensors, cheaper processors and a
wave of startups and established companies made the concept of the IoT mainstream”.
Similar analyze been done in [9] systems. These are essential elements of technologies
used in IoT systems.

3.2.1. Small-Scale Computer Systems

Last years we can observe rapid growth in the field of microprocessors. It includes not
only the powerful desktop processors but also microcontrollers – elements that are used
in small-scale embedded systems. We can also notice the popularity of microprocessor
systems that can be easily integrated with other elements like sensors, actuators,
connected to the network. Essential is also the availability of programming tools and
environments supported by different companies and communities. An excellent example
of such systems is Arduino.

3.2.2. Medium-Scale Computer Systems

The same growth can be observed in medium-scale computers. They have more powerful
processors, more memory and networking connectivity build in than small-scale
computer systems. They can work under control of multitasking operating systems like

3. Introduction

12

Linux, Windows, embedded or real-time operating systems like FreeRTOS. Having many
libraries, they can successfully work as hubs for local storage, local controllers and
gateways to the Internet. The example of such systems we consider in our course is
Raspberry Pi.

3.2.3. Access to the Internet

Nowadays the Internet is (almost) everywhere. There are lots of wireless networks
available in private and public places. The price of cellular access (3G/4G/5G) is low,
offering a good performance of data transfer. Connecting the “thing” to the Internet has
never been so easy.

3.2.4. IP Addressing Evolution

The main paradigm of IoT is that every unit can be individually addressed. With the
addressing scheme used in IPv4, it wouldn’t be possible. IPv4 address space delivers
“only” 4 294 967 296 of unique addresses (2^32). If you think it’s a big number, imagine
that every person in the world has one IP-connected device – IPv4 covers about half of
the human population. The answer is IPv6 with a 128-bit addressing scheme that gives
3.4 × 10^38 addresses. It will be enough even if every person will have a billion devices
connected to the Internet.

3.2.5. Data Storage and Processing

IoT devices generate the data to be stored and processed somewhere. If there is a couple
of sensors, the amount of data is not very big, but if there are thousands of sensors
generating data hundreds of times every second. It can be handled by the cloud – the
huge place for the data with tools and applications ready to help with data processing.
There are some big, global cloud available for rent offering not only the storage but
also Business Intelligence tools, Artificial Intelligence analytic algorithms. There are also
smaller private clouds created to cover the needs of one company only. Many universities
have their own High-Performance Computing Centre.

3.2.6. Mobile Devices

Many people want to be connected to the global network everywhere, anytime having
their “digital twin” with them. It is possible now with small, powerful mobile devices
like smartphones. Smartphones are also elements of IoT world being together sensors,
user interfaces, data collectors, wireless gateways to the Internet, and everything with
mobility feature.

The technologies we mentioned here are the most recognisable, but there are many
others, smaller, described only in the technical language in some standard description
document, hidden under the colourful displays, between large data centres, making our
IoT world operable. In this book, we will describe some of them.

3.3. Mobility – New Paradigm for IoT Systems
As defined IoT previously in its essence is a network of physical things or devices
that might include not only sensors or simple data processing units but also complex
actuators and significant hybrid computing power as well. Today IoT systems have
transited from being perceived as sensor networks to smart-networked systems capable

3.3. Mobility – New Paradigm for IoT Systems

13

of solving complex tasks in mass production, public safety, logistics, medicine and other
domains, which require a broader understanding and acceptance of current technological
advancements.

Since the very beginning of sensor networks on of the main challenges have been
data transport and data processing, where significant efforts have been put by the ICT
community towards service based system architectures. The current trend, however,
already provides considerable computing power available even in small mobile devices,
and therefore, the concepts of future IoT already are shifted towards smarter and more
accessible IoT devices.

3.3.1. Cloud Computing

Cloud-based computing is rather well known and adequately employed paradigm, where
IoT devices can interact with remotely shared resources such as data storages, data
processing, data-mining and other services that are not available to the system due
it cost-effectiveness or other limitations. Although the cloud computing paradigm can
handle vast amounts of data from IoT clusters, the transfer of extensive data to and
from cloud computers presents a challenge due to limited bandwidth[10]. Consequently,
there is a need to process data near data source, employing the increasing number of
smart devices with enormous processing power and a rising number of service providers
available for IoT systems as well.

3.3.2. Fog Computing

Fog-computing addressed the bottlenecks of cloud computing regarding data transport
while providing the needed services to IoT systems. It is a new trend in computing
that aims to process the data near the data source. Fog computing pushes applications,
services, data, computing power, and decision making away from the centralised nodes
to the logical extremes of a network. Fog computing significantly decreases the data
volume that must be moved between end devices and cloud. Fog computing enables
data analytics and knowledge generation to occur at the data source. Furthermore, the
dense geographic distribution of fog helps to attain better localised accuracy for many
applications as compared to the cloud [11].

3.3.3. Cognitive IoT Systems

According to [12] Cognitive IoT besides a proper combination of hardware, sensors and
data transport, comprises cognitive computing, which consists of the following main
components:

▪ understanding – in case of IoT it means systems capability to process a significant
amount of structured and unstructured data, extracting the meaning of the data –
produce a model that binds data to reality;

▪ reasoning – involves decision making according to the understood model and
acquired data;

▪ learning – a creation of new knowledge from the existing, sensed data and
elaborated models.

Usually, cognitive IoT systems or C-IoT are expected to add more resilience to the overall
solution. The resilience is a complex term and is differently explained under different

3. Introduction

14

contexts; however, there are common features for all resilient systems. C-IoT, as a
part of their resilience, should be capable of self-failure detection and self-healing that
minimises or gradually degrades the system's overall performance. In this respect, the
non-resilient system fails or degrades in a step-wise manner. In case of security issues
that system should be able to change its security keys, encryption algorithms and take
other measures to cope with the detected threats. Abilities of self-optimisation often are
considered as a part of C-IoT feature list to provide more robust solutions.

All three approaches from cloud to cognitive systems are focusing on adding value to
IoT devices, system users and related systems on-demand. Since market and technology
acceptance of mobile devices is still growing, and amount of produced data of those
devices is growing exponentially, mobility as a phenomenon is one of the main driving
forces of the technological advancements of the near future.

3.4. Hints for Further Readings on Development Boards, Kits
and Sites
Some additional information about the Arduino boards, programming environment, the
programming language can be obtained on the Arduino website [13]. It also includes an
Internet store, where the different type of Arduino boards or components can be bought
and even forum and blog for the community where to look for the solution to various
problems. Many Arduino projects, developed by Arduino, enthusiasts can be found in the
Arduino Project Hub [14].

More information about the Raspberry Pi controllers can be found on the official website
of it [15]. It includes the blog, community, forums, education section, etc. There is also
possible to download the Raspbian operating system.

There are many online platforms that provide online courses by different universities
about relevant topics like Internet of Things, embedded systems, programming
languages, connectivity and security, robotics, big data, computer vision and many more.
Some of the most popular platforms are Coursera [16], edX [17], Udacity [18], Udemy
[19], Skillshare [20].

The Electronics Tutorials website [21] offers multiple basic electronics tutorials topics
including AC and DC circuit theory, amplifiers, semiconductors, filters, Boolean algebra,
capacitors, power electronics, transistors, operational amplifiers, sequential logic, and
many more. It contains an extensive description of theory with graphics and
explanations.

Instructables [22] is a project platform that includes plenty of Internet of Things
projects for different knowledge levels. It is also possible to enrol to different classes
with many lessons that teach about specific related topics that are not limited only to
electronics but also cover issues such as sewing, food, craft, 3D printing, etc. One section
of the Instructables website offers multiple contests and challenges about the related
topic with valuable prizes.

Tinkercad is a simple, online 3D design and 3D platform that also allows to model and
test circuits [23]. With Tinkercad, it is possible to program and simulate virtual Arduino
board online, to use different libraries and serial monitor. There are also plenty of already
existing starter examples.

3.4. Hints for Further Readings on Development Boards, Kits and Sites

15

3.5. Data Management Aspects in IoT
Data management is a critical task in IoT. Due to the high number of devices, things,
already available (tens of billions), and considering the data traffic generated by each of
them through sensor networks, infotainment (soft news) or surveillance systems, mobile
social network clients, and so on, we are now in the ZettaByte (ZB 2^70, 10^21 bytes)
era. This opened up several new challenges on (IoT) data management, giving rise to
data sciences and BigData technologies. Such challenges have not to be considered as
main issues to solve, but also as big opportunities fuelling digital economy with new
directions such as Cloudonomics [24] and IoTonomics, where data can be considered as a
utility, a commodity to properly manage, curate, store, and trade. Therefore, to properly
manage data in IoT contexts is not only critical but also of strategic importance for
business players as well as for users, evolving into prosumers (producers-consumers).

From a technological perspective, the main aspects of dealing with IoT data management
are:

▪ data source: data generation and production is a relevant part of IoT, involving
sensors probing the physical system. In a cyber-physical-social system view, such
sensors could also be virtual (e.g. software), or even human (e.g. citizens,
crowdsensing). Main issues to deal with in data production are related to the type
and format of data, heterogeneity in measurements and similar issues. Semantics
is the key to solve these issue, also through specific standards such as Sensor Web
Enablement and Semantic Sensor Network [25];

▪ data collection/gathering: once data are generated, these should be gathered
and made available for processing. The collection process needs to ensure that the
data gathered are both defined and accurate so that subsequent decisions based on
the findings are valid. Some types of data collection include census (data collection
about everything in a group or statistical population), sample survey (collection
method that includes only part of the total population), and administrative by-product
(data collection is a byproduct of an organisation’s day-to-day operations). Usually,
wireless communication technologies such as Zigbee, BlueTooth, LoRa, Wi-Fi and 3G/
4G networks are used by IoT smart objects and things to deliver data to collection
points;

▪ filtering: is a specific preprocessing activity, usually performed at data source or
data collector (IoT) nodes (e.g. motes, base stations, hotspots, gateways), aiming at
cleaning noisy data, filtering noise and not useful information;

▪ aggregation/fusion: in order to reduce bandwidth before sending data to
processing nodes, these are further elaborated, compressed, aggregated and fused
(sensor/data fusion) to reduce the overall volume of raw data to be transmitted and
stored;

▪ processing: once data are properly collected, filtered, aggregated, and fused, they
can be processed. Processing can be both local and remote, and usually, also
include preprocessing activities aiming at preparing data for real processing. Local
processing, when possible, is mainly tasked at a fast, lightweight computation on
edges (Edge computing), quickly providing results and local analytics. More complex
computation are usually demanded to remote (physical or virtual) servers, either
provided by local nodes (e.g. communication servers, cloudlets) in a Fog computing
fashion, or by Cloud providers as virtual machines hosted in data centres. This kind
of computation can also involve historical data, providing global analytics, but hardly

3. Introduction

16

meets time-constrained applications and real-time requirements;

▪ storage/archive: remote servers are also used for permanently store and archive
data, making these available for further processing, even to third parties. The
database is often used for that, mainly based on distributed, NoSQL key-store
technologies to improve reliability and performance;

▪ delivering/presentation/visualization: the results of processing activities have
to be then delivered to requestors and users. These have to be therefore properly
organised and formatted, ready for end-users. IoT data visualisation is becoming an
integral part of the IoT. Data visualisation provides a way to display this avalanche of
collected data in meaningful ways that clearly present insights are hidden within this
mass amount of information;

▪ security and privacy: data privacy and security are among the most critical issues
to address in IoT data management. Good results and reliable techniques for secure
data transmission, such a TLS and similar, are available. This way, IoT data security
issues mainly concern [26] securing IoT devices, since they are usually resource
constrained and therefore do not allow to adopt traditional cryptography scheme
to data encryption/decryption. Data privacy and integrity them while ensuring
availability. Indeed, security and privacy issues vertically span into the whole IoT
stack. A promising technique to address IoT security issues, attracting growing
interests from both academic and business communities, is blockchain [27].

3.6. Application Domains and Their Specifics
Application domains of the Internet of Things solutions are wide. Most prominent
applications include (among others) [28]:

▪ building and home automation,

▪ smart water,

▪ smart metering,

▪ smart city (including logistics, retail, transportation),

▪ smart animal farming,

▪ industrial IoT,

▪ precision agriculture and smart farming,

▪ security and emergencies,

▪ healthcare and wellness (including wearables),

▪ smart environment,

▪ energy management,

▪ robotics,

▪ smart grids.

Smart homes are one of the first examples that come to mind when talking about
the domain applications of the Internet of Things. Smart home benefits include reduced
energy wastage, the quality and reliability of devices, system security, reduced cost
of basic needs, etc. Some home automation examples are environmental control (that
monitors and controls heating, ventilation, air conditioning and sunscreens), electrical
charging of vehicles, solar panels for electrical power and hot water, ambient lighting
control, smart lighting for aquaria, home cooking, garage doors, smart plant watering

3.6. Application Domains and Their Specifics

17

systems indoors and outdoors, baby monitors, timed pet food dispensers, monitoring
perishable goods (for example, in the refrigerator), remote monitoring (for instance, of
washer cycle status), tracking and proactive maintenance scheduling, event-triggered
task execution. Home security also plays a significant role in smart homes. Example
applications are automatic door locks, sensors for opening doors and windows, pressure,
motion and infrared sensors, security cameras, notifications about the security (to the
owner or the police) and fitness related applications.

In smart city, multiple IoT-based services are applied to different areas of urban
settings. The aim of the smart city is the best use of public resources, improvement
of the quality of resources provided to people and reduction of operating costs of
public administration [29]. Smart city can include many solutions like smart buildings,
smart grids for improving energy management, smart tourism, monitoring of state
of the roads and occupation of parking lots, public safety, environment monitoring,
automatic street lighting, signalling with smart power devices, control of water levels
for hydropower or flood warnings, electricity generating devices like solar panels and
wind turbines, weather monitoring stations. Transportation in smart cities may include
aviation, monitoring and forecasting of traffic slowdowns, timetables and current status,
navigation and route planning, as well as vehicle diagnostics and maintenance reports,
remote maintenance services, traffic accident information collection, fleet management
using digital tachographs, smart parking, car/bicycle sharing services [30]. IoT in
transportation makes cars connected.

Smart grid is a digital power distribution system. In this system, information is gathered
using smart meters, sensors and other devices. After these data are processed, power
distribution can be adapted accordingly. Smart grids are used to deliver sustainable,
economical and secure electricity supplies efficiently.

In precision agriculture and smart farming IoT solutions can be used to monitor
the moisture of the soil, conditions of the plants, control microclimate conditions and
monitor the weather conditions in order to improve farming [31]. The goal of using
IoT in agriculture is the maximization of the harvest, reducing operational costs, being
more efficient in general and reducing environmental pollution using low-cost automated
solutions. An interaction between the farmer and the systems can be done using a
human-machine interface. In the future smart precision farming can be a solution for
such challenges like increasing worldwide demand for food, a changing climate, and a
limited supply of water and fossil fuels [32].

Similar to precision agriculture that is part of IoT in industry, smart factories also
tend to improve the manufacturing process by monitoring of pollutant gases, locating
employees and with many other solutions.

Industrial IoT and smart factories are part of the Industry 4.0 revolution. In this
model, modern factories are able to automate complex manufacturing tasks, thanks to
the Machine-To-Machine communication model and thanks to it, provide more flexibility
in the manufacturing process to enable personalised, short volume products
manufacturing with ease.

In the healthcare and wellness, IoT applications can be used for monitoring and
diagnosing of patients, managing of people and medical resources. It allows to remotely
and continuously monitor the vital signs of patients to improve medical care and wellness
of patients [33] and many more. Medical robotics can also be part of the healthcare

3. Introduction

18

IoT system that includes medical robots in precision surgery or distance surgery; some
robots are used in rehabilitation and hospitals (for example, Panasonic HOSPI [34] for
delivering medication, drinks, etc. to patients.

Wearables used in IoT applications should be highly energy efficient, ultra-low power
and small sized. Wearables are installed with sensors and software for data and
information collected about the user. Devices used in daily life like Fitbit [35] are
used to track people health and exercise progress in previously impossible ways, and
smartwatches allow to access smartphones using this device on the wrist. But wearables
are not limited only by wearing them on the wrist. They can also be glasses that equipped
with the camera, a sports bundle attached to the shoes or camera attached to the helmet
or as a necklace [36].

3.6. Application Domains and Their Specifics

19

4. IoT Hardware Overview
IoT hardware infrastructure is mostly inheriting from the embedded systems of the
SoC type. As IoT devices are by its nature network-enabled, many of the existing
embedded platforms evolved towards network-enabled solutions, sometimes indirectly
through delivering network processor (wired or wireless) as a peripheral device yet
integrated on the development board (i.e. Arduino Uno with Ethernet Networking shield,
GSM shield, etc.), sometimes a new system, integrating networking capabilities in one
SoC (i.e. Espriff SoCs). More advanced devices that require OS to operate preliminarily
benefited from externally connected peripheral network interfaces via common wired
ports like USB (i.e. early versions of the Raspberry Pi, where WiFi card was delivered as
USB stick), currently, usually integrate most of the network interfaces in a single board
(i.e. RPi 3B, including Ethernet, WiFi and Bluetooth).

▪ “4.1. Most Noticeable Platforms”;

▪ “4.2. Embedded Systems Communication Protocols”;

▪ “4.3. Arduino Overview”;

▪ “4.4. Espressif SoC Overview”;

▪ “4.5. Raspberry Pi Overview”.

4.1. Most Noticeable Platforms
IoT market is an emerging one. New hardware solutions appear almost daily, while
others disappear quick. At the moment of writing this publication (2016–2019), there are
some core hardware solutions that seem to be prominent for at least a couple of years,
however. We've provided a short review of those platforms in the following sections:

▪ AVR: Arduino – a development board that uses Atmel SoC, that is no doubt the
most popular development platform for enthusiasts and professionals. Arduino itself
barely offers networking capabilities yet; there is a vast number of extension boards
including network interfaces (both wired and wireless);

▪ ESP: Espriff (Espressif Systems) – the great SoC solution of the single SoC including
wireless network interfaces;

▪ ARM: Raspberry Pi (and its clones) – advanced boards, including Linux operating
system with GUI interface, even able to replace desktop computers.

4.2. Embedded Systems Communication Protocols
Understanding the principals of communication are essential for further reading on
hardware and programming. Most microcontrollers (including SoCs) can communicate in
the protocols juxtaposed below right “out of the box”. Interfaces can be implemented
in hardware or (recently) in software. Some microcontrollers may require an external,
dedicated protocol converter (a chip or a module).

IoT systems are typically structured into three basic layers [37] Layer, the intermediate
is the Network Layer, and the higher is the Application Layer. The function of the
perception layer is to keep contact with the physical environment. Devices working
in this layer are designed as embedded systems. They include the microprocessor or
microcontroller, memory, communication unit, and interfaces – sensors or actuators.
Sensors are elements that convert a value of some physical parameter into an electrical

4. IoT Hardware Overview

20

https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_iot_communication_and_protocols
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi

signal, while actuators are elements that control environment parameters. Sensors
and actuators are interfaced with the microcontroller using different connection types.
This chapter describes some internal protocols used to communicate between
microcontrollers and other electronic elements that can be named “embedded protocols”.
Description of the protocols used for wire and wireless transmission between the
perception layer and higher layers is present in Introduction to the IoT Communication
and Networking The embedded protocol that can be used in specific implementation
depends mainly on the type of the peripheral element. Some of them use an analogue
signal that the microcontroller must convert to digital internally, some directly implement
digital communication protocol.

4.2.1. Analog

Simple sensors do not implement the conversion and communication logic, and the
output is just the analogue signal – voltage level depending on the value of the
parameter that is measured. It needs to be further converted into a digital
representation; this process can be made by analogue to digital converters (ADC)
implemented as the internal part of a microcontroller or separate integrated circuit.
Examples of the sensors with analogue output are a photoresistor, thermistor,
potentiometer, resistive touchscreen.

4.2.2. Digital

Dummy, true/false information can be processed via digital I/O. Most devices use
positive logic, where, i.e. +5 V (TTL) or +3.3 V (those are the most popular, yet
there do exist other voltage standards) presents a logical one, while 0V presents logical
zero. In real systems this bounding is fuzzy and brings some tolerance, simplifying, i.e.
communication from 3.3 V output to 5 V input, without a need of the conversion (note,
the reverse conversion is usually not so straightforward, as 3.3 V inputs driven by 5V
output may burn easily). A sample of the sensor providing binary data is a button (On/
Off).

4.2.3. SPI

One of the most popular interfaces to connect the sensor is SPI (Serial Peripheral
Interface). It is a synchronous serial interface and protocol that can transmit data
with speed up to 20 Mbps. SPI is used to communicate microcontrollers with one or
more peripheral devices over short distances – usually internally in the device. In SPI
connection there is always one master device, in most cases the microcontroller (μC) that
controls the transmission, and one or more slave devices – peripherals. To communicate
SPI uses three lines common to all of the connected devices, and one enabling line for
every slave element.

Table 2: SPI Lines

Line Description Direction

MISO Master In Slave Out peripheral → μC

MOSI Master Out Slave In μC → peripheral

SCK Serial Clock μC → peripheral

4.2. Embedded Systems Communication Protocols

21

https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut

Line Description Direction

SS Slave Select μC → peripheral

MISO is intended to send bits from slave to master, MOSI transmits data from master to
slave. SCK line is used for sending clock pulses which synchronize data transmission. The
clock signal is always generated by the master device. Every SPI compatible device has
the SS (Slave Select) input that enables communication in this specific device. Master is
responsible to generate this enable signal – separately for every slave in the system.

Figure 2: Sample SPI connection.

SPI is used in many electronic elements like analogue to digital converters (ADC), real-
time clocks (RTC), EEPROMs, LCD displays, communication interfaces (e.g. Ethernet,
WiFi) and many others. Due to different hardware implementations, there are four modes
of operation of the SPI protocol. The mode used in master must fit the mode that is
implemented in the slave device.

Table 3: SPI Modes

Mode Clock polarity Clock phase Idle state Active state Output edge Data capture

mode 0 0 0 0 1 falling rising

mode 1 0 1 0 1 rising falling

mode 2 1 0 1 0 rising falling

mode 3 1 1 1 0 falling rising

It results in different timings of the clock signal concerning the data sent. Clock polarity
= 0 means that the idle state of the SCK is 0, so every data bit is synchronised with
the pulse of logic 1. Clock polarity = 1 reverses these states. Output edge (rising/falling)
says at which edge of active SCK signal sender puts a bit on the data line. Data capture
edge says at what edge of SCK signal data should be captured by the receiver.

4.2.4. TWI (I2C)

TWI (Two Wire Interface) is one of the most popular communication protocol used in
embedded systems. It has been designed by Philips as I2C (Inter-Integrated Circuit) for

4. IoT Hardware Overview

22

using in the audio-video appliances controlled by the microprocessor. There are many
chips that can be connected to the processor with this interface, including:

▪ EEPROM memory chips,

▪ RAM memory chips,

▪ AD/DA converters,

▪ real-time clocks,

▪ sensors (temperature, pressure, gas, air pollution),

▪ port extenders,

▪ displays,

▪ specialised AV circuits.

TWI, as the name says, uses two wires for communication. One is the data line (SDA);
the second is the clock line (SCL). Both lines are common to all circuits connected to the
one TWI bus. The method of the communication of TWI is the master-slave synchronous
serial transmission. It means that data is sent bit after bit synchronised with the clock
signal. SCL line is always controlled by the master unit (usually the processor), the signal
on the SDA line is generated by the master or one of the slaves – depending on the
direction of communication. The frequency rate of the communication is up to 100 kHz
for most of the chips, for some can be higher – up to 400 kHz. The new implementation
allows even higher frequency rate is reaching 5 MHz. At the output side of units, the
lines have the open-collector or open-drain circuit. It means that there are external pull-
up resistors needed to ensure proper operation of the TWI bus. Value of these resistors
depends on the number of connected elements, speed of transmission and the power
supply voltage and can be calculated with the formulas presented in Texas Instrument
Application Report [38]. Usually, it is assumed between 1 kΩ and 4.7 kΩ.

Figure 3: Sample TWI connection.

The data is sent using frames of bytes. Every frame begins with the sequence of signals
that is called the start condition. This sequence is detected by slaves and causes them
to collect the next eight bits that form the address byte – unique for every circuit on
the bus. If one of the slaves recognises its address remains active until the end of the
communication frame, others become inactive. To inform the master that some unit has

4.2. Embedded Systems Communication Protocols

23

been appropriately addressed slave responses with the acknowledge bit – it generates
one bit of low level on the SDA line (the master generates clock pulse). After sending the
proper address, data bytes are sent. The direction of the data bytes is controlled by the
last bit of the address, for 0 data is transmitted by the master (Write), for 1 data is sent
by the slave (Read). The receiving unit must acknowledge every full byte (eight bits).
There is no limitation on the number of data bytes in the frame, for example, samples
from the AD converter can be read byte continuously after byte. At the end of the frame,
another special sequence is sent by the master – stop condition. It is also possible to
generate another start condition without the stop condition. It is called a repeated start
condition.

Figure 4: TWI frame.

Address byte activates one chip on the bus only, so every unit must have a unique
physical address. This byte usually consists of three elements: 4-bit field fixed by the
producer, 3-bit field that can be set by connecting three pins of the chip to 0 (ground)
or 1 (positive supply line), 1-bit field for setting the direction of communication (R/#W).
Some elements (e.g. EEPROM memory chips) uses the 3-bit field for internal addressing
so there can be only one such circuit connected to one bus. There are no special rules
for the data bytes. First data byte sent by the master can be used for configuration of
the slave chip. In memory units, it is used for setting the internal address of the memory
for writing or reading, in multi-channel AD converters to choose the analogue input. The
detailed information on the meaning of every bit of the transmission is present in the
documentation of the specific integrated circuit. The I2C standard also defines the multi-
master mode, but in most of the small projects, there is one master device only.

4.2.5. 1-Wire

1-Wire is a master-slave communication bus system designed formerly by Dallas
Semiconductor Corp[39] are very popular. Each 1-Wire device must contain logic unit to
operate on the bus. The 1-Wire products include temperature, voltage, current sensors,
loggers, timers, battery monitors, memory and many more. To connect them to a PC
the special bus converter is needed. The most popular PC/1-Wire converters use USB,
RS-232 serial, and parallel port interfaces allowing connect the MicroLAN to the host PC.
1-Wire devices can also be connected directly to the microcontroller boards.

1-Wire Protocol Description

Within the MicroLAN, there is always one master device, which may be a PC or a
microcontroller unit. The master always initiates activity on the bus to avoid collisions on

4. IoT Hardware Overview

24

the network chain. If a collision occurs, the master device retries the communication. In
the 1-Wire network, many devices can share the same bus line. To identify devices in the
MicroLAN, each connected device has a unique 64-bit ID number. The least significant
byte of the ID number defines the type of the device (temperature, voltage etc.
sensors). The most significant byte represents a standard 8-bit CRC. The 1-Wire protocol
description contains several broadcast commands and commands used to address the
selected device. The master sends a selection command, then the address of a slave
selected device. This way, the next command is executed only by the addressed device.
The 1-Wire bus implements enumeration procedure which allows the master to get
information about ID numbers of all connected slave devices to the MicroLAN network.
Device address includes the device type, and a CRC allows to identify what type of slaves
are currently connected to the network chain for inventory purposes. The 64-bit address
space is searched as a binary tree. It allows to find up to 75 devices per second.

The physical implementation of the 1-Wire network is based on an open drain master
device connected to one or more open drain slaves. One single pull-up resistor for all
devices pull the bus up to 3/5 V and can be used to power the slave devices. 1-Wire
communication starts when a master or slave sets the bus to low voltage (connects the
pull-up resistor to ground through its output MOSFET). Typical data speed of the 1-Wire
interface is about 16.3 kbit/s.

1-Wire protocol allows for bursting the communication speed up by 10 factor. In this
case, the master starts a transmission with a reset pulse pulling down the data line to 0
volts for at least 480 µs. It resets all slave devices in the network chain bus. Then, any
slave device shows that it exists generating the “presence” pulse. It holds the data line
low for at least 60 µs after the master releases the bus. To send a “1”, the bus master
sends a 1–15 µs low pulse. To send a “0”, the master sends a 60 µs low pulse. The
negative edge of the pulse is used to start a slave's monostable multivibrator. The slave's
multivibrator clocks to read the data bus about 30 µs after the falling edge. The slave's
multivibrator has analogue tolerances that affect its timing accuracy, for the “0” pulses
are 60 µs long, and “1” pulses are limited to max 15 µs. When the designed solution
doesn't contain a dedicated 1-Wire interface peripheral, a UART can be used as a 1-Wire
master. Dallas also offers the Serial or USB “bridge” chips, very useful when the distance
between devices is long (greater than 100 m). For longer, up to 300 m buses, the simple
twisted pair telephone cable can be used. It will require adjustment of pull-up resistances
from 5 kΩ to 1 kΩ. The basic sequence is a reset pulse followed by an 8-bit command,
and after it, data can be sent/received in groups of 8-bits. In the case of transmission
errors, the weak data protection 8-bit CRC checking procedure can be used.

To find the devices, the enumeration broadcast command must be sent by a master. The
slave device response with all ID bits to the master and at the end it returns a 0.

4.2. Embedded Systems Communication Protocols

25

Figure 5: 1-Wire reset timings.

Figure 6: 1-Wire read timings.

Figure 7: 1-Wire write timings.

USB to 1-Wire Master

The DS9490B is a USB bridge and holder for a single F5-size iButton. The DS9490R
is a USB bridge with 1-Wire RJ11 interface to accommodate 1-Wire receptacles and
networks.

4. IoT Hardware Overview

26

Figure 8: DS9490R USB Bridge.

The bridge is based on the DS2490 chip developed by Dallas company, which allows to
interconnect USB interface with 1-Wire bus. This required programming and electrical
conversion between two different protocols in bidirectional way. The electrical wiring are
present on Figure 9.

Figure 9: DS9490R USB schematic.

The appropriate 1-Wire cable pinout uses RJ11 telephone connectors.

Figure 10: DS9490 1-Wire RJ11 SOCKET pinout.

4.2. Embedded Systems Communication Protocols

27

https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_usb_bridge.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_schematic.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_rj11_pinout.png?id=en%3Abook

1-Wire Products

The list of Dallas/Maxim integrated 1-Wire devices contains a wide range of industrial
implementations. The 1-Wire sensors and switches devices are very popular in the
developer's community due to ease implementation. 1-Wire protocol can be fast
implemented into the current IoT boards; most of the manufacturers share the software
libraries allowing developers to include them in their projects in C, C++, assembly
languages. The 1-Wire sensors (temperature, humidity, pressure, etc.) are factory
calibrated and reading the physical measurements follows the International System of
Units (SI). 1-Wire products can be grouped as follows:

▪ secure authenticators,

▪ memory EPROM, EEPROM ROM,

▪ temperature sensors and temperature switches,

▪ data loggers,

▪ 1-Wire interface products,

▪ battery monitors, protectors, and selectors,

▪ battery ID and authentication,

▪ timekeeping and real-time clocks.

4.3. Arduino Overview
In no doubt, Arduino became the most widespread SoC, particularly among enthusiasts,
educators, amateurs, hobbyists, driving de-facto the embedded systems market for
years.

Using cheap Atmel AVR microcontrollers, delivered along with development board and
peripherals of almost any kind including sensors and actuators, where you do not need
to develop your PCB nor solder to obtain the fully functional device, all that triggered
new era where almost anyone can afford to have a development set and start playing
the way only professionals used to do. Moreover, Arduino was not only the hardware but
also the programming idea, delivering a simple development environment easy to use
for beginners. Perhaps the most important impact of the Arduino to the daily use was to
spread the idea of taking automation control from the industry and bring it on a massive
scale to the regular life, homes, cars, toys; to automate daily life.

Beginnings of the Arduino are dated to the year 2003 in Italy yet. Their most popular
development board was delivered to the market in fall 2010. While AVRs microcontrollers
are considered to be embedded systems more than IoT, and most of the early Arduino
boards didn't offer any network interface, even then it is essential to understand the
idea of how to work with SoCs, so we start our guide here. However, there are many
of the extension boards present, suitable for the standard development boards (so-
called shields) that offer wired and wireless networking for Arduino. Some of the Arduino
development boards nowadays do integrate networking SoC into the one board, i.e.
Arduino Yun. Also, their clones, mostly made by Chinese manufacturers, evolved into
more sophisticated products, integrating, i.e. Arduino Mega 2560 along with ESP8266
SoC into one development board.

Following chapters present the Arduino hardware overview, peripherals and
programming as universal basics for IoT systems development using advanced

4. IoT Hardware Overview

28

processors like i.e. ESP:

▪ “Setting Up the Programming Environment”;

▪ “The Syntax and the Structure of the Program”;

▪ “Data Types and Variables”;

▪ “Program Control Structures”;

▪ “Looping”;

▪ “Interrupts and Sub-Programs”;

▪ “Reading GPIOs, Outputting Data and Tracing”.

4.3.1. Overview of the Hardware Device Used

What is Arduino and Why to Use It?

Arduino is an open-source platform based on easy-to-use hardware and software [40].
The Arduino project was started at the Ivrea Interaction Design Institute in Italy. Initially,
the board aimed at students without a background in electronics and programming, but
now boards are suitable for different IoT applications, wearable, embedded environments
and other.

The Arduino board works by reacting on inputs that are received from various sensors
and, after executing a set of instructions, an output is generated to respond to the
environment. Input can be received by pressing a button, hearing the noise, perceiving
an image of the situation using a camera and many other. The output actions on
the environment are done using output sensors like actuator, blinking LED, audio
device and other. The set of instructions are created using the Arduino programming
language that is based on an open-source programming framework called Wiring and
the Arduino Software (IDE) that is based on Processing.

Arduino microcontrollers can be used both in research and everyday applications. It
is easy to use for people with different backgrounds, from students to experts. The
Arduino Forum [41] is the place where users of Arduino can share their knowledge and
get help and new ideas for developing their project.

The Most Common Arduino Boards

Arduino boards can be divided into six sections depending on their specifications –
entry level, enhanced features, Internet of things, education, wearable, and 3D printing
boards.

The most common boards of Arduino are Uno, Leonardo, Micro, Nano (entry level),
Mega, Pro Mini (enhanced features). Each of the board has different specifications and
therefore, can have different applications.

4.3. Arduino Overview

29

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/setting_up_programming_environment
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/building_your_first_project
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/data_types_and_variable
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/program_control_structures
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/looping
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interrupts_and_sub-programs
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interacting_with_hardware_devices_and_debugging_the_code

Figure 11: The most common Arduino boards.

4.3.2. Digital Input/Output Pins

Digital input/output (I/O) pins are contacts on the Arduino board that can receive or
transmit a digital signal. The status of the pin can be set either to 0 that represents LOW
signal or to 1 – HIGH signal. The maximum current of the pin output is 40 mA.

Table 4: The Comparison of Arduino Boards by the Digital I/O Pin Number

Uno Leonardo Micro Mega Nano Pro Mini

Digital I/O 14 20 20 54 22 14

4.3.3. Pulse Width Modulation

Pulse Width Modulation (PWM) is a function of a pin to generate a square wave signal,
with a variable length of the HIGH level of the output signal. The PWM is used for digital
pins to simulate the analogue output.

Table 5: The Comparison of Arduino Boards by the Digital PWM Pin Number

Uno Leonardo Micro Mega Nano Pro Mini

PWM 6 7 7 12 6 6

4.3.4. Analog Pins

Analog pins convert the analogue input value to a 10-bit number, using Analog Digital
Converter (ADC). This function maps the input voltage between 0 and the reference
voltage to numbers between 0 and 1023.

By default, the reference voltage is set to a microcontroller operating voltage. Usually,
it is 5 V or 3.3 V. Also, other internal or external reference sources can be used, for
example, AREF pin.

Table 6: The Comparison of Arduino Boards by the Analog Pin Number

Uno Leonardo Micro Mega Nano Pro Mini

Analog pins 6 12 12 16 8 6

4. IoT Hardware Overview

30

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/arduino_boards_c_name.jpg

4.3.5. Power and Other Pins

Power pins on the Arduino board connect the power source to the microcontroller
and/or voltage regulators. They can also be used as a power source to the external
components and devices.

The VIN pin is used to connect the external power source to the internal regulator, to
provide the regulated 5 V output. The input voltage of the board must be within the
specific range, mostly between 7 V and 12 V.

The 5V pin is used to supply a microcontroller with the regulated 5 V from the external
source or is used as a power source for the external components in the case when the
board is already powered using the USB interface or the VIN pin.

The 3V3 pin provides the regulated 3.3 V output for the board components and external
devices. The GND (ground pin) is where the negative terminal of the power supply is
applied.

The Reset pin and the reset button are used to reset the Arduino board and the
program. Resetting using the reset pin is done by connecting it to the GND pin.

4.3.6. Memory

There are three different types of memory on the Arduino board: flash memory, SRAM
and EEPROM.

The flash memory stores the Arduino code, and it is a non-volatile type of memory. That
means the information in the memory is not deleted when the power is turned off.

The SRAM (static random access memory) is used for storing values of variables when
the program of Arduino is running. This is the volatile memory that keeps information
only until the power is turned off, or the board is reset.

The EEPROM (electrically erasable programmable read-only memory) is a non-volatile
type of memory that can be used as the long-term memory storage.

Table 7: The Comparison of Arduino Boards by Memory Size

Uno Leonardo Micro Mega Nano Pro Mini

Flash (kB) 32 32 32 256 32 32

SRAM (kB) 2 2 2.5 8 2 2

EEPROM (kB) 1 1 1 4 1 1

4.3.7. Interface

Communication interfaces for Arduino are used to send and receive information to and
from other external devices. Standard interfaces for Arduino are USB, UART, I2C (two
wire interface), SPI, Ethernet and WiFi.

4.3. Arduino Overview

31

Table 8: The Comparison of Arduino Boards by Interface Available

Uno Leonardo Micro Due Nano Pro Mini

USB 1 USB B 1 Micro 1 Micro 1 USB B 1 Mini –

UART 1 1 1 4 1 1

Wire(I2c) 1 1 1 1 1 1

SPI 1 1 1 1 1 1

4.3.8. Size of the Board

Arduino microcontrollers have different dimensions of the board, depending on the
components that are located on the board.

Table 9: The Comparison of Arduino Boards by the Size of the Board

Uno Leonardo Micro Mega Nano Pro Mini

Size (mm) 68.6 × 53.4 68.6 × 53.3 48 × 18 101.52 × 53.3 18 × 45 18 × 33

4.3.9. Arduino Shields

Arduino shields are the extension boards that can be plugged on top of the Arduino
board extending its capabilities. The shields can give additional functionality to the
Arduino board. There are multiple categories of the Arduino shields [42] – prototyping,
improving connectivity, displays and cameras, sound and motor driver shields.

Prototyping shields – are shields that do not give Arduino the additional functionality,
but help with the wiring. Some example prototyping shields are ProtoShield, ProtoScrew
Shield, Go-Between Shield, LiPower Shield, Danger Shield, Joystick Shield and microSD
Shield.

Figure 12: Prototype shield.

Connectivity shields – are shields that can add new functionalities to the Arduino board
like Ethernet, WiFi, Wireless, GPS, etc. Example shields are Arduino Ethernet Shield,
WiFly Shield, Arduino Wi-Fi Shield, Electric Imp Shield, XBee Shield, Cellular Shield
SM5100B and GPS Shield.

4. IoT Hardware Overview

32

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_prototyping_c.jpg

Figure 13: Arduino wifi shield MKR WIFI 1010.

Displays and camera shields – can provide Arduino with an LCD screen or add a
camera. Example shields are Color LCD Shield, EL Escudo and CMUcam.

Figure 14: SparkFun Color LCD Shield.

Sound shields – give the functionality to Arduino to play MP3 files, add speakers, listen
to audio and sort it into different frequencies, etc. Example shields are MP3 Player Shield,
Music Instrument Shield, Spectrum Shield and VoiceBox Shield.

Figure 15: SparkFun MP3 Player Shield.

Motor driver shields – allow Arduino to control DC motors, Servo motors, Stepper
motors. Examples are Ardumoto Motor Driver Shield, Monster Moto Shield and PWM
Shield.

4.3. Arduino Overview

33

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/arduino_mkr_1010_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_display_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_sound_2_c.jpg

Figure 16: Adafruit Servo shield.

4.3.10. Sensors and Sensing

A sensor is an element which can turn a physical outer stimulus into an output signal
which then can be used for further analysis, the management or decision making. People
also use sensors like eyes, ears and skin for gaining information about the outer world
and act accordingly to their aims and needs. Sensors can be divided into multiple
categories by the parameter that is perceived from the environment.

Figure 17: Environment sensing data flow.

Usually, every natural phenomenon – temperature, weight, speed, etc. – needs specially
customised sensors which can change every phenomenon into electronic signals that
could be used by microprocessors or other devices. Sensors can be divided into many
groups according to the physical nature of their operations – touch, light, an electrical
characteristic, proximity and distance, angle, environment and other sensors.

Touch Sensors

Button
A pushbutton is an electromechanical sensor that connects or disconnects two points in
a circuit when the force is applied. Button output discrete value is either HIGH or LOW.

4. IoT Hardware Overview

34

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_servo_c.jpg
https://home.roboticlab.eu/lib/exe/fetch.php?tok=eac4af&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsensor2.png

Figure 18: Pushbutton.

A microswitch, also called a miniature snap-action switch, is an electromechanical
sensor that requires a very little physical force and uses tipping-point mechanism.
Microswitch has three pins, two of which are connected by default. When the force is
applied, the first connection breaks and one of the pins is connected to the third pin.

Figure 19: Microswitch.

The most common use of a pushbutton is as an input device. Both force solutions can be
used as simple object detectors, or as end switches in the industrial devices.

Figure 20: Schematics of Arduino Uno and a push button.

An example code:

int buttonPin = 2; //Initialization of a push button pin number
int buttonState = 0; //A variable for reading the push button status

void setup() {
Serial.begin(9600); //Begin serial communication
pinMode(buttonPin, INPUT); //Initialize the push button pin as an input

}

void loop() {
//Read the state of the push button value
buttonState = !digitalRead(buttonPin);
//Check if the push button is pressed. If it is, the buttonState is HIGH
if (buttonState == HIGH) {

//Print out text in the console
Serial.println("The button state is HIGH - it is pressed.");

} else {
Serial.println("The button state is LOW - it is not pressed.");

}
delay(10); //Delay in between reads for stability

4.3. Arduino Overview

35

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/push_button_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/micro_switch_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c687d8&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_button.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

}

Force Sensor
A force sensor predictably changes resistance, depending on the applied force to its
surface. Force-sensing resistors are manufactured in different shapes and sizes, and they
can measure not only direct force but also the tension, compression, torsion and other
types of mechanical forces. The voltage is measured by applying and measuring constant
voltage to the sensor.

Force sensors are used as control buttons or to determine weight.

Figure 21: Force sensitive resistor (FSR).

Figure 22: The voltage is measured by applying and measuring constant voltage to the
sensor.

An example code:

//Force Sensitive Resistor (FSR) is connected to the analog 0 pin
int fsrPin = A0;
//The analog reading from the FSR resistor divider
int fsrReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the FSR analog pin as an input
pinMode(fsrPin, INPUT);

}

void loop(void) {
//Read the resistance value of the FSR
fsrReading = analogRead(fsrPin);
//Print
Serial.print("Analog reading = ");
Serial.println(fsrReading);
delay(10);

4. IoT Hardware Overview

36

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/preasure_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=b61287&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_fsr.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

}

Capacitive Sensor
Capacitive sensors are a range of sensors that use capacitance to measure changes in
the surrounding environment. A capacitive sensor consists of a capacitor that is charged
with a certain amount of current until the threshold voltage. A human finger, liquids or
other conductive or dielectric materials that touch the sensor, can influence a charge
time and a voltage level in the sensor. Measuring charge time and a voltage level gives
information about changes in the environment.

Capacitive sensors are used as input devices and can measure proximity, humidity, fluid
level and other physical parameters or serve as an input for electronic device control.

Figure 23: Touch button module.

Figure 24: Arduino and capacitive sensor schematics.

//Capacitive sensor is connected to the digital 2 pin
int touchPin = 2;

//The digital reading value from the sensor
boolean touchReading = LOW;
//The variable that stores the previous state value
boolean lastState = LOW;

void setup() {
//Begin serial communication
Serial.begin(9600);
//Initialize the capacitive sensor analog pin as an input
pinMode(touchPin, INPUT);

}

void loop() {
//Read the digital value of the capacitive sensor
touchReading = digitalRead(touchPin);
//If the new touch has appeared
if (currentState == HIGH && lastState == LOW){

Serial.println("Sensor is pressed");
delay(10); //short delay

}
//Save previous state to see relative changes
lastState = currentState;

4.3. Arduino Overview

37

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/touch_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4a2d9d&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_capacitive.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

}

Light Sensors

Photoresistor
A photoresistor is a sensor that perceives light waves from the environment. The
resistance of the photoresistor is changing depending on the intensity of light. The higher
is the intensity of the light; the lower is the resistance of the sensor. A light level
is determined by applying a constant voltage sensor and measuring it. Photodiodes,
compared to photoresistors, are slower and more influenced by temperature; thus, they
are more imprecise.

Photoresistors are often used in the energy effective street lightning.

Figure 25: A photoresistor symbol.

Figure 26: A photoresistor.

Figure 27: Arduino and photoresistor sensor schematics.

An example code:

//Define an analog A0 pin for photoresistor
int photoresistorPin = A0;
//The analog reading from the photoresistor
int photoresistorReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analog pin of a photoresistor as an input
pinMode(photoresistorPin, INPUT);

}

4. IoT Hardware Overview

38

https://home.roboticlab.eu/lib/exe/fetch.php?tok=39b514&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphotoresistor2.gif
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photoresistor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4a96c1&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_photoresistor.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

void loop()
{

//Read the value of the photoresistor
photoresistorReading = analogRead(photoresistorPin);
//Print out value of the photoresistor reading to the serial monitor
Serial.println(photoresistorReading);
delay(10); //Short delay

}

Photodiode
A photodiode is a sensor that converts the light energy into electrical current. A current
in the sensor is generated by exposing a p-n junction of a semiconductor to the light.
Information about the light intensity can be determined by measuring a voltage level.
Photodiodes are reacting to the changes in the light intensity very quickly. Solar cells are
just large photodiodes.

Photodiodes are used as precise light level sensors, receivers for remote control,
electrical isolators and proximity detectors.

Figure 28: A photodiode symbol.

Figure 29: A photodiode.

Figure 30: Arduino and photodiode sensor schematics.

An example code:

//Define an analog A0 pin for photodiode
int photodiodePin = A0;
//The analog reading from the photodiode
int photodiodeReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);

4.3. Arduino Overview

39

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=e7fb29&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphotodiode_symbol.svg_.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photo_diode.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a12536&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_photodiode.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

//Initialize the analog pin of a photodiode as an input
pinMode(photodiodePin, INPUT);

}

void loop()
{

//Read the value of the photodiode
photodiodeReading = analogRead(photodiodePin);
//Print out the value of the photodiode reading to the serial monitor
Serial.println(photodiodeReading);
delay(10); //Short delay

}

Phototransistor
A phototransistor is a light controlled electrical switch. In the exposed Base pin received
light level, changes the amount of current, that can pass between two phototransistor
pins – a collector and an emitter. A phototransistor is slower than the photodiode, but it
can conduct more current.

Phototransistors are used as the optical switches, proximity sensors and electrical
isolators.

Figure 31: A phototransistor symbol.

Figure 32: An phototransistor.

Figure 33: Arduino and phototransistor schematics.

An example code:

//Define an analog A1 pin for phototransistor
int phototransistorPin = A1;
//The analog reading from the phototransistor

4. IoT Hardware Overview

40

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=24cc66&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphototrans.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/phototransitor.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3e52b0&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_phototransistor.png

int phototransistorReading;

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analog pin of a phototransistor as an input
pinMode(phototransistorPin, INPUT);

}

void loop()
{

//Read the value of the phototransistor
phototransistorReading = analogRead(phototransistorPin);
//Print out the value of the phototransistor reading to the serial monitor
Serial.println(phototransistorReading);
delay(10); //short delay

}

Electrical Characteristic Sensors

Electrical characteristic sensors are used to determine whether the circuit of the device
is working properly. When the voltage and current sensors are used concurrently, the
consumed power of the device can be determined.

Voltage Sensor
A voltage sensor is a device or circuit for voltage measurement. A simple DC (direct
current) voltage sensor consists of a voltage divider circuit with the optional amplifier for
very small voltage occasions. For measuring the AC (alternating current), a transformer
is added to a lower voltage; then it is connected to the rectifier to rectify AC to DC, and
finally, an optoelectrical isolator is added for measuring circuit safety.

A voltage sensor can measure electrical load and detect a power failure. Examples of IoT
applications are monitoring of appliance, line power, power coupling, power supply and
sump pump.

Figure 34: Voltage sensor module 0–25 V.

Figure 35: Arduino and voltage sensor schematics.

4.3. Arduino Overview

41

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_sen_sch_hd.jpg?id=en%3Abook

The example code:

//Define an analog A1 pin for voltage sensor
int voltagePin = A1;
//The analog reading from the voltage sensor
int voltageReading;

float vout = 0.0;
float vin = 0.0;
float R1 = 30000.0; // 30 kΩ resistor
float R2 = 7500.0; // 7.5 kΩ resistor

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analog pin of a voltage sensor as an input
pinMode(voltagePin, INPUT);

}

void loop()
{

//Read the value of the voltage sensor
voltageReading = analogRead(voltagePin);
vout = (voltageReading * 5.0) / 1024.0;
vin = vout / (R2/(R1+R2));

Serial.print("Voltage is: ");
//Print out the value of the voltage to the serial monitor
Serial.println(vin);
delay(10); //Short delay

}

Current Sensor
A current sensor is a device or a circuit for current measurement. A simple DC sensor
consists of a high power resistor with low resistance. The current is obtained by
measuring the voltage on the resistor and applying formula proportional to the voltage.
Other non-invasive measurement methods involve hall effect sensors for DC and AC and
inductive coils for AC. Current sensors are used to determine the power consumption, to
detect whether the device is turned on, short circuits.

Figure 36: Analog current meter module 0–50 A.

Figure 37: Arduino and current sensor module schematics.

4. IoT Hardware Overview

42

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/current_sen_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4e445a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_current.png

The example code:

//Define an analog A0 pin for current sensor
const int currentPin = A0;
//Scale factor of the sensor use 100 for 20 A Module and 66 for 30 A Module
int mVperAmp = 185;
int currentReading;
int ACSoffset = 2500;
double Voltage;
double Current;

void setup(){
Serial.begin(9600);

}

void loop(){

currentReading = analogRead(currentPin);
Voltage = (currentReading / 1024.0) * 5000; //Gets you mV
Current = ((Voltage - ACSoffset) / mVperAmp); //Calculating current value

Serial.print("Raw Value = "); //Shows pre-scaled value
Serial.print(currentReading);
Serial.print("\t Current = "); //Shows the voltage measured
//The '3' after current allows to display 3 digits after decimal point
Serial.println(Current,3);
delay(1000); //Short delay

Proximity and Distance Sensors

Optocoupler
An optocoupler is a device that combines light emitting and receiving devices. Mostly it
is a combination of the infrared light-emitting diode (LED) and a phototransistor. Other
optical semiconductors can be a photodiode and a photoresistor. There are two main
types of optocouplers:

▪ an optocoupler of a closed pair configuration is enclosed in the dark resin and is
used to transfer signals using light, ensuring electrical isolation between two circuits;

▪ a slotted optocoupler has a space between the light source and the sensor, light
can be obstructed and thus can influence the sensor signal. It can be used to detect
objects, rotation speed, vibrations or serve as a bounce-free switch;

▪ a reflective pair configuration the light signal is perceived as a reflection from
the object surface. This configuration is used for proximity detection, surface colour
detection and tachometer.

Figure 38: An optocoupler symbol.

4.3. Arduino Overview

43

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3b887a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Foptocoupler.jpg

Figure 39: ELITR9909 reflective optocoupler sensor.

Figure 40: Arduino Uno and optocoupler schematics.

An example code:

int optoPin = A0; //Initialize an analog A0 pin for optocoupler
int optoReading; //The analog value reading from the optocoupler

int objecttreshold = 1000; //Object threshold definition
int whitetreshold = 150; //White colour threshold definition

void setup ()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analog pin of the optocoupler as an input
pinMode(optoPin, INPUT);

}

void loop ()
{

optoReading = analogRead(optoPin); //Read the value of the optocoupler
Serial.print ("The reading of the optocoupler sensor is: ");
Serial.println(optoReading);
//When the reading value is lower than the object threshold
if (optoReading < objecttreshold) {

Serial.println ("There is an object in front of the sensor!");
//When the reading value is lower than the white colour threshold
if (optoReading < white threshold) {

Serial.println ("Object is in white colour!");
} else { //When the reading value is higher than the white colout threshold

Serial.println ("Object is in dark colour!");
}

}
else { //When the reading value is higher than the object thershold

Serial.println ("There is no object in front of the sensor!");
}
delay(500); //Short delay

}

4. IoT Hardware Overview

44

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/elitr9909_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c21c56&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_optocoupler.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Infrared Sensor
Infrared (IR) proximity sensor is used to detect objects and to measure the distance
to them, without any physical contact. IR sensor consists of an infrared emitter, a
receiving sensor or array of sensors and a signal processing logic. The output of a sensor
differs depending on the type – simple proximity detection sensor outputs HIGH or LOW
level when an object is in its sensing range, but sensors which can measure distance
outputs an analogue signal or use some communication protocol, like I2C to send sensor
measuring results. IR sensors are used in robotics to detect obstacles starting from few
millimetres to several meters and in mobile phones to help detect accidental button
touching.

Figure 41: Distance Sensor GP2Y0A21YK0F.

Figure 42: Arduino and IR proximity sensor circuit.

An example code:

int irPin = A0; //Define an analog A0 pin for IR sensor
int irReading; //The analog reading from the IR sensor

void setup()
{

//Begin serial communication
Serial.begin(9600);
//Initialize the analog pin of a IR sensor as an input
pinMode(irPin, INPUT);

}

void loop()
{

//Read the value of the IR sensor
irReading = analogRead(irPin);
//Print out the value of the IR sensor reading to the serial monitor
Serial.println(irReading);
delay(10); //Short delay

}

Ultrasound Sensor
Ultrasound (ultrasonic) sensor measures the distance to objects by emitting ultrasound
and measuring its returning time. The sensor consists of an ultrasonic emitter and

4.3. Arduino Overview

45

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sharp_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c30208&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_ir_prox.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

receiver; sometimes, they are combined in a single device for emitting and receiving.
Ultrasonic sensors can measure greater distances and cost less than infrared sensors,
but are more imprecise and interfere which each other measurement if more than one
is used. Simple sensors have trigger pin and echo pin, when the trigger pin is set high
for the small amount of time ultrasound is emitted and on echo pin, response time is
measured. Ultrasonic sensors are used in car parking sensors and robots for proximity
detection.

Figure 43: Ultrasonic proximity sensor HC-SR04.

Examples of IoT applications are robotic obstacle detection and room layout scanning.

Figure 44: Arduino and ultrasound proximity sensor circuit.

An example code:

int trigPin = 2; //Define a trigger pin D2
int echoPin = 4; //Define an echo pin D4

void setup()
{

Serial.begin(9600); //Begin serial communication
pinMode(trigPin, OUTPUT); //Set the trigPin as an Output
pinMode(echoPin, INPUT); //Set the echoPin as an Input

}

void loop()
{

digitalWrite(trigPin, LOW); //Clear the trigPin
delayMicroseconds(2);

//Set the trigPin on HIGH state for 10 μs
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);

//Read the echoPin, return the sound wave travel time in microseconds
duration = pulseIn(echoPin, HIGH);
//Calculating the distance
distance= duration*0.034/2;

//Printing the distance on the Serial Monitor
Serial.print("Distance: ");
Serial.println(distance);

4. IoT Hardware Overview

46

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/ultrasound_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=8c3b55&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_ultrasound_proximity.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

}

Motion Detector
The motion detector is a sensor that detects moving objects, most people. Motion
detectors use different technologies, like passive infrared sensors, microwaves and
Doppler effect, video cameras and previously mentioned ultrasonic and IR sensors.
Passive IR sensors are the simplest motion detectors that sense people trough detecting
IR radiation that is emitted through the skin. When the motion is detected, the output of
a motion sensor is a digital HIGH/LOW signal.

Motion sensors are used for security purposes, automated light and door systems. As an
example in IoT, the PIR motion sensor can be used to detect motion in security systems
a house or any building.

Figure 45: PIR motion sensor.

Figure 46: Arduino and PIR motion sensor circuit.

An example code:

//Passive Infrared (PIR) sensor output is connected to the digital 2 pin
int pirPin = 2;
//The digital reading from the PIR output
int pirReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the PIR digital pin as an input
pinMode(pirPin, INPUT);

}

void loop(void) {
//Read the digital value of the PIR motion sensor
pirReading = digitalRead(pirPin);
//Print out
Serial.print("Digital reading = ");
Serial.println(pirReading);
if(pirReading == HIGH) { //Motion was detected

Serial.println("Motion Detected");
}

4.3. Arduino Overview

47

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/movemtn_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=1fadf0&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_pir_motion_detector.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

delay(10);
}

Angle Sensors

Potentiometer
A potentiometer is a type of resistor, the resistance of which can be adjusted using a
mechanical lever. The device consists of three terminals. The resistor between the first
and the third terminal has fixed value, but the second terminal is connected to the lever.
Whenever the lever is turned, a slider of the resistor is moved, it changes the resistance
between the second terminal and side terminals. Variable resistance causes the change
of the voltage variable, and it can be measured to determine the position of the lever.
Thus, potentiometer output is an analogue value.

Potentiometers are commonly used as a control level, for example, a volume level for the
sound and joystick position. They can also be used for angle measurement in feedback
loops with motors, for example, in servo motors.

Figure 47: A symbol of potentiometer.

Figure 48: A potentiometer.

Figure 49: Arduino and potentiometer circuit.

An example code:

//Potentiometer sensor output is connected to the analog A0 pin
int potentioPin = A0;
//The analog reading from the potentiometer output
int potentioReading;

void setup(void) {
//Begin serial communication

4. IoT Hardware Overview

48

https://home.roboticlab.eu/lib/exe/fetch.php?tok=aa22eb&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fpotentiometer_symbol_europe.svg.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/potentiometer_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=8d30b1&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_potentiometer.png

Serial.begin(9600);
//Initialize the potentiometer analog pin as an input
pinMode(potentioPin, INPUT);

}

void loop(void) {
//Read the analog value of the potentiometer sensor
potentioReading = analogRead(potentioPin);
Serial.print("Potentiometer reading = "); //Print out
Serial.println(potentioReading);
delay(10);

}

The Inertial Measurement Unit (IMU)
An IMU is an electronic device, that consist of accelerometer, gyroscope and sometimes
also a magnetometer. Combination of these sensors returns the orientation of the object
in 3D space.

A gyroscope is a sensor that measures the angular velocity. The sensor is made of the
microelectromechanical system (MEMS) technology and is integrated into the chip. The
output of the sensor can be either analogue or digital value of information, using I2C or
SPI interface. Gyroscope microchips can vary in the number of axes they can measure.
The available number of the axis is 1, 2 or 3 axes in the gyroscope. For gyroscopes with 1
or 2 axes, it is essential to determine which axis the gyroscope measures and to choose
a device according to the project needs. A gyroscope is commonly used together with an
accelerometer, to determine the orientation, position and velocity of the device precisely.
Gyroscope sensors are used in aviation, navigation and motion control.

A magnetometer is the sensor, that can measure the orientation of the device to the
magnetic field of the Earth. A magnetometer is used in outdoor navigation for mobile
devices, robots, quadcopters.

An accelerometer measures the acceleration of the object. The sensor uses a
microelectromechanical system (MEMS) technology, where capacitive plates are attached
to springs. When acceleration force is applied to the plates, the capacitance is changed;
thus, it can be measured. Accelerometers can have 1 to 3 axis. On 3-axis, the
accelerometer can detect orientation, shake, tap, double tap, fall, tilt, motion,
positioning, shock or vibration of the device. Outputs of the sensor are usually digital
interfaces like I2C or SPI. For precise measurement of the object movement and
orientation in space, the accelerometer is often used together with a gyroscope.
Accelerometers are used for measuring vibrations of cars, industrial devices, buildings
and to detect volcanic activity. In IoT applications, it can be used as well for accurate
motion detection for medical and home appliances, portable navigation devices,
augmented reality, smartphones and tablets.

Figure 50: IMU BNO055 module.

4.3. Arduino Overview

49

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_c.jpg?id=en%3Abook

Figure 51: Arduino Uno and IMU BNO055 module schematics.

The example code:

//Library for I2C communication
#include <Wire.h>
//Downloaded from https://github.com/adafruit/Adafruit_Sensor
#include <Adafruit_Sensor.h>
//Downloaded from https://github.com/adafruit/Adafruit_BNO055
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>
Adafruit_BNO055 bno = Adafruit_BNO055(55);
void setup(void)
{
bno.setExtCrystalUse(true);
}
void loop(void)
{
//Read sensor data
sensors_event_t event;
bno.getEvent(&event);
//Print X, Y And Z orientation
Serial.print("X: ");
Serial.print(event.orientation.x, 4);
Serial.print("\tY: ");
Serial.print(event.orientation.y, 4);
Serial.print("\tZ: ");
Serial.print(event.orientation.z, 4);
Serial.println("");
delay(100);
}

Environment Sensors

Temperature Sensor
A temperature sensor is a device that is used to determine the temperature of the
surrounding environment. Most temperature sensors work on the principle that the
resistance of the material is changed depending on its temperature. The most common
temperature sensors are:

▪ thermocouple – consists of two junctions of dissimilar metals,

4. IoT Hardware Overview

50

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_sch_hd.jpg?id=en%3Abook
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

▪ thermistor – includes the temperature-dependent ceramic resistor,

▪ resistive temperature detector – is made of a pure metal coil.

The main difference between sensors is the measured temperature range, precision
and response time. Temperature sensor usually outputs the analogue value, but some
existing sensors have a digital interface [43].

The temperature sensors most commonly are used in environmental monitoring devices
and thermoelectric switches. In IoT applications, the sensor can be used for greenhouse
temperature monitoring, warehouse temperature monitoring to avoid frozen fire
suppression systems and tracking temperature of the soil, water and plants.

Figure 52: Thermistor.

Figure 53: Arduino and thermistor circuit.

An example code:

//Thermistor sensor output is connected to the analog A0 pin
int thermoPin = 0;
//The analog reading from the thermistor output
int thermoReading;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the thermistor analog pin as an input
pinMode(thermoPin, INPUT);

}

void loop(void) {
//Read the analog value of the thermistor sensor
thermoReading = analogRead(thermoPin);
Serial.print("Thermistor reading = "); //Print out
Serial.println(thermoReading);
delay(10);

}

Humidity Sensor
A humidity sensor (hygrometer) is a sensor that detects the amount of water or water
vapour in the environment. The most common principle of the air humidity sensors is
the change of capacitance or resistance of materials that absorb the moisture from the

4.3. Arduino Overview

51

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/thermistor.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=eb787c&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_thermistor.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

environment. Soil humidity sensors measure the resistance between the two electrodes.
The resistance between electrodes is influenced by soluble salts and water amount in the
soil. The output of a humidity sensor is usually an analogue signal value [44].

Example IoT applications are monitoring of humidor, greenhouse temperature and
humidity, agriculture, art gallery and museum environment.

Figure 54: Temperature and humidity sensor module.

Figure 55: Arduino Uno and humidity sensor schematics.

An example code [45]:

#include <dht.h>
dht DHT;

#define DHT_PIN 7
void setup(){

Serial.begin(9600);
}

void loop()
{

int chk = DHT.read11(DHT_PIN);
Serial.print("Humidity = ");
Serial.println(DHT.humidity);
delay(1000);

}

Sound Sensor
A sound sensor is a sensor that detects vibrations in a gas, liquid or solid environments.
At first, the sound wave pressure makes mechanical vibrations, who transfers to changes
in capacitance, electromagnetic induction, light modulation or piezoelectric generation to
create an electric signal. The electrical signal is then amplified to the required output
levels. Sound sensors, can be used to record sound, detect noise and its level.

Sound sensors are used in drone detection, gunshot alert, seismic detection and vault
safety alarm.

4. IoT Hardware Overview

52

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/humidity_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a60066&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_humidity.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 56: Digital sound detector sensor module.

Figure 57: Arduino Uno and sound sensor schematics.

An example code:

//Sound sensor output is connected to the digital 7 pin
int soundPin = 7;
//Stores sound sensor detection readings
int soundReading = HIGH;

void setup(void) {
//Begin serial communication
Serial.begin(9600);
//Initialize the sound detector module pin as an input
pinMode(soundPin, INPUT);

}

void loop(void) {
//Read the digital value whether the sound has been detected
soundReading = digitalRead(soundPin);
if (soundPin==LOW) { //When sound detector detected the sound

Serial.println("Sound detected!"); //Print out
} else { //When the sound is not detected

Serial.println("Sound not detected!"); //Print out
}
delay(10);

}

Chemical/Smoke and Gas Sensor
Gas sensors are a sensor group, that can detect and measure a concentration of certain
gasses in the air. The working principle of electrochemical sensors is to absorb the
gas and to create current from an electrochemical reaction. For process acceleration, a
heating element can be used. For each type of gas, different kind of sensor needs to be
used. Multiple different types of gas sensors can be combined in a single device as well.
The single gas sensor output is an analogue signal, but devices with multiple sensors
used to have a digital interface.

Gas sensors are used for safety devices, to control air quality and for manufacturing
equipment. Examples of IoT applications are air quality control management in smart
buildings and smart cities or toxic gas detection in sewers and underground mines.

4.3. Arduino Overview

53

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sound_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=f21aee&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_sound.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 58: MQ-7 gas sensor.

Figure 59: Arduino Uno and MQ2 gas sensor schematics.

An example code:

int gasPin = A0; //Gas sensor output is connected to the analog A0 pin
int gasReading; //Stores gas sensor detection reading

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(gasPin, INPUT); //Initialize the gas detector pin as an input

}

void loop(void) {
gasReading = analogRead(gasPin); //Read the analog value of the gas sensor
Serial.print("Gas detector value: "); //Print out
Serial.println(gasReading);
delay(10); //Short delay

}

Level Sensor
A level sensor detects the level of fluid or fluidised solid. Level sensors can be divided
into two groups:

▪ continuous level sensors that can detect the exact position of the fluid. For the
level detection usually, the proximity sensors, like ultrasonic or infrared, are used.
Capacitive sensors can also be used by recording the changing capacitance value
depending on the fluid level. The output can be either analogue or digital value;

▪ point-level sensors can detect whether a fluid is above or below the sensor. For the
level detection, float or mechanical switch, diaphragm with air pressure or changes
in conductivity or capacitance, can be used. The output is usually a digital value that
indicates HIGH or LOW value.

Level sensors can be used as smart waste management, for measuring tank levels, diesel
fuel gauging, liquid assets inventory, chemical manufacturing high or low-level alarms
and irrigation control.

4. IoT Hardware Overview

54

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gas_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a99a58&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_gas.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 60: Liquid level sensor.

Figure 61: Arduino Uno and liquid level sensor schematics.

An example code:

int levelPin = 6; //Liquid level sensor output is connected to the digital 6 pin
int levelReading; //Stores level sensor detection reading

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(levelPin, INPUT); //Initialize the level sensor pin as an input

}

void loop(void) {
levelReading = digitalRead(levelPin); //Read the digital value of the level sensor
Serial.print("Level sensor value: "); //Print out
Serial.println(levelReading);
delay(10); //Short delay

}

Other Sensors

Hall sensor
A Hall effect sensor detects strong magnetic fields, their polarities and the relative
strength of the field. In the Hall effect sensors, a magnetic force influences current flow
through the semiconductor material and creates a measurable voltage on the sides of the
semiconductor. Sensors with analogue output can measure the strength of the magnetic
field, while digital sensors give HIGH or LOW output value, depending on the presence of
the magnetic field.

Hall effect sensors are used in magnetic encoders for speed measurements and magnetic
proximity switches because it does not require contact, and it ensures high reliability.
Example application can be sensing the position of rotary valves.

4.3. Arduino Overview

55

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/level_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/levle_sen_sch_hd.jpg?id=en%3Abook
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 62: Hall-effect sensor module.

Figure 63: Arduino Uno and Hall sensor schematics.

Thw example code:

int hallPin = A0; //Hall sensor output is connected to the analog A0 pin
int hallReading; //Stores hallsensor detection reading

void setup(void) {
Serial.begin(9600); //Begin serial communication
pinMode(hallPin, INPUT); //Initialize the hallsensor pin as an input

}

void loop(void) {
hallReading = analogRead(hallPin); //Read the analog value of the hall sensor
Serial.print("Hall sensor value: "); //Print out
Serial.println(hallReading);
delay(10); //Short delay

}

Global Positioning System
A GPS receiver is a device, that can receive information from a global navigation satellite
system and calculate its position on the Earth. GPS receiver uses a constellation of
satellites and ground stations to compute position and time almost anywhere on the
Earth. GPS receivers are used for navigation only in the outdoor area because it needs
to receive signals from the satellites. The precision of the GPS location can vary.

A GPS receiver is used for device location tracking. Real world applications might be, i.e.,
pet, kid or personal belonging location tracking.

Figure 64: Grove GPS receiver module.

4. IoT Hardware Overview

56

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/hall_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c7208c&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_hall2.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_c.jpg?id=en%3Abook

Figure 65: Arduino Uno and Grove GPS receiver schematics.

The example code [46]:

#include <SoftwareSerial.h>
SoftwareSerial SoftSerial(2, 3);
unsigned char buffer[64]; //Buffer array for data receive over serial port
int count=0; //Counter for buffer array
void setup()
{

SoftSerial.begin(9600); //The SoftSerial baud rate
Serial.begin(9600); //The Serial port of Arduino baud rate.

}

void loop()
{

if (SoftSerial.available()) //If date is coming from software serial port
// ==> Data is coming from SoftSerial shield

{
while(SoftSerial.available()) //Reading data into char array
{

buffer[count++]=SoftSerial.read(); //Writing data into array
if(count == 64)break;

}
Serial.write(buffer,count); //If no data transmission ends,

//Write buffer to hardware serial port
clearBufferArray(); //Call clearBufferArray function to clear

//The stored data from the array
count = 0; //Set counter of while loop to zero

}
if (Serial.available()) //If data is available on hardware serial port

// ==> Data is coming from PC or notebook
SoftSerial.write(Serial.read()); //Write it to the SoftSerial shield

}

void clearBufferArray() //Function to clear buffer array
{

for (int i=0; i<count;i++)
{

buffer[i]=NULL;
} //Clear all index of array with command NULL

}

4.3.11. Drivers and Driving

Optical Device Drivers and Their Devices

4.3. Arduino Overview

57

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_sch.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Light-Emitting Diode
The light-emitting diode also called LED is a special type of diodes which emits light,
unlike the other diodes. LED has a completely different body which is made of
transparent plastic that protects the diode and lets it emit light. Like the other diodes
LED conducts the current in only one way, so it is essential to connect it to the scheme
correctly. There are two safe ways how to determine the direction of the diode:

▪ in the cathodes side of the diode its side is chipped,

▪ anodes leg usually is longer than the cathodes leg.

Figure 66: 5 mm Red LED.

The LED is one of the best light sources. Unlike incandescent light bulb LED transforms
most of the power into light, not warmth; it is more durable, works for a more extended
period and can be manufactured in a smaller size.

The LED colour is determined by the semiconductors material. Diodes are usually made
from silicon then LEDs are made from elements like gallium phosphate, silicon carbide
and others. Because the semiconductors used are different, the voltage needed for the
LED to shine is also different. In the table, you can see with which semiconductor you
can get a specific colour and the voltage required to turn on the LED.

When LED is connected to the voltage and turned on a huge current starts to flow
through it, and it can damage the diode. That is why all LEDs have to be connected to
current limiting resistor.

Current limiting resistors resistance is determined by three parameters:

▪ I_D – current that can flow through the LED,

▪ U_D – Voltage that is needed to turn on the LED,

▪ U – combined voltage for LED and resistor.

To calculate the resistance needed for a diode, this is what you have to do.

1. Find out the voltage needed for the diode to work UD; you can find it in the diodes
parameters table.

2. Find out the amperage needed for the LED to shine ID; it can be found in the LEDs
datasheet, but if you can’t find it then 20 mA current is usually a correct and safe
choice.

3. Find out the combined voltage for the LED and resistor; usually, it is the feeding
voltage for the scheme.

4. Insert all the values into this equation: R = (U – U_D) / I_D.

5. You get the resistance for the resistor for the safe use of the LED.

6. Find resistors nominal that is the same or bigger than the calculated resistance.

4. IoT Hardware Overview

58

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/led_c.jpg?id=en%3Abook

Figure 67: Arduino Uno and LED control schematic.

The example of the blinking LED code:

int ledPin = 8;//Defining the pin of the LED

void setup()
{

pinMode(ledPin,OUTPUT); //The LED pin is set to output
}

void loop()
{

//Set pin output signal to HIGH – LED is working
digitalWrite(ledPin,HIGH);
//Belay of 1000 ms
delay(1000);

//Set pin output signal to LOW – LED is not working
digitalWrite(ledPin,LOW);
//Delay of 1000 ms
delay(1000);

}

Displays
Using display is a quick way to get feedback information from the device. There are many
display technologies compatible with Arduino. For IoT solutions, low power, easy to use
and monochrome displays are used:

▪ liquid-crystal display (LCD),

▪ organic light-emitting diode display (OLED),

▪ electronic ink display (E-ink).

Liquid-Crystal Display (LCD)

LCD uses modulating properties of liquid crystal light to block the incoming light. Thus
when a voltage is applied to a pixel, it has a dark colour. A display consists of layers
of electrodes, polarising filters, liquid crystals and reflector or back-light. Liquid crystals
do not emit the light directly; they do it through reflection or backlight. Because of
this reason, they are more energy efficient. Small, monochrome LCDs are widely used
in devices to show a little numerical or textual information like temperature, time,
device status etc. LCD modules commonly come with an onboard control circuit and are
controlled through parallel or serial interface.

4.3. Arduino Overview

59

https://home.roboticlab.eu/lib/exe/fetch.php?tok=f25408&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_led.png

Figure 68: Blue 16 × 2 LCD display.

Figure 69: Arduino and LCD screen schematics.

The example code:

#include <LiquidCrystal.h> //include LCD library
//Define LCD pins
const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2;
//Create and LCD object with predefined pins
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);

void setup() {
lcd.begin(16, 2); //Set up the LCD's number of columns and rows
lcd.print("hello, world!"); //Print a message to the LCD

}

void loop() {
//Set the cursor to column 0, line 1 – line 1 is the second row
//Since counting begins with 0
lcd.setCursor(0, 1);
//Print the number of seconds since reset
lcd.print(millis() / 1000);

}

Organic Light-Emitting Diode Display (OLED)

OLED display uses electroluminescent materials that emit light when the current passes
through these materials. The display consists of two electrodes and a layer of an organic
compound. OLED displays are thinner than LCDs, they have higher contrast, and they
can be more energy efficient depending on usage. OLED displays are commonly used
in mobile devices like smartwatches, cell phones and they are replacing LCDs in other
devices. Small OLED display modules usually have an onboard control circuit that uses
digital interfaces like I2C or SPI.

4. IoT Hardware Overview

60

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/lcd_display_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=00087a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_lcd.png
http://www.opengroup.org/onlinepubs/009695399/functions/liquidcrystal.html

Figure 70: OLED I2C display.

Figure 71: Arduino and OLED I2C schematics.

//Add libraries to ensure the functioning of OLED
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

void setup() {
//Setting up initial OLED parameters
display.begin(SSD1306_SWITCHCAPVCC, 0x3C, false);
display.setTextSize(1); //Size of the text
display.setTextColor(WHITE); //Colour of the text – white

void loop() {

//Print out on display output sensor values
display.setCursor(0, 0);
display.clearDisplay();
display.print("Test of the OLED"); //Print out the text on the OLED
display.display();
delay(100);
display.clearDisplay();

}

Electronic Ink Display (E-Ink)

E-ink display uses charged particles to create a paper-like effect. The display consists
of transparent microcapsules filled with oppositely charged white and black particles
between electrodes. Charged particles change their location, depending on the
orientation of the electric field, thus individual pixels can be either black or white. The
image does not need the power to persist on the screen; power is used only when the
image is changed. Thus e-ink display is very energy efficient. It has high contrast and
viewing angle, but it has a low refresh rate. E-ink displays are commonly used in e-riders,
smartwatches, outdoor signs, electronic shelf labels.

4.3. Arduino Overview

61

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/oled_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3b8b00&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_oled.png

Figure 72: E-ink display module.

Figure 73: Arduino Uno and E-ink display module schematics.

#include <SmartEink.h>
#include <SPI.h>
E_ink Eink;

void setup()
{

//BS LOW for 4 line SPI
pinMode(8,OUTPUT);
digitalWrite(8, LOW);

Eink.InitEink();

Eink.ClearScreen();//Clear the screen

Eink.EinkP8x16Str(14,8,"NOA-Labs.com");
Eink.EinkP8x16Str(10,8,"smart-prototyping.com");
Eink.EinkP8x16Str(6,8,"0123456789");
Eink.EinkP8x16Str(2,8,"ABCDEFG abcdefg");

Eink.RefreshScreen();
}
void loop()
{

}

Mechanical Drivers

Relay
Relays are electromechanical devices that use electromagnets to connect or disconnect
plates of a switch. Relays are used to control high power circuits with low power circuits.
Circuits are mechanically isolated and thus protect logic control. Relays are used in
household appliance automation, lighting and climate control.

4. IoT Hardware Overview

62

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/e-ink_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=2cac75&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_eink.png

Figure 74: 1 channel relay module.

Figure 75: Arduino Uno and 1 channel relay module schematics.

The example code:

#define relayPin 4 //Define the relay pin
void setup()
{

Serial.begin(9600);
pinMode(relayPin, OUTPUT); //Set relayPin to output

}

void loop()
{

digitalWrite(relayPin,0); //Turn relay on
Serial.println("Relay ON"); //Output text
delay(2000); // Wait 2 seconds

digitalWrite(relayPin,1); //Turns relay off
Serial.println("Relay OFF");
delay(2000);

}

Solenoid
Solenoids are devices that use electromagnets to pull or push iron or steel core. They are
used as linear actuators for locking mechanisms indoors, pneumatic and hydraulic valves
and in-car starter systems.

Solenoids and relays both use electromagnets and connecting them to Arduino is very
similar. Coils need a lot of power, and they are usually attached to the power source of
the circuit. Turning the power of the coil off makes the electromagnetic field to collapse
and creates very high voltage. For the semiconductor devices protection, a shunt diode
is used to channel the overvoltage. For extra safety, optoisolator can be used.

4.3. Arduino Overview

63

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/relay_c_2.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=717773&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_relay.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 76: Solenoid.

Figure 77: Arduino Uno and solenoid schematics.

The example code:

#define solenoidPin 4 //Define the solenoid pin
void setup()
{

Serial.begin(9600);
pinMode(solenoidPin, OUTPUT); //Set solenoidPin to output

}

void loop()
{

digitalWrite(solenoidPin,0); //Turn solenoid on
Serial.println("Solenoid ON"); //Output text
delay(2000); //Wait 2 seconds

digitalWrite(solenoidPin,1); //Turns solenoid off
Serial.println("Solenoid OFF");
delay(2000);

}

Speaker
Speakers are electroacoustic devices that convert the electrical signal into sound waves.
A speaker uses a permanent magnet and a coil attached to the membrane. Sound signal,
flowing through the coil, creates the electromagnetic field with variable strength, coil
attracts to magnet according to the strength of the field, thus making a membrane
to vibrate and creating a sound wave. Other widely used speaker technology, called
Piezo speaker, uses piezoelectric materials instead of magnets. Speakers are used to
creating an audible sound for human perception and ultrasonic sound for sensors and
measurement equipment.

4. IoT Hardware Overview

64

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/solenoid_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=b59883&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_solenoid.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 78: Speaker 8 Ω 0.5 W.

Figure 79: Arduino Uno and piezzo buzzer schematics.

const int speakerPin = 9; //Define the buzzer pin

void setup()
{

pinMode(speakerPin, OUTPUT); //Set buzzer as an output
}

void loop()
{

tone(speakerrPin, 1000); //Send 1 kHz sound signal
delay(1000); //For 1 s
noTone(speakerPin); //Stop sound
delay(1000); //For 1 s

}

DC Motor (One Direction)
An electric motor is an electro-technical device which can turn electrical energy into
mechanical energy; motor turns because of the electricity that flows in its winding.
Electric motors have seen many technical solutions over the year from which the simplest
is the permanent-magnet DC motor.

DC motor is a device which converts direct current into the mechanical rotation. DC
motor consists of permanent magnets in stator and coils in the rotor. By applying the
current to coils, the electromagnetic field is created, and the rotor tries to align itself to
the magnetic field. Each coil is connected to a commutator, which in turns supplies coils
with current, thus ensuring continuous rotation. DC motors are widely used in power
tools, toys, electric cars, robots, etc.

Figure 80: A DC motorwith gearbox 50 : 1.

4.3. Arduino Overview

65

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/speaker_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=e40285&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_piezo_buzzer.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/dc_motor_c.jpg?id=en%3Abook

Figure 81: Arduino Uno and DC motor schematics.

void setup ()
{

pinMode(5,OUTPUT); //Digital pin 5 is set to output
//The function for turning on the motor is defined
#define motON digitalWrite(5,HIGH)
//The function for turning off the motor is defined
#define motOFF digitalWrite(5,LOW)

}
void loop ()
{

motON; //Turn on the motor
}

DC Motor With H-Bridge
The H-bridge has earned its name because of its resemblance to the capital ‘H’ wherein
all the corners there are switches and in the middle – the electric motor. This bridge
is usually used for operating permanent-magnet DC motor, electromagnets and other
similar elements, because it allows operating with significantly bigger current devices,
using a small current. By switching the switches, it is possible to change the motor
direction. It is important to keep in mind that the switches need to be turned on and off
in pairs.

When all of the switches are turned off, the engine is in the free movement. To slow
down faster, the H-bridge is turned on in the opposite direction.

Figure 82: The flow of currents in the H-bridge.

If both positive or both negative switches are turned on at the top or at the bottom,
then the engine stops, not allowing to have a free rotation – it is slowed down. The
management can be reflected in Table 10.

When all of the switches are turned off, the engine is in the free movement. Not always it
is enough for robotics, so sometimes the H-bridge is turned on in the opposite direction
to slow the motor down faster – the opposite direction is turned on rapidly.

4. IoT Hardware Overview

66

https://home.roboticlab.eu/lib/exe/fetch.php?tok=fb244f&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_dcmotor.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=adb2a3&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fhbridge.png

Table 10: The Management of the H-Bridge Switches

Upper left Upper right Lower left Lower right Motor work mode

On Off Off On Turns in one direction

Off On On Off Turns in another direction

On On Off Off Braking

Off Off On On Braking

Remember! Neither of these braking mechanisms is good for the H-bridge or the power
source. That is why this action is unacceptable without a particular reason because it can
damage the switches or the power source.

The complicated part is the realisation of switches – if the switches don’t work usually
relays or appropriate power transistors are used. The biggest drawback for relays is that
they can only turn the engine on or off. If the rotation speed needs to be regulated using
the impulse width modulation, then transistors have to be used. MOSFET type transistors
should be used for ensuring a large amount of power. Nowadays, the stable operation
of the bridge is ensured by adding extra elements. The manufactured bridges have one
body, for example, the one that is included in the constructor – L293D.

Figure 83: The L293D microchip and its representation in the circuit.

The L293D microchip consists of two H-bridges and is made for managing two motors.
Each pin of the microchip has its function; that is why it is very important not to mix them
up; otherwise, the microchip can be damaged. All pins of the microchip have assigned
a number. The enumeration begins with the special mark on the body: a split, a dot,
a cracked edge, etc., and continues counter-clockwise. When creating a scheme, it is
important to take into account pin numbers and the ones shown in the scheme. If some
additional information about the microchip is necessary, it can be found in the datasheet
of the microchip. Remember that the datasheet can be found by writing the number of
the device (written on the body) and adding the word “datasheet” in the browser.

Figure 84: Arduino Uno and L293D H-bridge schematics.

The example code:

4.3. Arduino Overview

67

https://home.roboticlab.eu/lib/exe/fetch.php?tok=b195dc&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fhbridge1.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=50c5fa&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_hbridge.png

int dirPin1 = 7; //1st direction pin
int dirPin2 = 8; //2nd direction pin
int speedPin = 5; //Pin responsible for the motor speed

void setup ()
{

pinMode (dirPin1,OUTPUT); //1st direction pin is set to output
pinMode (dirPin2,OUTPUT); //2nd direction pin is set to output
pinMode (speedPin,OUTPUT); //Speed pin is set to output

}

void loop ()
{

analogWrite(speedPin, 100); //Setting motor speed
//Speed value can be from 0 to 255

int motDirection = 1; //Motor direction can be either 0 or 1

if (motDirection) //Setting motor direction
{//If 1

digitalWrite(dirPin1,HIGH);
digitalWrite(dirPin2,LOW);

}
else
{//If 0

digitalWrite(dirPin1,LOW);
digitalWrite(dirPin2,HIGH);

}
}

Stepper Motor
Stepper motors are motors, that can be moved by a certain angle or step. Full rotation
of the motor is divided into small, equal steps. Stepper motor has many individually
controlled electromagnets, by turning them on or off, a motor shaft rotates by one step.
Changing switching speed or direction can precisely control turn angle, direction or full
rotation speed. Because of exact control ability, they are used in CNC machines, 3D
printers, scanners, hard drives etc. Example of use can be found in the source [47].

Figure 85: A stepper motor.

4. IoT Hardware Overview

68

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/stepper_c.jpg?id=en%3Abook

Figure 86: Arduino Uno and stepper motor schematics.

The example code:

#include <Stepper.h> //Include library for stepper motor
int in1Pin = 12; //Defining stepper motor pins
int in2Pin = 11;
int in3Pin = 10;
int in4Pin = 9;

//Define a stepper motor object
Stepper motor(512, in1Pin, in2Pin, in3Pin, in4Pin);

void setup()
{

pinMode(in1Pin, OUTPUT); //Set stepper motor control pins to output
pinMode(in2Pin, OUTPUT);
pinMode(in3Pin, OUTPUT);
pinMode(in4Pin, OUTPUT);

Serial.begin(9600);
motor.setSpeed(20); //Set the speed of stepper motor object

}

void loop()
{

motor.step(5); //Rotate 5 steps
}

Servomotor
Unlike the simple DC motor, the servomotor is a particular management chain which
allows effortless control over the speed or position of the motor. The management of
the engine is realised using three connections – positive (usually red) and negative
connection (brown or black) of the current as well as the connection for management
(orange or yellow).

For the management, the pulse width technique is used.

4.3. Arduino Overview

69

https://home.roboticlab.eu/lib/exe/fetch.php?tok=2806d3&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_stepper.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Figure 87: The pulse width modulated signal for the management of servomotor.

From the image, it can be seen that the length of the servomotor impulse cycle is 20
ms, but the impulse length itself is 1 ms or 2 ms. These signal characteristics are true
for the most enthusiast level servomotors, but it should be verified for each module in
the manufacturer specification. Servomotor management chain meets the impulse every
20 ms, but the width of the pulse shows the position that the servomotor has to reach.
For example, 1 ms corresponds to the 0° position but 2 ms – to 180° position against
the starting point. When entering the defined position, the servomotor will keep it and
resist any outer forces that are trying to change the current position. The graphical
representation is in the following image.

Figure 88: The pulse width modulated signal for different positions of servomotor.

Just like other motors, servomotors have different parameters, where the most
important one is the time of performance – the time that is necessary to change the
position to the defined position. The best enthusiast level servomotors do a 60° turn in
0.09 s. There are three types of servomotors:

▪ positional rotation servomotor – most widely used type of servomotor. With the
help of a management signal, it can determine the position of the rotation axis from
its starting position;

▪ continuous rotation servomotor – this type of motor allows setting the speed and
direction of the rotation using the management signal. If the position is less than
90°, it turns in one direction, but if more than 90° it turns in the opposite direction.
The speed is determined by the difference in value from 90°; 0° or 180° will turn the
motor at its maximum speed while 91° or 89° at its minimum rate;

▪ linear servomotor – with the help of additional transfers it allows moving forward
or backward; it doesn’t rotate.

Unfortunately, using Arduino, the servomotor is not as easily manageable as DC motor.
For this purpose, a special servomotor management library Servo.h has been created.

4. IoT Hardware Overview

70

https://home.roboticlab.eu/lib/exe/fetch.php?tok=4f6ecd&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fservo2.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=9834d5&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fservo1.png

Figure 89: A servomotor.

Figure 90: Arduino Uno and servomotor schematics.

The example code:

#include <Servo.h> //Include Servo library
Servo servo; //Define a Servo object

void setup ()
{

servo.attach(6); //Connect servo object to pin D6
servoLeft.write(90); //Set position of servo to 90°
Serial.begin(9600);

}

void loop ()
{

servoLeft.write(110); //Set position of servo to 110°
delay(200); //wait for 200 ms
servoLeft.write(70);//Set position of servo to 70°
delay(200); //Wait for 200 ms

}

4.3.12. IoT Application Example Projects

Many IoT projects developed using an Arduino board can be found in the official Arduino
Project Hub [48]. Here are stored multiple projects that are developed by Arduino
enthusiasts. In many of the following examples, the Arduino Yun board is used, because
it is easy to use a controller that contains the WiFi connection that is necessary for IoT
solutions. Additionally, the Amazon services are used for storing and handling the sensor
data.

One of the IoT projects available at the Arduino Project Hub is the Arduino Home
Controller Activated by Alexa [49] (Alexa is the Amazon Echo dot [50]. Natural
language voice commands are interpreted using Amazon Skill and a Lambda Function in
the AWS. The developed system gives an opportunity to control four lights installed in
the room, garage, kitchen and living room, temperature and humidity, buzzer alarm and
WebCam that takes a security photo and sends it by e-mail.

The Home Security Model [51] is another example to monitor the security status in the
real-time using sensors and internet connection. The system data can be accessed and
controlled remotely using a smart device or a PC. In this project, the Arduino Yun and

4.3. Arduino Overview

71

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/servo_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=371a8e&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_servomotor.png
http://www.opengroup.org/onlinepubs/009695399/functions/servo.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

Arduino Mega controllers are used. The AWS IoT services are used for connecting the
devices around the home. The system includes temperature and humidity, gas, water,
vibration, current and ultrasonic sensors, and it controls the light in multiple rooms and
a buzzer.

The project Plant Monitoring System uses AWS IoT [52] is used for sending
notification informative e-mails about the status of the sensor measurements.

Here is another IoT project about the home automation system, called Arduino based
Amazon Echo using 1Sheeld [53].

Few of the Arduino IoT related projects are also provided on the hackster.io website [54].

The first project that is viewed is the Harry Potter Weasleys' Clock using Bolt IoT
[55]. The idea of this project is taken from the Harry Potter movie where the wall clock
indicated the location of family members. In this modern IoT project, using Arduino Uno
microcontroller, servomotor and Bolt WiFi Module, the clock that using arrow represents
the location of the person that has a smartphone has been developed. The clock and the
tracked smartphone are connected to the Bolt cloud server [56].

4.3.13. Setting Up Development/Experimenting Environment

Using Breadboard

The breadboard is a mechanical base for electronics prototyping. Originally for this
purpose was used the wooden board for cutting bread, that is why the name used now
is the “breadboard”, also know as a solderless breadboard. It is because an electrical
connection on this board can be made without soldering. Thus components can be
reused, and changes to the circuit can be made easily.

Figure 91: 400 point Breadboard.

On the front surface of the breadboard, many small holes are connected on the back of

4. IoT Hardware Overview

72

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard2.jpg

the board in a specific pattern using metal clips. These clips hold component leg or wire
in place when they are put into the hole.

As the example, the circuit that contains the LED and resistance is taken.

Figure 92: The example schematics.

Following the schematics, all the necessary components are connected in the right way
using the breadboard.

Figure 93: Example circuit connected using breadboard.

Two side columns of the breadboard are made easily accessible from the rest of the
breadboard and are commonly used for connecting the power to the circuit. Almost any
DC (direct current) power source can be used to power the circuit, like batteries, Arduino
board power pins, AC/DC regulators etc.

Two columns of 5 hole rows are used for connecting components. Extra connections can
be made using wires. The gap in the middle allows using DIP (dual in-line package)
circuits.

More information on breadboards can be found in the SparkFun webpage [57].

Soldering

Soldering is one of the essential skills in the world of electronics. The basic of electronics
can also be a learner without the knowledge of how to solder; however, the soldering
allows to work on more exciting projects and to join a wide range of electronics
enthusiasts. This skill is essential because nowadays the electronic and electrical
equipment is being used more often. The essential element of the knowledge about
electronics is not only the ability to understand the working principles of the electronics
but also the skill to build, repair and supplement the electronic devices.

4.3. Arduino Overview

73

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard_circuit.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard_fritzing.png?id=en%3Abook

Materials

The main soldering material is a solder. As the name of the material indicates, it is a
compound of various soft metals and consumable materials, which is usually similar to a
wire, wrapped in a reel or other easy-to-use packaging.

Figure 94: Different packaging of solder.

Different types of solder vary in diameter of the wire and the chemical composition.
The type of solder that is used depends on the task.

According to the chemical composition, the solder is divided into two types: solder
containing lead and lead-free solder. Historically, lead (Pb) is used in combination with
tin (Sn) to ensure lower melting temperatures and better flow, which is essential for good
contact between the parts.

Since 2006, many countries have forbidden using lead-containing solder, caring for the
protection of nature and human health. When lead accumulates in the human body in
significant amounts, it can cause poisoning. For this reason, it is important to remember
– after using lead-containing solder, you should carefully wash your hands.

To avoid the risk of getting lead in the human body, the alternative is to use lead-free
solder. Nevertheless few things need to be taken into account – the melting temperature
of lead-free solder is higher and grip with other materials is lower. For improving the
grip, flux can be used. Some solders already have flux in the core of the wire, so it is not
necessary to buy them separately.

The diameter of the solder wire depends on the size of details that need to be soldered.
The bigger the detail, the bigger the diameter of the solder wire.

Tools

Tools used for soldering are a soldering iron, stand for soldering iron, as well as different
tools for removing solder and keeping parts together.

A soldering iron is an electrical heater that is used for heating the solder to it's
melting temperature. As with all of the electrical devices, the instructions provided by
the manufacturer should be followed when using the soldering iron. For specific tasks,
there are also hot air and gas soldering irons. In this section, only the electric ones will
be described.

There are different types of soldering irons so that they can be effectively used for
diverse tasks. Soldering irons can vary in a shape of the tip, electrical capacity, heating
temperature and control options. However, the primary indicator is the convenience of
use. If the chosen soldering iron is too big, it will be difficult to solder small details. If it
is too small, details probably will not get enough of the heat, and the solder will not stick

4. IoT Hardware Overview

74

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/soldering_solder.png?id=en%3Abook

properly to them. For beginners, it is advisable to use a soldering iron with a conical tip.

Figure 95: A soldering iron with the conical tip.

In addition to the soldering iron, there are several useful tools for soldering.

▪ Solder wick – used for desoldering, removes the extra solder out of the board
or details, it absorbs the melted solder. The solder wick consists of multiple fine,
interlaced lead threads.

Figure 96: Solder wick.

▪ Solder vacuum – used for desoldering, removes the extra solder utilising a vacuum.

Figure 97: Solder vacuum.

▪ Third-hand – a holder of details or other parts. It is especially useful for beginners.

4.3. Arduino Overview

75

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/solder_hammer.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/copper_bride.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/solder_sucker.jpg

Figure 98: Third hand with the magnifying glass.

Process of Soldering

It is not easy to describe the process of soldering in words, because it is connected with
the kinesthetic skills of people and the paid attention. However, it is essential to follow
several pieces of advice for good soldering.

1. Be careful with the hot soldering iron!

2. The working place should always be clean; it is advisable not to take a meal at the
working place (because of the poisonous nature of the lead in the solder).

3. It is advisable to use the third hand when it is possible.

4. If possible, the temperature of the soldering iron should always be around 350 °C.

5. If there is smoke coming from the soldering iron, the temperature should be
decreased, or it should be turned off completely.

6. Before soldering, a special soldering iron cleaner (wet sponge or special paste for
cleaning the tip) should be used.

7. The side of the soldering iron tip should be used when soldering rather than the very
tip of it.

8. The good contact can be ensured when heating simultaneously both components
that are soldered.

9. When the detail has been soldered, first the solder wire should be taken off and only
then – the soldering iron.

10. Good soldering of the detail with the board looks like a tip of the volcano rather than
a ball or messy pile of solder.

In the Figure 99, the correct and incorrect soldering techniques are indicated.

4. IoT Hardware Overview

76

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/helping_hand.jpg

Figure 99: A visualization of the soldering technique [58].

4.3.14. Arduino Programming Fundamentals

The following sub-chapters cover programming fundamentals in Arduino(C) C/C++,
which complies with the most C/C++ notations and have some specific Arduino
notations. Those who feel comfortable in programming will find these chapter somewhat
introductory, while for these having no or little experience, it highly recommended
covering this introduction. This chapter and its sub-chapters also target ESP and
Raspberry Pi devices on the general level partially, however, in any case, programming
environment configuration is different for every platform even, if Arduino IDE constitutes
the joint part. Refer to the chapters on ESP and Raspberry Pi hardware platforms:

▪ “Setting Up the Programming Environment”;

▪ “The Syntax and the Structure of the Program”;

▪ “Data Types and Variables”;

▪ “Program Control Structures”;

▪ “Looping”;

▪ “Interrupts and Sub-Programs”;

▪ “Timing”;

▪ “Reading GPIOs, Outputting Data and Tracing”.

This manual refers to the particular version of the software
(here Arduino IDE and related toolkits) available at the
moment of writing of this book, thus accessing specific
features may change over time along with the evolution of
the platform. Please refer attached documentation (if any) and
browse Internet resources to find lates guidances on how to

4.3. Arduino Overview

77

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/soldering_tips.jpg?id=en%3Abook
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/setting_up_programming_environment
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/building_your_first_project
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/data_types_and_variable
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/program_control_structures
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/looping
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interrupts_and_sub-programs
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/timing
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interacting_with_hardware_devices_and_debugging_the_code

configure development platform, when in doubt.

Setting Up the Programming Environment

Before starting programming the microcontroller, it is necessary to connect it to the
computer.

Connection
Arduino Uno microcontroller is taken as a board for programming example tasks. It
can be connected to a computer, using Universal Serial Bus (USB) port, using the
appropriate USB cable. A microcontroller can be used together with a prototyping board
or a robot. In the simplest programming tasks, it can be used as an independent device.

Power
The microcontroller has to be powered via an external power supply or USB port. The
microcontroller determines the power source automatically. If external power supplies
other than USB are used, GND and VIN ports should be used to connect the power
supply. The manufacturer recommends the use of a voltage of 7–12 V to ensure a normal
operation of the microcontroller. If the voltage is exceeded, before reaching 20 V, then
the power supply circuits of the microcontroller may get overheated. If the supply voltage
is lower than 7 V, then the microcontroller may function unstable, and the result will be
unpredictable.

In addition to the above mentioned, the microcontroller can provide a small power supply
for external circuits by connecting them according to the microcontroller pins.

Table 11: The Power Pins of Arduino UNO

Pin Description

VIN The input of a power supply when a USB port is not used, i.e., an external power
supply is used

5V A regulated 5 V power supply, which can be provided via both USB and VIN

3.3V
A 3.3 V supply voltage for external circuits. The maximum current that this
output can provide is 50 mA. If it is exceeded, the power supply circuits of the
microcontroller may be permanently damaged

GND Ground or port 0

Inputs/Outputs
Each of the 14 digital inputs/outputs (I/O) of the microcontroller can be used to send or
receive signals using the pinMode(), digitalWrite() and digitalRead() commands, which
will be more detailed discussed in the chapter about the basics of programming. All I/O
operate in the range of 0 V to 5 V. Each of the I/O is capable of receiving or sending no
more than 40 mA of current. They all have internal load resistors in the range of 20–50
kΩ.

4. IoT Hardware Overview

78

Descriptions of other microcontroller pin and their specific use are explained below. In
addition to these I/O, the microcontroller also provides other specific functions that will
be described below.

Table 12: Specific I/O Pins of Arduino UNO

Pin Description

0(RX) and
1(TX)

Serial I/O for serial communication. RX is used for receiving data,
and TX for sending data to external devices. For data transmitting and
receiving, the voltage must not exceed 5 V

2 and 3
External interrupt pins that can be used to receive an external
interrupt in cases when the value is low, the value is changed, etc. For
this functionality the function attachInterrupt() is used

PWM: 3, 5, 6,
9, 10, 11

Pulse Width Modulation (PWM) pins are used to provide 8-bit PWM
signal that often can be used for motor control or other specific use
cases. For this functionality the analogWrite() function is used

SPI: 10(SS),
11(MOSI),
12(MISO),
13(SCK)

Pins that support Serial Peripheral Interface (SPI) communications.
For this feature, the SPI library is used

LED: 13 This pin is used to manage the built-in LED. LED can be turned on by
setting the value of pin HIGH and turned off by setting pin value LOW

A4(SDA) and
A5(SCL)

Two Wire Interface (TWI) pins, Serial Data Line (SDA) and Serial
Clock Line (SCL), are the alternative of the data exchange using serial
communication. For supporting TWI, the Wire library should be used

AREF It is the reference voltage for the analogue inputs. For this functionality
analogReference() is used

Reset Gives the opportunity to reset the microcontroller by setting this pin to
LOW

Installing the Programming Environment
To start the development of software for a microcontroller, it is necessary to install and
properly configure the development environment that consists of the program editor and
the Arduino UNO driver. Below are described all the steps that are needed to prepare the
programming environment for Windows 10 OS.

Step 1. Preparing Arduino UNO and the USB Cable

Before installing the programming environment, it is necessary to prepare the Arduino
UNO board and the USB cable for connecting the board to the computer.

4.3. Arduino Overview

79

Figure 100: The Arduino UNO board.

Figure 101: USB B cable for Arduino UNO.

Step 2. Downloading the Arduino Software Development Environment

The open-source Arduino Software (Integrated development environment (IDE)) can be
found in the official Arduino website [59]. The appropriate installation file depends on the
OS of the computer and the access rights of the user.

Figure 102: Downloading the installation file for Windows OS from Arduino original
website.

4. IoT Hardware Overview

80

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/arduino_uno_top_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/usb_b.jpg
https://home.roboticlab.eu/lib/exe/fetch.php?tok=07ea1e&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Farduinoide.png

For Windows OS, the Windows Installer should be clicked, and then the file should be
saved on the computer. When the installation file has downloaded, the file should be run.
If the ZIP file was downloaded, it is necessary to unarchive it and to run the installer.
Follow the instructions of the installer. If the operating system asks for permission to
install the driver of the board – allow it.

It is also possible to use Arduino Web Editor (can be found on the same website) to work
online with the Arduino board, but this option will not be considered in this manual.

Figure 103: Arduino Web Editor.

Step 3. Connecting to Arduino

Using USB cable, Arduino needs to be connected to a free USB port of a computer.
The blue LED on the Arduino board starts to shine continuously. Aforementioned is the
indicator that the Arduino board is working.

The green LED will blink, and that will indicate the performance of the manufacturer test
software. In case if the green LED is not flashing, it is not an error.

Step 4. Starting Up the Programming Environment

The Arduino programming environment can be started with the double-click on the
desktop shortcut of the Arduino software. The language of the environment will respond
to the one that is set up in the OS of the computer, that means if it is English, then the
menu of the programming environment will also be in the English language. To change
the language preferences, it is necessary to follow the instructions in the following
webpage [60].

Step 5. Open the Example Program

In the Arduino IDE open File → Examples → 01.Basics → Blink as shown in the image
below.

4.3. Arduino Overview

81

https://home.roboticlab.eu/lib/exe/fetch.php?tok=1b356a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Farduinowebeditor.png

Figure 104: The path to open Blink example in the Arduino IDE.

This will open in the new window an example program for turning on and off green LED
that is situated on the Arduino UNO board with the 1 second delay.

Figure 105: The example Blink program.

4. IoT Hardware Overview

82

https://home.roboticlab.eu/lib/exe/fetch.php?tok=c2f385&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fexample.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=79bed6&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fblinkexample.png

Step 6. Choosing the Microcontroller

In this step it is necessary to choose the type of board that is used. In this example the
Arduino UNO board is used that is why in the menu of Arduino IDE choose Tools → Board
→ Arduino/Genuino Uno as shown in the image below.

Figure 106: The path to choose the type of board.

Step 7. Setting Up COM Port

To ensure transmitting and receiving data to/from the microcontroller, it is necessary to
set the serial communication port – COM port. All ports are numbered in order, and for
Arduino microcontroller, it is usually higher than COM3, i.e. COM4, COM5, etc. In the
image below, it is COM4.

4.3. Arduino Overview

83

https://home.roboticlab.eu/lib/exe/fetch.php?tok=2caee4&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fchooseboard.png

Figure 107: The path to choose the port for Arduino connection.

Step 8. Uploading the Example Program to the Board

Now the program can be uploaded to the Arduino board using the Upload button in the
top left corner of the software, then wait for a few seconds, during which you can see
the data sending indicators – LEDs are blinking fast (indicates sending or receiving data)
– and wait for the message to be “Upload is complete”.

Figure 108: Uploading program to the board.

After a few seconds, the green LED will blink with a one-second interval like it is written

4. IoT Hardware Overview

84

https://home.roboticlab.eu/lib/exe/fetch.php?tok=c094e5&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fchooseport.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=5ecf38&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fupload.png

in the source code. If this can be observed successfully, then everything is done to start
learning the basics of programming.

In case if the blinking green LED cannot be observed, instructions for troubleshooting
can be read in the following link [61].

If you want to get acquainted yourself with microcontroller capabilities or programming
basics independently, look at one of these sources of information:

▪ examples for the accomplishing tasks of different level of difficulty [62];

▪ reference for the programming language used [63].

Check Yourself

1. What power supply Arduino UNO microcontroller requires?

2. How to operate with inputs/outputs of the microcontroller?

3. Try different examples in the menu of Arduino IDE.

The Syntax and the Structure of the Program

Syntax
Arduino IDE is a software that allows writing Arduino code. Each file with Arduino code is
called a sketch. The Arduino programming language is similar to the C++ language. For
the Arduino IDE to compile the written code without errors, it is important to follow the
pre-defined syntax.

Define

#define is a component that allows giving a name to a constant value at the very
beginning of the program.

#define constant 4

In this example, the value four is assigned to the constant.

Note that at the end of this expression semicolon (;) is not necessary and between the
name and the value, the sign of equality (=) should not be added!

Include

#include is a component that allows to include libraries from the outside of the program.
Just like the #define, #include is not terminated with the semicolon at the end of the
line!

#include <Servo.h>

In this example, the library called Servo.h that manages servomotors has been added to
the sketch.

Comments

4.3. Arduino Overview

85

There are two ways to write comments in the sketch so that the written text is not
compiled as a part of the running code.

//Single line comment is written here

The double backslash is used when the only single line should be commented on.

/*Multi-line comments are written here
Second line of the comment
...
*/

In this way, the backslash followed by asterisk defines the beginning of the block
comment, and the asterisk followed by backslash defines the end of the block comment.

Semicolon

The semicolon (;) is used at the end of each statement of the code.

int pin = 5;

In this example, a single statement is int pin = 5 and the semicolon at the end tells the
compiler that this is the end of the statement and it can continue with the next one.

Curly Braces

Curly braces are used to enclose a further block of instructions. Curly braces usually
follow different functions that will be viewed in the further sections.

Each opening curly brace should always be by a closing curly brace. Otherwise, the
compiler will show an error.

void function(datatype argument){
statements(s)

}

Use of curly braces in the own defined function.

Structure of the Program
Below is given an example, how a new empty sketch looks like.

4. IoT Hardware Overview

86

Figure 109: The empty sketch in the Arduino IDE.

Each Arduino sketch contains multiple parts.

1. Global definition section – the section where variables and constants are defined that
the working range is in the whole sketch that means both in the initialisation and the
loop sections. This section is at the very beginning of the sketch, before the setup
function.

2. Initialisation section – is executed only once before running the basic program. In
this part usually, all variables, I/O of the board pins, constants, are defined, etc. The
most essential is to define all inputs and outputs that will be used in the program
that defines how each pin will be used.

The construction of the setup function:
void setup() //The result data type and the name of the function
{ //Beginning of the initialization function

//The body of the function - contains all executable statements
} //The end of the initialization function

As it was already mentioned, this function will execute only once. The function is
described by the result data type (number, symbol array or something else). In this
example, the keyword setup means that the setup function does not have the result
that means it is executed only once, and that is all. The name necessarily should be
setup, so that the built-in subsystem of the board program execution could differ the
initialisation section from the rest of the code.

3. Loop section – the part that is executed continuously, it reads inputs, processes
data and gives output signals. After running the last statement of the function, the
program continues again with the first statement of the same loop function. This
is the main part of the program execution that encloses all the steps of program
execution, including the logic.

4.3. Arduino Overview

87

https://home.roboticlab.eu/lib/exe/fetch.php?tok=7c1889&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fstructure.png

The construction of the loop function is the following:
void loop() //The result data type and the name of the function
{ //Beginning of the loop function

//Logic //The body of the function - contains all executable statements
} //The end of the loop function

The result data type of this function is the same as previous – void – that shows that the
function does not have the result, it will be executed in the loop continuously while the
program is working.

Blink LED
The code of the Blink LED program code will be viewed now. The example can be opened
by following the path in Arduino IDE: File → Examples → 01.Basics → Blink.

Figure 110: The path to open the Blink LED example program.

When the Blink LED example program is opened, the following sketch should open in the
programming environment:

4. IoT Hardware Overview

88

https://home.roboticlab.eu/lib/exe/fetch.php?tok=c2f385&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fexample.png

Figure 111: The Blink LED example program.

The code of the example program is the following:

//The setup function runs once when you press reset or power the board
void setup() {

//Initialize digital pin LED_BUILTIN as an output.
//LED_BUILTIN stands for the built-in LED on the board.
pinMode(LED_BUILTIN, OUTPUT);

}

//The loop function runs over and over again forever
void loop() {

digitalWrite(LED_BUILTIN, HIGH); //Turn the LED on (HIGH is the voltage level)
delay(1000); //Wait for a second
digitalWrite(LED_BUILTIN, LOW); //Turn the LED off by making the voltage LOW
delay(1000); //Wait for a second

}

In the source code of the program, the following things can be seen.

1. It defined that the LED_BUILTIN is set to be the output of the program. In this
example sketch, the output periodically sends the specific signal that is in the level
of the logical 1 (+5 V) and 0 (0 V). Sending the output signal to the built-in LED: the

4.3. Arduino Overview

89

https://home.roboticlab.eu/lib/exe/fetch.php?tok=79bed6&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Fblinkexample.png

LED is periodically turned on and off.

2. Continuous executable function loop() is created that allocates 1 second (1000 ms)
of time to each level of signal. It is done by pausing the execution of the program.
While the program is not changing the states of the inputs/outputs, they remain
unchanged. In this way, when the +5 V signal is sent to the LED output, and the
program execution is paused, the LED will continue to shine until the level of the
output will be set to 0 V.

3. The last row indicates that the program will be paused for a 1 second also when the
output level is set to be 0 V. In this way, the period of LED on and off are equal. After
executing this program, the program returns to the first line of the loop() function,
and the execution starts from the beginning.

Hello World
Hello World program is the simplest program because it simply outputs the text to the
screen. Here is the Hello World program for Arduino that outputs the text on the Serial
Monitor each second:

void setup() {
Serial.begin(9600); //Establishes the connection with the serial port

}

void loop() {
Serial.println("Hello World"); //Prints out the line with the text
delay(1000); //Pause for 1 second

}

Serial Monitor can be found following the path: Tools → Serial Monitor.

In the code can be seen that the setup() function contains the following command:

Serial.begin(9600);

This statement opens the serial port at the initialisation of the program so that the Serial
Monitor can be used for outputting text or values on the screen.

For printing out text the following command is used:

Serial.println("Hello World");

Check Yourself

1. How to attach any library to a sketch?

2. What command are expressions not usually separated by the semicolon?

3. How to establish serial communication between devices?

4. How does delay() command works?

▪ Stops LED blinking specified number of milliseconds.

▪ Stops program execution for a specified number of seconds.

4. IoT Hardware Overview

90

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

▪ Stops program execution for a specified number of milliseconds.

Data Types and Variables

Data Types
Each variable has its data type that determines its place in the memory of the
microcontroller and also the way how it can be used. There are plenty of different data
types. Further will be viewed the most used ones.

▪ byte – numeric type of 8 bits that stores numbers from 0 to 255.

byte exampleVariable = 123;

▪ int – the whole number of 16 bits that can contain values from –32 767 to 32 768.

int exampleVariable = 12300;

▪ float – a data type for real numbers that uses 32 bits and store numbers
approximately from –3.4 × 10^38 to 3.4 × 10^38.

float exampleVariable = 12300.546;

▪ array – a set of the same data type that can be accessed using serial number or
index. The index of the first element is always 0. The values of an array can be
initialised at the definition of to do it during the execution of the program. In the
following example the array with the name “first array” and data type int has been
created. The value of the array with the index 0 will be 12, and the value with the
index 3 is 15.

int firstArray[] = {12,-3,8,15};

Square brackets of the array can be used to access some value in the array by index.
In the following example, the element with index 1 (that is –3) is assigned to the
secondVariable variable.

int secondVariable = firstArray[1];

An array can be easily processed in the cycle. The next example shows how to store the
necessary values automatically from the analogue signal input to the previously defined
array.

//The cycle that repeats 4 times
for(int i = 0; i < 4; i = i + 1){

//Reads value from the pin 2 and stores it in the //exampleArray//.
exampleArray[i] = analogRead(2);

}

This cycle in the example starts with index 0 (i = 0), and it increases by 1 while it is
smaller than 4 (not including). That means in the last cycle the index value will be 3,
because when the i equals 4, the inequality i < 4 is not true, and the cycle stops working.

▪ bool – the variables of this data type can take values TRUE or FALSE. Arduino

4.3. Arduino Overview

91

environment allows following values to these variables: TRUE, FALSE, HIGH (logical
1 (+5 V)) and LOW (logical 0 (0 V)).

Data Type Conversion
Data type conversion can be done using multiple techniques – casting or data type
conversion using specific functions.

▪ Casting – cast operator translates one data type into another straightforward. The
desired type of variable should be written in the brackets before the variable data
type of which needs to be changed. In the following example, where the variable type
is changed from float to int, the value is not rounded but truncated. Casting can be
done to any variable type.

int i;
float f=4.7;

i = (int) f; //Now i is 4

▪ Converting – byte(), char(), int(), long(), word(), float() functions are used to
convert any type of variable to the specified data type.

int i = int(123.45); //The result will be 123

▪ Converting String to float – function toFLoat() converts String type of variable to
the float. In the following example is shown the use of this function. In case if the
value cannot be converted, because the String doesn't start with a digit, the returned
value will be 0.

String string = "123fkm";
float f = string.toFLoat(); //The result will be 123.00

▪ Converting String to Int – function toInt() converts String type of variable to the
Int. In the following example is shown the use of this function.

String string = "123fkm";
int i = string.toInt(); //The result will be 123

Arithmetic Operators
Arithmetic operations on Arduino are used to do mathematical calculations with the
numbers or numerical variables. The arithmetic operators are the following.

▪ Addition (+) – one of the four primary arithmetic operations that are used to add
numbers. Addition operator can be used to add only numbers, only numeric variables
or the mix of both. The following example shows the use of the addition operator.

int result = 1 + 2; //The result of the addition operation will be 3

▪ Subtraction (-) – the operation that subtracts one number from another where
result is the difference between these numbers.

int result = 3 - 2; //The result of the subtraction operation will be 1

4. IoT Hardware Overview

92

▪ Multiplication (*) – the operation that multiplies numbers and gives the result.

int result = 2 * 3; //The result of the multiplication operation will be 6

▪ Division (/) – the operation that divides one number by another. If the result
variable has the integer type, the result will always be the whole part of the
division result without the fraction behind it. If the precise division is necessary, it is
important to use float type of variable for this purpose.

//The result of the division operation will be 3
//(Only the whole part of the division result)
int result = 7 / 2;
//The result of the division operation will be 3.5
float result2 = 7.0 / 2.0;

▪ Modulo (%) – the operation that finds the remainder of the division of two numbers.

//The result of the modulo operation will be 1,
//Because if 7 is divided by 3, the remaining is 1
int result = 7 % 3;

▪ Assignment operator (=) – the operator that assigns the value on the right to the
variable that is on the left of the assignment operator. The work of an assignment
operator can be seen in any of the previously viewed operation examples.

Compound Operators
Compound operators in Arduino are a short way of writing down the arithmetic
operations with variables. All of these operations are done on integer variables. These
operands are often used in the loops when it is necessary to manipulate with the same
variable in each iteration of the cycle. The compound operators are the following.

▪ Increment (++) – increases the value of integer variable by one.

int a = 5;
a++; //The operation a = a + 1; the result will be 6

▪ Decrement (- -) – decreases the value of integer variable by one.

int a = 5;
a--; //The operation a = a – 1; the result will be 4

▪ Compound addition (+=) – adds the right operand to the left operand and assigns
the result to the left operand.

int a = 5;
a+=2; //The operation a = a + 2; the result will be 7

▪ Compound subtraction (-=) – subtracts the right operand from the left operand
and assigns the result to the left operand.

int a = 5;
a-+3; //The operation a = a – 3; the result will be 2

4.3. Arduino Overview

93

▪ Compound multiplication (*=) – multiplies the left operand by the right operand
and assigns the result to the left operand.

int a = 5;
a*=3; //The operation a = a × 3; the result will be 15

▪ Compound division (/=) – divides the left operand with the right operand and
assigns the result to the left operand.

int a = 6;
a/=3; //The operation a = a / 3; the result will be 2

▪ Compound modulo (%=) – takes modulus using two operands and assigns the
result to the left operand.

int a = 5;
//The result will be the remaining
//Part of the operation a/2; it results in 1
a%=2;

▪ Compound bitwise OR (|=) – bitwise OR operator that assigns the value to the
operand on the left.

int a = 5;
a|=2; //The operation a=a|2; the result will be 7

▪ Compound bitwise AND (&=) – bitwise AND operator that assigns the value to the
operand on the left.

int a = 6;
a&=; //The operation a=a&2; the result will be 2

Check Yourself

1. What is the data type used for a variable range 0…255?

2. What should data type be used for more precise measurements?

3. Make data type conversion char to string.

4. What is the main advantage of using compound operators?

Program Control Structures

Control Structure
if is a statement that checks the condition and executes the following statements if the
condition is TRUE. There are multiple ways how to write down the if statement:

//1st example
if (condition) statement;

//2nd example
if (condition)

4. IoT Hardware Overview

94

statement;

//3rd example
if (condition) { statement; }

//4th example
if (condition)
{

statement;
}

When both TRUE and FALSE cases of the condition should be viewed, the else part
should is added to the if statement in the following ways:

if (condition) {
statement1; //Executes when the condition is true

}
else {

statement2; //Executes when the condition is false
}

If more conditions should be viewed, the else if part is added to the if statement:

if (condition1) {
statement1; //Executes when the condition1 is true

}
else if (condition2) {

statement2; //Executes when the condition2 is true
}
else {

statement3; //Executes in all of the rest cases
}

The example when the x variable is compared and in the cases when it is higher than 10,
the digitalWrite() method executes.

if (x>10)
{

//Statement is executed if the x > 10 expression is true
digitalWrite(LEDpin, HIGH)

}

Logical Operators
Logical operators are widely used together with the condition operator if that is described
below.

Comparison Operators

There are multiple comparison operators used for comparing variables and values. All of
these operators compare the value of the variable on the left to the value of the variable
on the right. Comparison operators are the following:

▪ == (equal to) – if they are equal, the result is TRUE, otherwise FALSE;

4.3. Arduino Overview

95

▪ != (not equal to) – if they are not equal, the result is TRUE, otherwise FALSE;

▪ < (less than) – if the value of the variable on the left is less than the value of the
variable on the right, the result is TRUE, otherwise FALSE;

▪ < = (less than or equal to) – if the value of the variable on the left is less than or
equal to the value of the variable on the right, the result is TRUE, otherwise FALSE;

▪ > (greater than) – if the value of the variable on the left is greater than the value of
the variable on the right, the result is TRUE, otherwise FALSE;

▪ > = (greater than or equal to) – if the value of the variable on the left is greater
than or equal to the value of the variable on the right, the result is TRUE, otherwise
FALSE.

Examples:

if (x==y){ //Equal
//Statement

}

if (x!=y){ //Not equal
//Statement

}

if (x<y){ //Less than
//Statement

}

if (x<=y){ //Less than or equal
//statement

}

if (x>y){ //Greater than
//Statement

}

if (x>=y){ //Greater than or equal
//Statement

}

Boolean Operators

Three Boolean logical operators in the Arduino environment are the following:

▪ ! (logical NOT) – reverses the logical state of the operand. If a condition is TRUE the
logical NOT operator will turn it to FALSE and the other way around;

▪ && (logical AND) – the result is TRUE when both operands on the left and on the right
of the operator are TRUE. If even one of them is FALSE the result is FALSE;

▪ || (logical OR) – the result is TRUE when at least one of the operands on the left and
on the right of the operator is TRUE. If both of them are FALSE the result is FALSE.

Examples:

//Logical NOT
if (!a) { //The statement inside if will execute when the a is FALSE

b = !a; //The reverse logical value of a is assigned to the variable b

4. IoT Hardware Overview

96

}

//Logical AND
//The statement inside if will execute when the
//Values both of the a and b are TRUE
if (a && b){

//Statement
}

//Logical OR
//The statement inside if will execute when at least one of the
//a and b values is TRUE
if (a || b){

//Statement
}

Switch Case Statement
Switch statement similar like if statement controls the flow of program. The code inside
switch is executed in various conditions. A switch statement compares the values of a
variable to the specified values in the case statements. Allowed data types of the variable
are int and char. The break keyword exits the switch statement.

Examples:

switch (x) {
case 0: //Executes when the value of x is 0
// statements
break; //Goes out of the switch statement

case 1: //Executes when the value of x is 1
// statements
break; //Goes out of the switch statement

default: //Executes when none of the cases above is true
// statements
break; //Goes out of the switch statement

}

Check Yourself

1. Which code part is the correct one?

▪ if(value == 1) digitalWrite(13, HIGH)

▪ if (value == 1); digitalWrite(13, HIGH)

▪ if (value == 1) DigitalRead(13,1)

2. What is the output of the next code part?

int x = 0;

switch(x)
{

4.3. Arduino Overview

97

case 1: cout << "One";

case 0: cout << "Two";

case 2: cout << "Hello, world!";

}

3. In which cases switch structure should be used?

Looping

for
for is a cycle operator that allows specifying the number of times when the same
statements will be executed. In this way, similar to the loop function it allows to control
the program execution. Each time when all statements in the body of the cycle are
executed is called the iteration. In this way, the cycle is one of the basic programming
techniques that is used for all programs and automation in general.

The construction of a for cycle is the following:

for (initialization ; condition ; operation with the cycle variable) {
//The body of the cycle

}

Three parts of the for construction is the following:

▪ initialisation section usually initialises the value of the variable that will be used to
iterate the cycle; this value can be 0 or any other value;

▪ condition allows managing the number of cycle iterations; the statements in the
body of the cycle are executed when the condition is TRUE;

▪ operations with the cycle variable allows defining the number of cycle iterations.

The example of the for cycle:

for (int i = 0; i < 4; i = i + 1)
{

digitalWrite(13, HIGH);
delay(1000);
digitalWrite(13, LOW);
delay(1000);

}

On the initialization of the for cycle the variable i = 0 is defined. The condition states
that the for cycle will be executed while the value of variable i will be less than 4 (i < 4).
In the operation with the cycle variable it is increased by 1 each time when the cycle is
repeated.

In this example above, the LED that is connected to the pin 13 of the Arduino board will
turn on/off four times.

4. IoT Hardware Overview

98

http://www.opengroup.org/onlinepubs/009695399/functions/cout.html
http://www.opengroup.org/onlinepubs/009695399/functions/cout.html
http://www.opengroup.org/onlinepubs/009695399/functions/cout.html

while
while cycle operator is similar to the for cycle operator that is described above, but it
does not contain the cycle variable. Because of this, the while cycle allows to executed
previously unknown number of iterations. The management of the cycle is realised using
only condition that needs to be TRUE for the next operation to execute.

The construction of the while cycle is the following:

while (condition that is TRUE)
{

//The body of the cycle
}

That way the while cycle can be used as a good instrument for the execution of a
previously unpredictable program. For example, if it is necessary to wait until the signal
from pin 2 reaches the defined voltage level – 100, the following code can be used:

int inputVariable = analogRead(2);
while (inputVariable < 100)
{

digitalWrite(13, HIGH);
delay(10);
digitalWrite(13, LOW);
delay(10);
inputVariable = analogRead(2);

}

In the cycle, the LED that is connected to the pin 13 of the Arduino board will be turned
on/off while the signal will reach the specified level.

do...while
The do…while cycle works the same way like the while loop. The difference is that in
the while cycle the condition is checked before entering the loop, but in the do…while
cycle the condition is checked after execution of the statements in the loop and then if
the condition is TRUE the loop repeats. As a result, the statements inside the cycle will
execute at least once, even if the test condition is FALSE.

The construction of a do while cycle is the following:

do {
//The body of the cycle

} while (condition that is TRUE);

If the same code is taken from the while loop example and used in the do…while cycle,
the difference is that the code will execute at least once, even if the inputVariable value
is more than or equal to 100. The example code:

int inputVariable = analogRead(2);
do {

digitalWrite(13, HIGH);
delay(10);

4.3. Arduino Overview

99

digitalWrite(13, LOW);
delay(10);
inputVariable = analogRead(2);

} while (inputVariable < 100);

Check Yourself

1. What is a kind of the loop, where the condition is checked after the loop body is
executed?

2. How long will the operators in the body of the loop operate [while (x < 100)]?

3. What value will be for variable a after code executing?

int a; for(a = 0; a < 10; a++) {}

4. Which of the following operators are not loop(s) in Arduino IDE?

▪ do…while,

▪ while,

▪ repeat until,

▪ for.

Interrupts and Sub-Programs

Functions
Functions are the set of statements that are executed always when the function is called.
Two functions that were mentioned before are already known – setup() and loop(). The
programmer is usually trying to make several functions that contain all the statements
and then to call them in the setup() or loop() functions.

The structure of the function is following:

type functionName(arguments) //A return type, name and arguments of the function
{

//The body of a function – statements to execute
}

For the example, a function that periodically turns on and off the LED is created:

void exampleFunction()
{

digitalWrite(13, HIGH); //the LED is ON
delay(1000);
digitalWrite(13, LOW); //the LED is OFF
delay(1000);

}

In the example code can be seen that the return type of aexampleFunction function is
void that means the function does not have the return type. This function also does not
have any arguments because the brackets are empty.

4. IoT Hardware Overview

100

This function should be called inside the loop() function in the following way:

void loop()
{

exampleFunction(); //the call of the defined function inside loop()
}

The whole code in the Arduino environment looks like this:

void loop()
{

exampleFunction(); //the call of the defined function inside loop()
}

void exampleFunction()
{

digitalWrite(13, HIGH); //the LED is ON
delay(1000);
digitalWrite(13, LOW); //the LED is OFF
delay(1000);

}

It can be seen that the function is defined outside the loop() or setup() functions.

When some specific result must be returned as a result of a function, then the function
return type should be indicated, for example:

//the return type is "int"; arguments are still optional
int sumOfTwoNumbers(int x, int y)
{

//the value next to the "return" should have the "int" type;
//this is what will be returned as a result.
return (x+y);

}

In the loop() this function would be called in a following way:

void loop()
{

//the call of the defined function inside loop()
int result = sumOfTwoNumbers(2, 3);

}

Interrupts
Interrupt is a signal that stops the normal execution of a program in the processor, to be
able to handle tasks with higher priority. These tasks usually are called Interrupt service
routine (IRS) or interrupt handler. Interrupt signals can be generated from the external
source, like a change of value on the pin and from the internal source, like a timer. When
the interrupt signal is received, the processor stops executing the code and starts the
IRS. After completing the IRS, the processor returns to the normal program execution
state.

IRS should be as short as possible, and the return type of it is void. Some of normal

4.3. Arduino Overview

101

Arduino functions do not work or behave differently in the IRS, for example, delay()
function does not work in the IRS. Variables, used in the IRS must be volatile variables.

Interrupts are used to detect important real-time events, which occur during the normal
code execution of the code, without continuously checking them, like pushing a button.

Different Arduino types have different external interrupt pin availability. In most Arduino
boards pins, number 2 and 3 are used for interrupts.

To attach interrupt, the function attachInterrupt(digitalPinToInterrupt(pin), ISR, mode)
is called. This function has 3 parameters.

1. pin – the number of a pin number where the interrupt signal generating device will
be attached.

2. ISR – the name of a function of interrupt service routine.

3. mode – defines when interrupt signal is triggered. There are four basic mode values:

▪ LOW – interrupt is triggered when the pin value is LOW,

▪ HIGH – interrupt is triggered when the pin value is HIGH,

▪ CHANGE – interrupt is triggered when the pin value is changed,

▪ RISING – interrupt is triggered when the pin value is changed from LOW to HIGH.

The example program that uses interrupt:

volatile bool button =0; //A variable to save button state

void setup() {
//Define LED pin
pinMode(13,OUTPUT);
//Define button pin
pinMode(2,INPUT_PULLUP);
//Attach interrupt to button pin
attachInterrupt(digitalPinToInterrupt(2),ButtonIRS,FALLING);

}

void ButtonIRS() { //IRS function
button =!button;

}

void loop() {
digitalWrite (13,button);

}

Check Yourself

1. What are the built-in functions used for?

▪ To reduce the size of the program.

▪ To delete unnecessary functions.

▪ To simplify the source file.

▪ To increase the speed of the program.

2. Which of the following statements are true?

4. IoT Hardware Overview

102

▪ Built-in functions must return a value.

▪ Built-in functions cannot return values.

▪ The compiler can ignore the declaration of the built-in function.

▪ Built-in functions cannot contain more than 10 lines of code.

3. Is it possible to guarantee that the declared built-in function is really built-in?

▪ Guarantee is not possible, in each case it is different.

▪ Can be confidently ensured that the function you have declared as built-in is really
built-in.

Timing

Delay
The simplest solution to make functions work for a certain time is to use delay() [64]
function. delay() function stops program execution for instructed time.

Blinking LED is a simple demonstration of delay functionality:

digitalWrite(LED_BUILTIN, HIGH); //Turn the LED on
delay(1000); //Stop program for a second
digitalWrite(LED_BUILTIN, LOW); //Turn the LED off
delay(1000); //Stop program for a second

Limitations that come with using delay(): most tasks stop, there can be no sensor
reading, calculation, pin manipulation. Some tasks continue to work, like receiving serial
transmissions and outputting set PWM values. Alternative of using delay is to use millis().

Millis
millis() [65] returns number in milliseconds since Arduino began running current
program. The number will reset after approximately 50 days. can be used to replace .

Here is an example code of blinking LED using millis(). Millis is used as a timer. Every
new cycle time is calculated since the last LED state change if passed time is equal to or
greater than the threshold value LED is switched:

//Unsigned long should be used to store time values
//Store value of current millis reading
unsigned long currentTime = 0;
//Store value of time when last time the LED state was switched
unsigned long previousTime = 0;

bool ledState = LOW; //Varible for setting LED state

const int stateChangeTime = 1000; //Time at which switch LED states

void setup() {
pinMode (LED_BUILTIN, OUTPUT); //LED setup

}

void loop() {

4.3. Arduino Overview

103

currentTime = millis(); //Read and store current time

//Calculate passed time since last stateChange
//If more time has passed than stateChangeTime, start state Change
if (currentTime - previousTime >= stateChangeTime) {

previousTime = currentTime; //Store LED state change time
ledState = !ledState; //Change LED state to oposite
digitalWrite(LED_BUILTIN, ledState); //Write LED state to LED

}
}

Protothread
Protothread is a mechanism for concurrent programming in embedded systems with
limited resources. In Arduino, it can be used to achieve a periodical function call, like
sensor reading, output state change, calculations etc. Most Arduino used microcontrollers
have only one core; it can’t execute multiple functions simultaneously. By using millis()
and loop, we can schedule a function call if appropriate conditions are met, thus avoiding
unnecessary taking processors time.

In the example, code second LED is added, to demonstrate how to blink two LED’s
concurrent with different frequencies. In the same manner, servo control, button reading
and other functionality can be added.

//Unsigned long should be used to store time values
//Store value of current millis reading
unsigned long currentTime = 0;
//Store value of time when last time LED1 state was switched
unsigned long previousTime1 = 0;
//Store value of time when last time LED2 state was switched
unsigned long previousTime2 = 0;

bool led1State = LOW; //Varible for setting LED1 state
bool led2State = LOW; //Varible for setting LED2 state

const int stateChangeTimeLed1 = 1000; //Time at which switch LED1 states
const int stateChangeTimeLed2 = 200; //Time at which switch LED2 states

void setup() {
pinMode (LED_BUILTIN, OUTPUT); //LED1 setup
pinMode (2,OUTPUT); //LED2 setup

}

void loop() {
currentTime = millis(); //Read and store current time

//Calculate passed time since the last stateChange
//If more time has passed than stateChangeTime, start state change

if (currentTime - previousTime1 >= stateChangeTimeLed1) {
previousTime1 = currentTime; //Store LED state change time
led1State = !led1State; //Change LED1 state to oposite
digitalWrite(LED_BUILTIN, led1State); //Write led1State to LED1

}
if (currentTime - previousTime2 >= stateChangeTimeLed2) {

4. IoT Hardware Overview

104

previousTime2 = currentTime; //Store LED2 state change time
led2State = !led2State; //Change led2state to oposite
digitalWrite(2, led2State); //Write led2state to LED2

}
}

There are dedicated libraries made by the Arduino community to implement protothreads
[66].

Check Yourself

1. What are the drawbacks of using delay()?

▪ Program execution stops.

▪ Can’t read sensors during delay().

▪ Simple code.

2. What is the difference between delay() and millis()?

3. Can Arduino run truly parallel programs?

4. How is concurrency achieved on Arduino?

Reading GPIOs, Outputting Data and Tracing

Digital I/O
The digital inputs and output of Arduino allow connecting different type of sensors and
actuators to the board. Digital signals can take two values – HIGH(1) or LOW(0). These
types of inputs and outputs are used in applications when the signal can have only two
states.

pinMode()

The function pinMode() is essential to indicate whether the specified pin will behave like
an input or an output. This function does not return any value. Usually, the mode of a
pin is set in the setup() function of a program – only once on initialisation.

The syntax of a function is the following:

pinMode(pin, mode)

The parameter pin is the number of the pin.

The parameter mode can have three different values – INPUT, OUTPUT, INPUT_PULLUP
depending on whether the pin will be used as an input or an output. The INPUT_PULLUP
mode means that the pin will work as an input whose state will be inverted (set to the
opposite). More about Pullup Resistors can be found in the Arduino homepage [67].

digitalWrite()

The function digitalWrite() writes a HIGH or LOW value to the pin. This function is used
for digital pins, for example, to turn on/off LED. This function as well does not return any

4.3. Arduino Overview

105

value.

The syntax of a function is the following:

digitalWrite(pin, value)

The parameter pin is the number of the pin. The parameter value can take values HIGH
or LOW. If the mode of the pin is set to the OUTPUT, the HIGH sets voltage to +5 V and
LOW – to 0 V.

It is also possible to use this function for pins that are set to have the INPUT mode. In
this case, HIGH or LOW values enable or disable the internal pull-up resistor.

digitalRead()

The function digitalRead() works in the opposite direction than the function digitalWrite().
It reads the value of the pin that can be either HIGH or LOW and returns it.

The syntax of a function is the following:

digitalRead(pin)

The parameter pin is the number of the pin.

On the opposite as the functions viewed before, this one has the return type, and it can
take a value of HIGH or LOW.

Analog I/O
The analogue inputs and outputs are used when the signal can take a range of values,
unlike the digital signal that takes only two values (HIGH or LOW). For measuring the
analogue signal, Arduino has built-in analogue-to-digital converter (ADC) that returns
the digital value of the voltage level.

analogWrite()

The function analogWrite() is used to write an analog value (Pulse Width Modulation
(PWM)) of the integer type as an output of the pin. The example of use is turning on/off
the LED in various brightness levels or setting different speeds of the motors. The value
that is written to the pin stays unchanged until the next value is written to the pin.

The syntax of a function is the following:

analogWrite(pin, value)

The parameter pin is the number of the pin.

The parameter value is the

This function does not have the return type.

analogRead()

4. IoT Hardware Overview

106

The function analogRead() is used for analogue pins (A0, A1, A2, etc.) and it reads the
value that is on the analogue pin.

The syntax of a function is the following:

analogRead(pin)

The parameter pin is the number of the pin whose value is read.

The return type of the function is the integer value between 0 and 1023. The reading of
each analogue input takes around 100 ms that is 0.0001 s.

Check Yourself

1. To assign the Arduino pin operation mode, which function is using?

▪ Function digitalWrite().

▪ Function pinMode().

▪ Directive #define.

2. What command for analogue input read is used?

3. The digital output on Arduino works as a power source with voltage?

▪ 5 V.

▪ 12 V.

▪ 3.3 V.

4.4. Espressif SoC Overview
Arduino, along with a vast amount of peripheral boards, lacks integration of the
networking capabilities in one SoC. Espressif ESP series was the natural answer for
this disadvantage as their ESP 8266 with integrated WiFi, introduced in 2014, is widely
recognised as a turning point for the IoT market, delivering de-facto fully functional IoT
chip, providing high performance and low power to the end users and developers. ESP 32
launched in 2016 brought even more disrupting effect to the IoT ecosystems, introducing
additional Bluetooth interface to the above. By the January 2018 company announced
they delivered to the market 100 000 000 [68], thus constituting a de-facto standard for
the IoT market devices.

Following chapters provide an overview of the networking programming with the use of
ESP SoCs.

Please note, interfacing with sensors and actuators has been
already covered in the chapter related to Arduino: “ 4.3.
Arduino Overview”.

4.4. Espressif SoC Overview

107

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie

The major difference is that ESP SoCs (both 8266 and 32)
use 3.3 V logic, while most (but not all!) Arduinos use 5 V
logic. This can be easily handled using one or bi-directional
voltage converters/adapters. Additionally, many ESP boards
and development kits offer double power source, including
5 V, even if the device itself still operates on 3.3 V. Yet
programming principals used to be the same while using
digital protocols and GPIOs.

▪ “4.4.1. Espressif SoC”.

▪ “4.4.2. Espressif SoC Networking”.

▪ “4.4.3. ESP Programming Fundamentals”.

4.4.1. Espressif SoC

Espressif System-on-chip (SoC) devices are low-cost microcontrollers with full TCP/IP
stack capability produced by Shanghai-based Chinese manufacturer, Espressif Systems
[69]. The two most popular series of these microcontrollers are:

▪ ESP8266,

▪ ESP32.

ESP 8266 General Information

The ESP8266 is a low-cost system on chip (SoC) microcontroller with WiFi and full TCP/
IP stack capability [70]. The chip first came to the market with the ESP-01 module, made
by a third-party manufacturer, Ai-Thinker. This small module allows microcontrollers to
connect to a WiFi network and make simple TCP/IP connections using Hayes-style AT
commands. The low price and the fact that there were very few external components
on the module, which suggested that it could eventually be very inexpensive in volume,
attracted many users to explore it. The ESP8285 is an ESP8266 with 1 MiB of built-
in flash, allowing for single-chip devices capable of connecting to WiFi. The successor
to these microcontroller chips is the ESP32. For now, the ESP8366 family includes the
following chip:

▪ ESP8266EX (Figure 112).

4. IoT Hardware Overview

108

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/overview_of_the_hardware_device
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/networking
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/programming_fundamentals

Figure 112: ESP8266EX chip.

Esp8266 Architecture Overview
Main standard features of the ESP8266EX are:

Processor

▪ Main processor: L106 32-bit RISC microprocessor core based on the Tensilica
Xtensa Diamond Standard 106Micro running at 80 MHz. Both the CPU and flash clock
speeds can be doubled by overclocking on some devices. CPU can be run at 160 MHz,
and flash can be sped up from 40 MHz to 80 MHz. Success varies chip to chip.

Memory

▪ 32 KiB instruction RAM.

▪ 32 KiB instruction cache RAM.

▪ 80 KiB user data RAM.

▪ 16 KiB ETS system data RAM.

▪ External QSPI flash: up to 16 MiB is supported (512 KiB to 4 MiB typically included).

Interfaces

▪ IEEE 802.11 b/g/n WiFi .

▪ Integrated TR switch, balun, LNA, power amplifier and matching network WEP or
WPA/WPA2 authentication, or open networks.

▪ 16 GPIO pins.

▪ SPI.

▪ I²C (software implementation).

▪ I²S interfaces with DMA (sharing pins with GPIO).

▪ UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2.

▪ 10-bit ADC (successive approximation ADC).

Figure 113 shows function block of ESP8266 chip diagram [71].

4.4. Espressif SoC Overview

109

Figure 113: ESP8266 chip main functions.

ESP8266 Modules
There are many ESP8266 based modules on the market [72]. These modules combine
ESP8266EX microcontroller and additional components mounted on PCB.

The most popular are these produced by AI-Thinker and remain the most widely available
[73]:

▪ ESP-01 (512 KiB Flash),

▪ ESP-01S (1 MiB Flash),

▪ ESP-12 (FCC and CE approved),

▪ ESP-12E,

▪ ESP-12F (4 MiB Flash, FCC and CE approved).

Popular modules from other manufacturers:

▪ Sparkfun ESP8266 Thing,

▪ Wemos D1 mini, D1 mini Pro [74].

The Espressif company also produces ready-made modules using the aforementioned
chip. This is the series of ESP8266-based modules made by Espressif (Table 13).

Table 13: Espressif ESP8266 modules

Name
Active
pins

LEDs Antenna Shielded
Dimensions

(mm)
Notes

ESP-
WROOM-02[75]

18 No
PCB
trace

Yes 18 × 20 FCC ID 2AC7Z-ESPWROOM02

ESP-
WROOM-02D[76]

18 No
PCB
trace

Yes 18 × 20

FCC ID 2AC7Z-
ESPWROOM02D. Revision of
ESP-WROOM-02 compatible
with both 150-mil and
208-mil flash memory chips

4. IoT Hardware Overview

110

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp8266_block.jpg?id=en%3Abook

Name
Active
pins

LEDs Antenna Shielded
Dimensions

(mm)
Notes

ESP-
WROOM-02U[77]

18 No
U.FL
socket

Yes 18 × 20

Differs from ESP-
WROOM-02D in that includes
an U.FL compatible antenna
socket connector

ESP-WROOM-
S2[78]

20 No
PCB
trace

Yes 16 × 23 FCC ID 2AC7Z-ESPWROOMS2

The most widely used and chipest ESP-01 is presented on (Figure 114) and its pinout on
(Figure 115).

Figure 114: ESP-01.

Figure 115: ESP-01 pinout.

Module ESP12F with pinout is presented on (Figure 116) and its pinout on (Figure 117).

Figure 116: ESP-12F.

4.4. Espressif SoC Overview

111

Figure 117: ESP-12F pinout.

Among the other modules, it is worth to be interested in WEMOS modules [79] (Figure
118, Figure 119. The WEMOS company offers dedicated sensor modules and inputs/
outputs compatible with the processor modules. They are called WEMOS shields (Figure
120.

Figure 118: Wemos D1 mini with pinout.

Figure 119: Wemos D1 Pro.

4. IoT Hardware Overview

112

Figure 120: Wemos I/O shields.

ESP32 NodeMCU pins (Figure 121).

Figure 121: NodeMCU v.2 pins.

ESP32 General Information

ESP32 is a low-cost, low-power system on a chip (SoC) series microcontrollers with
WiFi & dual-mode Bluetooth capabilities [80]. ESP32 SoC is highly integrated with built-
in antenna switches, power amplifier, low-noise receive amplifier, filters, and power
management modules. Inside all family there is a single-core or dual-core Tensilica
Xtensa LX6 microprocessor with a clock rate of up to 240 MHz applications. It features
all the state-of-the-art characteristics of low-power chips, including fine-grained clock
gating, multiple power modes, and dynamic power scaling. For now the ESP32 family
includes the following chips:

▪ ESP32-D0WDQ6 (Figure 122),

▪ ESP32-D0WD (Figure 123),

▪ ESP32-D2WD (Figure 124),

▪ ESP32-S0WD (Figure 125),

▪ ESP32-PICO-D4 – SiP (system in package) (Figure 126) – additionally contains
crystal oscillator, 4MiB flash memory, filter capacitors and RF matching links.

4.4. Espressif SoC Overview

113

Figure 122: ESP32-D0WDQ6.

Figure 123: ESP32-D0WD.

Figure 124: ESP32-D2WD.

Figure 125: ESP32-S0WD.

Figure 126: ESP32-PICO-D4.

4. IoT Hardware Overview

114

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image002.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image003.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image004.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image005.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image006.jpg?id=en%3Abook

ESP32 Architecture Overview
(Figure ##REF:esp32_functions##) shows function block diagramm of ESP32 chip. Main
common features of the ESP32 are: [81] [82].

Processors

▪ Main processor: Tensilica Xtensa 32-bit LX6 microprocessor.

▪ Cores: 2 or 1 (depending on variation). (All chips in the ESP32 series are dual-
core except for ESP32-S0WD, which is single-core.)

▪ Internal 8 Mhz oscillator with calibration.

▪ External 2 MHz to 60 MHz crystal oscillator (40 MHz only for WiFi/BT functionality).

▪ External 32 kHz crystal oscillator for RTC with calibration.

▪ Clock frequency: up to 240 MHz.

▪ Performance: up to 600 DMIPS.

▪ Ultra low power co-processor: allows you to do ADC conversions, I2C connecting,
computation, and level thresholds while in a deep sleep.

Wireless connectivity

▪ WiFi: 802.11 b/g/n/e/i (802.11n @ 2.4 GHz up to 150 Mbit/s) with simultaneous
Infrastructure BSS Station mode/SoftApp mode/Promiscuous mode.

▪ Bluetooth: v4.2 BR/EDR and Bluetooth Low Energy (BLE) with multi-connections Bt
and BLE and simultaneous advertising and scanning capability.

Memory: Internal memory

▪ ROM: 448 KiB (for booting and core functions).

▪ SRAM: 520 KiB (for data and instruction).

▪ RTC fast SRAM: 8 KiB (for data storage and main CPU during RTC Boot from the
deep-sleep mode).

▪ RTC slow SRAM: 8 KiB (for co-processor accessing during deep-sleep mode).

▪ eFuse: 1 Kibit (of which 256 bits are used for the system (MAC address and chip
configuration) and the remaining 768 bits are reserved for customer applications,
including Flash-Encryption and Chip-ID).

▪ Embedded flash (flash connected internally via IO16, IO17, SD_CMD, SD_CLK,
SD_DATA_0 and SD_DATA_1 on ESP32-D2WD and ESP32-PICO-D4):

▪ 0 MiB (ESP32-D0WDQ6, ESP32-D0WD, and ESP32-S0WD chips),

▪ 2 MiB (ESP32-D2WD chip),

▪ 4 MiB (ESP32-PICO-D4 SiP module).

External Flash & SRAM

▪ ESP32 supports up to four 16 MiB external QSPI flashes and SRAMs with hardware
encryption based on AES to protect developers' programs and data. ESP32 can access
the external QSPI flash and SRAM through high-speed caches.

▪ Up to 16 MiB of external flash are memory-mapped onto the CPU code space,
supporting 8-bit, 16-bit and 32-bit access. Code execution is supported.

4.4. Espressif SoC Overview

115

▪ Up to 8 MiB of external flash/SRAM memory is mapped onto the CPU data space,
supporting 8-bit, 16-bit and 32-bit access. Data-read is supported on the flash and
SRAM. Data-write is supported on the SRAM.

ESP32 chips with embedded flash do not support the address mapping between external
flash and peripherals.

Peripheral Input/Output

▪ Rich peripheral interface with DMA that includes capacitive touch (10× touch
sensors).

▪ 12-bit ADCs (analog-to-digital converter) up to 18 channels.

▪ 2 × 8 bit DACs (digital-to-analog converter).

▪ 2 × I²C (Inter-Integrated Circuit.

▪ 3x UART (universal asynchronous receiver/transmitter).

▪ CAN 2.0 (Controller Area Network).

▪ 4 × SPI (Serial Peripheral Interface).

▪ 2 × I²S (Integrated Inter-IC Sound).

▪ RMII (Reduced Media-Independent Interface).

▪ Motor PWM (pulse width modulation).

▪ LED PWM up to 16 channels.

▪ Hall sensor.

▪ Internal temperature sensor.

Security

▪ Secure boot.

▪ Flash encryption.

▪ IEEE 802.11 standard security features all supported, including WFA, WPA/WPA2 and
WAPI.

▪ 1024-bit OTP, up to 768-bit for customers.

▪ Cryptographic hardware acceleration:

▪ AES,

▪ SHA-2,

▪ RSA,

▪ elliptic curve cryptography (ECC),

▪ random number generator (RNG).

4. IoT Hardware Overview

116

Figure 127: ESP32 Function block diagram.

ESP32 Modules
The company also produces ready-made modules using the aforementioned processors.
These modules combines ESP32 microcontroller and additional components mounted on
PCB with EM shield:

▪ ESP32-WROOM-32 with 4 MiB flash memory, and antenna on PCB (Figure 128);

▪ ESP32-WROOM-U with 4 MiB flash memory and u.fl antenna conector (Figure 129);

▪ ESP32-WROVER – with 4 MiB flash memory, 4 MiB pseudo static RAM and antenna
on PCB (Figure 130);

▪ ESP32-WROVER-I – as ESP32-WROVER with additional u.fl antenna connector (Figure
131).

Figure 128: ESP32-WROOM-32.

4.4. Espressif SoC Overview

117

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-block-diagram.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image008.jpg?id=en%3Abook

Figure 129: ESP32-WROOM-U.

Figure 130: ESP32-WROVER.

4. IoT Hardware Overview

118

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image009.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image010.jpg?id=en%3Abook

Figure 131: ESP32-WROVER-I

ESP32 Development Kits
To accelerate the design of circuits, developers can use specially prepared sets with
ESP32 which are ready to use. The original Espressif best known small development
boards are:

▪ ESP32-DevkitC (Figure 132);

▪ ESP32-PICO-KIT-V4 (Figure 133).

Figure 132: ESP-32-DevkitC

Figure 133: ESP-32-PICO-KIT-V4.

General Purpose Input-Output (GPIO) Connector
Each ESP32 is equipped with standard 38/40-pis male connector containing universal
GPIO ports, VCC 3.3/5 V, GND, CLK, I2C/SPI buses pins which developers can use to
connect their external sensors, switches and other controlled devices to the ESP32 board
and then program their behaviour within the code loaded to the board.

4.4. Espressif SoC Overview

119

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image011.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image012.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp32image013.jpg?id=en%3Abook

▪ ESP32-DevkitC v2 pins (Figure 134).

Figure 134: ESP32-DevkitC pins.

▪ ESP32-PICO D4 pins (Figure 135).

Figure 135: ESP32-Pico D4 pins.

▪ ESP32 Wemos Pro pins (Figure 136).

4. IoT Hardware Overview

120

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32_devkitc_pinout.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-pico-kit-v3-layout.jpg?id=en%3Abook

Figure 136: ESP32-Pico D4 pins.

4.4.2. Espressif SoC Networking

Using Espressif SoC devices in Arduino platform we can use all the previously described
Arduino examples for sensors and actuators. But the most interesting are are those
that use wireless networking functions. Both Espressif chip ESP32 and ESP8266 families
can use similar network modes. As a WiFi device Espressif SoC can work in different
networking modes (applies to medial layers 1–3 ISO-OSI model):

▪ as WiFi client connected to WiFi router (Figure 137),

Figure 137: ESP client mode.

▪ as independent WiFi access point (Figure 138),

Figure 138: ESP AP mode.

▪ as a repeater with devices connected to ESP and ESP connected to external router
(Figure 139),

4.4. Espressif SoC Overview

121

Figure 139: ESP dual mode.

▪ as client and server in mesh network (Figure 140).

Figure 140: ESP mesh networking.

ESP32 can also use Bluetooth networking in the same configuration as WiFi.

4.4.3. ESP Programming Fundamentals

The following sub-chapters cover programming fundamentals for ESP chips in C/C++,
which complies with the most C/C++ notations and have some specific notations. Please
note, this is a particular implementation of the programming, compatible with Arduino
standards and Arduino(C) IDE. Following chapters present particular aspects of the
network programming with ESP chips. Other structures (program flow control, GPIO,
etc.) are shown in the Arduino section of this manual and apply straightforwardly to the
ESP programming.

This manual refers to the particular version of the software
(here Arduino IDE, ESP 8266 and ESP32 and related toolkits)
available at the moment of writing of this book, thus accessing
particular features may change over time along with the
evolution of the platform. Please refer attached
documentation (if any) and browse Internet resources to find
lates guidances on how to configure development platform,
when in doubt. In particular, following links present up-to-
date help on “how to start” guides with ESP 8266 and ESP32
platforms and Arduino IDE. Please refer here, when guides

4. IoT Hardware Overview

122

present in following sub-chapters are outdated:

▪ ESP 8266 Github [83];

▪ ESP 32 Github [84].

Further reading:

▪ “Setting Up Development Environment for ESP SoC Programming”;

▪ “ESP AT Networking”;

▪ “ESP Network Layers”;

▪ “ESP Application Layer”;

▪ “ESP32 Parallel Programming”.

Setting Up Development Environment for ESP SoC Programming

Following subchapters present guides for setting up the environment to enable you to use
Arduino(C) IDE to develop solutions for ESP8266 and ESP32. Installation methodology
varies much as ESP8266 is already integrated with so-called Board Manager in
Ardiono(C) iDE, while ESP32 is somehow external to the Boards Manager and requires
some steps to be done, to obtain fully integrated environment. Some of the steps vary
in details among various operating systems you use (Windows/Mac/Linux), see details,
but in any case, there is a common idea, what to do in following steps. Once it is done,
programming of both ESP8266 and ESP32 does not differ much from programming, i.e.
Arduino Uno, natively supported by Arduino(C) IDE.

There do exists other solutions i.e. PlatformIO [85] + Visual
Studio Code IDE [86] or Atom IDE [87], MicroPython [88],
NodeMCU [89], multithreaded and parallel programming, etc.
A detailed description of those solutions is out of the scope of
this manual, however. Please refer to the links provided below
to obtain detailed steps, how to configure other development
environments.

Download and Run Arduino IDE
We consider here software that is natively installed as a binary package on your
operating system, not a WEB version of the IDE. To obtain the latest version of the binary
package, visit the website [90], as on figure 141.

4.4. Espressif SoC Overview

123

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/setting_up_programming_environment
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/building_your_first_project
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/data_types_and_variable
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/program_control_structures
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp_parallel_programming

Figure 141: Arduino(C) IDE downloads web page.

Linux distros usually offer an outdated version of the
Arduino(C) IDE through its repositories; thus we suggest to
install one through downloading package directly from the
Arduino IDE website.

4. IoT Hardware Overview

124

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-1.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-1.png?id=en%3Abook

There are two versions of the Arduino(C) IDE for Windows:
one you can download from their website and the other is
available via Microsoft Windows Application Store. If you
experience compilation problems with Windows Store version,
please use the installer from their website and install it
manually.

Configuring Arduino IDE for ESP8266 Development
Assuming you've purchased any of the ESP8266 development boards, it is essential to
write the first program. In any case, you'll need a way to write, compile and upload your
code to the ESP8266 SoC. Here Arduino(C) IDE comes handy, however before you start,
you need to let the Arduino(C) IDE knows, how to compile and communicate with your
ESP8266 chip. Below there is a short manual, presenting how to install development
extension to the Arduino(C) IDE through the Boards Manager. Note, other solutions (i.e.
manual installation via Github pull) is also possible, but we do not consider this option
here. ESP8266 core for Arduino(C) IDE is maintained by the community, and the latest
version is available here (along with up-to-date installation guide) [91].

Install ESP8266 Boards via Board Manager

Start Arduino(C) IDE (Figure 142):

4.4. Espressif SoC Overview

125

Figure 142: Arduino IDE.

Enter application menu File/Preferences:

4. IoT Hardware Overview

126

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-2.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-2.png?id=en%3Abook

Figure 143: System menu and preferences.

and then go to the Additional Boards Manager URLs:, enter following URL and accept
changes (press OK) (Figure 144):

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Figure 144: Preferences dialog.

Once finished, you need to tell the Board Manager, which definitions and tools to
download. Open Tools/Board:/Boards Manager (Figure 145):

4.4. Espressif SoC Overview

127

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-4.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-4.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-5.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-5.png?id=en%3Abook

Figure 145: Board Manager menu.

and filter all boards entering “ESP8266” in the Search area, as on figure 146, then click
Install:

4. IoT Hardware Overview

128

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-6.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-6.png?id=en%3Abook

Figure 146: Board installation dialog.

Note – installation downloads number of resources over Internet connection and may
take some time.

Configure Project to Compile for ESP8266

Once you're done with Arduino(C) IDE configuration now it is time to start programming.
The process above installs a number of board definitions. First, depending on the
development kit you own, select the appropriate type of the development board in the
Board Manager menu, i.e. WeMos D1 R2 & mini (Figure 147):

4.4. Espressif SoC Overview

129

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-61.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-61.png?id=en%3Abook

Figure 147: Selecting ESP8266 development board.

Communication Between Development Machine and ESP SoC

Most of the ESP development boards come with integrated programming interface via
serial to USB converter (usually CH340, CP210x, FDTI, Prolific, etc.) that you connect to
the development machine using the USB cable. Connector standards vary, but nowadays
the most popular seems to be Micro USB connector. There is also possible to upload your
compilation using wireless transmission (OTA – Over The Air), or dedicated programming
device, but we do not consider it here as too complicated to implement (requires special
firmware) and also insecure. You need to select correct device interface – it differs,
depending on the operating system you use, see details below how to identify it in your
computer.

4. IoT Hardware Overview

130

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-7.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-7.png?id=en%3Abook

Windows

Look into the Device Manager to identify COM port, your board is represented by, in the
Windows OS (Figure 148, here COM4):

Figure 148: Windows COM port identification.

Linux

In case of the Linux distributions, run in the terminal:

lsusb

and

ls /dev/ttyUSB*

or

ls /dev/ttyACM*

to identify your board (Figure 149):

4.4. Espressif SoC Overview

131

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/wincom.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/wincom.png?id=en%3Abook

Figure 149: Linux serial devices identification.

Mac OS

The similar way to Linux distros, look for the devices using:

ls /dev/tty.usbmodem*

or

ls /dev/tty.usbserial*

to get a list of connected devices providing serial port feature (Figure 150):

4. IoT Hardware Overview

132

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/uxcom.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/uxcom.png?id=en%3Abook

Figure 150: Mac OS serial devices identification.

Configure Details for the SoC

Now select appropriate device in the Arduino IDE (Figure 151) and select communication
speed (Figure 152). Eventually, change the other parameters. Details on the flash size,
its organisation, communication speed and frequencies should be provided by your
hardware vendor. If you experience errors during programming or programming hangs,
try to reduce programming speed, as your computer may be not quick enough to deliver
data stream over USB. Devices usually present their maximum programming (flashing)
speed, and it is common they tolerate lower speeds.

Figure 151: Selecting serial port.

4.4. Espressif SoC Overview

133

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/lsusb_mac_osx.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/lsusb_mac_osx.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-8.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-8.png?id=en%3Abook

Figure 152: Selecting flashing speed.

Troubleshooting Access Denied Error

In case of the Linux and Mac, depending on the security context you run your Arduino(C)
IDE, you may experience “Access Denied” error. There are several workarounds to this
problem, starting from running Arduino IDE with sudo credentials (not recommended)
through creating udev rules (advanced) to simplest – providing credentials on-demand
and ad-hoc. The disadvantage of this method is you must usually run those command
every time you reboot OS or reconnect your board, yet is simplest to handle (Figure 153
and 154):

sudo usermod -a -G dialout $USER

sudo chmod a+rw /dev/ttyUSB0

4. IoT Hardware Overview

134

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-9.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-9.png?id=en%3Abook

Figure 153: Linux serial port access denied troubleshooting, part 1.

Figure 154: Linux serial port access denied troubleshooting, part 2.

A need to run one or two of the commands above strongly depends on the operating
system configuration.

In case of the Windows OS, marking application to “Run as Administrator” may help to
remove permission related errors (Figure 155):

4.4. Espressif SoC Overview

135

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-10.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-10.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-11.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-11.png?id=en%3Abook

Figure 155: Runing Arduino IDE as Administrator in Windows OS.

Preparing ESP32 Development Environment With Arduino IDE
ESP32 SoC is a continuation and extension to the ESP8266 SOCs. At the moment of
writing this manual, installation of the ESP32 development environment is not supported
via integrated Board Manager of the Arduino(C) IDE, as presented above in the ESP8266
section. Uploading your binary to the ESP32 chip via USB to serial converter requires
Python as the ESP32 flashing tool is written in the form of the Python script. In case
you're aware of what Python programming language is and how to install it on your
machine, please refer to the Python website [92] and install Python before continuing.

Installing ESP32 Core for Arduino IDE

Depending on the operating system you use, there is necessary to perform some steps
to obtain a fully functional ESP32 development environment for Arduino(C) IDE. ESP32
core for Arduino is maintained by the community, and the latest version is available here
(along with up-to-date installation guide) [93]. Steps tend to have the same meaning,
but tools to obtain the result are different for different operating systems.

Linux
A guide for the most popular distros (Ubuntu/Debian) is presented below.

Modify user credentials
This step is optional, see related ESP8266 section. Run following command in the
terminal to add a user to the dialout group:

sudo usermod -a -G dialout $USER

Download and install git client
Run following command in the terminal:

sudo apt-get install git

4. IoT Hardware Overview

136

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/8266-12.png?id=en%3Abook

Download and install python tools and packages
Run following commands in the terminal:

wget https://bootstrap.pypa.io/get-pip.py && \
sudo python get-pip.py && \
sudo pip install pyserial

Create destination folders and clone repository
Assuming your Arduino IDE is installed in your home directory, (~/Arduino), run the
folowing code in terminal:

mkdir -p ~/Arduino/hardware/espressif && \
cd ~/Arduino/hardware/espressif && \
git clone https://github.com/espressif/arduino-esp32.git esp32 && \
cd esp32

Pull depending modules and tools
Run following commands in the terminal:

git submodule update --init --recursive && \
cd tools && \
python2 get.py

Then start Arduino IDE.

Windows
Installing ESP32 core for Arduino requires Git client, both GUI and bash as well as
command line operations.

Install Git and clone repository
You can download and install Git [94]. Once installed, choose “Clone Existing Repository”
(Figure 156):

Figure 156: Git GUI for Windows.

Use ESP32 core for Arduino repository address as source:

https://github.com/espressif/arduino-esp32.git

The destination folder depends on where you've installed Arduino IDE and your Windows
user name. The common location is:

4.4. Espressif SoC Overview

137

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-1.png?id=en%3Abook

C:/Users/[YOUR_USER_NAME]/Documents/Arduino/hardware/espressif/esp32

note, you do not need to create this folder manually. If you install fresh copy of the
Arduino IDE, perhaps there will be no hardware subfolder, but Git GUI will create
remaining path for you. Once entered Source and Destination, click “Clone” (Figure 157).
Cloning may take a while.

Figure 157: Configure Git GUI for cloning.

Pull depending modules
Use Git Bash command line (not a Windows command line!) to install dependencies
(Figure 158). Change directory to the esp32 git local copy then run submodules install:

cd Documents/Arduino/hardware/espressif/esp32/

git submodule update --init --recursive

Figure 158: Updating sub modules using Git Bash.

Download ESP32 tools
Open Windows command line (not a Git Bash command line!), navigate to the tools folder
(Figure 159):

cd C:/Users/[YOUR_USER_NAME]/Documents/Arduino/hardware/espressif/esp32/tools

4. IoT Hardware Overview

138

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-2.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-4.png?id=en%3Abook

then run:

get.exe

Figure 159: Get ESP32 tools.

Mac OS
Instruction for the Mac is similar to this for Linux. They require terminal to issue a set of
commands to install ESP32 development kit and tools.

Create destination folders and clone source

mkdir -p ~/Documents/Arduino/hardware/espressif && \
cd ~/Documents/Arduino/hardware/espressif && \
git clone https://github.com/espressif/arduino-esp32.git esp32 && \
cd esp32

Pull depending modules and tools
Run following commands in the terminal:

git submodule update --init --recursive && \
cd tools && \
python get.py

Then start Arduino IDE. Troubleshooting
If you get the following error during installation:

xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools),
missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun

then install command line developer tools using:

xcode-select --install

Configure Project to Compile for ESP32

Once ESP32 platform is installed, start Arduino IDE and you should see new board
definitions, similar to those presented on the figure 160:

4.4. Espressif SoC Overview

139

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-6.png?id=en%3Abook

Figure 160: ESP32 boards in Arduino IDE.

Refer to your board vendor for information about compatible configurations and setting
up upload parameters. Detailed description and information on selecting communication
port and upload speed is presented in the ESP8266 section, above.

ESP AT Networking

Flashing AT Firmware
To use the ESP8266 chip as a modem (Figure 161) we must first load the appropriate
AT-command firmware.

Figure 161: ESP8266 as a modem.

4. IoT Hardware Overview

140

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp/esp32-10.png?id=en%3Abook

Download Software

1. Download the latest ESP Flash Download Tool (v3.6.4 at the time of writing) from
[95].

2. Download the latest AT release from [96] or [97].

Flashing Procedure

▪ Detect ESP8266 module parameters. Start ESP Flash Download Tool
(“ESPFlashDownloadTool_v3.6.4”), set the COM port corresponding to your
programmer, then click the START button in order to detect the specs of the board.
After detection, you should see something like this (Figure 162):

Figure 162: Programming ESP8266 – detected parameters.

▪ Gather information. Make a note of the flash memory size. In this example, we have
a 32 Mbit flash.

▪ Load the correct size of combined AT binary firmware file (“.bin”) and set the offset
as 0 × 0, you should see something like this (Figure 163):

4.4. Espressif SoC Overview

141

Figure 163: Programming ESP8266 – setting proper image file.

▪ Then, click the START button and wait until the flashing process is over.

Reflashing Procedure
If necessary, to restore the original firmware:

▪ Detect ESP8266 module parameters. Start ESP Flash Download Tool
(“ESPFlashDownloadTool_v3.6.4”), set the COM port corresponding to your
programmer, then click the START button in order to detect the specs of the board.
After detection, you should see something like this (Figure 164):

4. IoT Hardware Overview

142

Figure 164: Programming ESP8266 – detected parameters.

▪ From the downloaded AT firmware folder, open the “readme.txt” file containing the
information for flashing the firmware. Inside the file, there should be a “BOOT MODE”
section, as follows:

BOOT MODE
download
Flash size 8Mbit: 512KB+512KB

boot_v1.2+.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0xfc000 (optional)
blank.bin 0x7e000 & 0xfe000

Flash size 16Mbit: 512KB+512KB
boot_v1.5.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0x1fc000 (optional)
blank.bin 0x7e000 & 0x1fe000

Flash size 16Mbit-C1: 1024KB+1024KB
boot_v1.2+.bin 0x00000
user1.2048.new.5.bin 0x01000
esp_init_data_default.bin 0x1fc000 (optional)
blank.bin 0xfe000 & 0x1fe000

4.4. Espressif SoC Overview

143

Flash size 32Mbit: 512KB+512KB
boot_v1.2+.bin 0x00000
user1.1024.new.2.bin 0x01000
esp_init_data_default.bin 0x3fc000 (optional)
blank.bin 0x7e000 & 0x3fe000

Flash size 32Mbit-C1: 1024KB+1024KB
boot_v1.2+.bin 0x00000
user1.2048.new.5.bin 0x01000
esp_init_data_default.bin 0x3fc000 (optional)
blank.bin 0xfe000 & 0x3fe000

▪ Indicate – correct for your ESP8266 flash size – firmware files & addresses. The
firmware is broken down into several files. They need to be provided to the ESP Flash
Download Tool, together with the corresponding addresses found in the readme.txt
file above. For our ESP8266 example it should look like this (Figure 165)

Figure 165: Programming ESP8266 – reflashing settings.

▪ Then, click the START button and wait until the flashing process is over.

Basic ESP8266 Networking

After uploading AT firmware and connecting module to PC, we can use ESP8266 as a
modem with simple AT commands.

We can connect ESP8266 to PC with TTL-Serial-to-USB adapter, or we can use any
microcontroller with a serial interface. The default baud rate settings are 115200,N,8,1.
Next from any terminal type command:

AT

and press enter. If you get OK, the ESP8266 module is ready to use. Let’s try out
some other commands. For example, let’s figure out exactly what firmware version we’re
dealing with. To do that, we’ll use the following command:

AT+GMR

As a Wifi device ESP8266 can connect to the network in such modes:

▪ mode 1 – client mode – the ESP8266 connecting to an existing wireless network,

▪ mode 2 – access point mode (AP) – other wireless network devices can be connected
to the ESP8266,

4. IoT Hardware Overview

144

▪ mode 3 – dual mode (router) – the ESP8266 act as an access point and connect at
the same time to an existing wireless network.

By default, the ESP8266’s stock firmware is set to AP mode. If you’d like to confirm that,
send the following command:

AT+CWMODE?

You should get this response: +CWMODE:2, where 2 corresponds to AP mode. To switch
ESP8266 to client device mode, we use the following command:

AT+CWMODE=1

Now we can scan the airwaves for all WiFi access points in range. To do that, we send:

AT+CWLAP

Then the ESP8266 will return a list of all the access points in range. In with each line will
be item consisting of the security level of the access point, the network name, the signal
strength, MAC address, and wireless channel used. Possible security levels of the access
point <0–4> mean:

▪ 0 – open,

▪ 1 – WEP,

▪ 2 – WPA_PSK,

▪ 3 – WPA2_PSK,

▪ 4 – WPA_WPA2_PSK.

Now we can connect to the available access point using proper “ssid_name” and
“correct_password” with the command:

AT+CWJAP="ssid_name","corect_password"

If everything is OK, the ESP8266 will answer:

WIFI CONNECTED
WIFI GOT IP
OK

It means that ESP8266 is connected to the chosen AP and got a proper IP address. To
check what the assigned address is we send the command:

AT+CIFSR

To set up ESp8266 to behave both as a WiFi client as well as a WiFi Access point.

AT+CWMODE=3

4.4. Espressif SoC Overview

145

ESP Network Layers

Programming networking services with ESP requires a connection on the networking
layer between parties, mostly TCP.
ESP SoC can act as Access Point (AP): a device you connect to, like you connect
a notebook to the Internet router, and as a client: ESP then behaves like any wifi
enabled device, i.e. tablet or mobile phone, connecting to the Internet infrastructure.
Interestingly, ESP 8366 SoC can act simultaneously in both modes at once, even, if it
has only one WiFi interface!
Below there is sample code, how to implement both modes, using ESP libraries that came
during installation of the development environment for Arduino IDE.
The third example shows how to send and receive a UDP packet while in client mode. It
is the full solution to connect ESP to the NTP (Network Time Protocol) server to obtain
current date and time from the Internet.
Last examples show, how to make a handy WiFi scanner showing available networks
nearby.

ESP8266 AP (Access Point) Mode
This sketch based on standard example demonstrates how to program ESP8266 in AP
mode:

#include <ESP8266WiFi.h>
#include <WiFiClient.h>
#include <ESP8266WebServer.h>
/* Set these variables to your desired credentials. */
const char *ssid = "APmode";
const char *password = "password";

ESP8266WebServer server(80);

void hRoot() {
server.send(200, "text/html", "<h1>You are connected</h1>");

}

/* Initialization */
void setup() {

delay(1500);
/* You can remove the password parameter if you want the AP to be open. */
WiFi.softAP(ssid, password);

IPAddress myIP = WiFi.softAPIP();

server.on("/", hRoot);
server.begin();

}

void loop() {
server.handleClient();

}

ESP8266 Client Mode
This sketch (standard example) demonstrates how to program ESP8266 in client mode:

4. IoT Hardware Overview

146

#include <ESP8266WiFi.h>
#include <ESP8266WiFiMulti.h>
ESP8266WiFiMulti WiFiMulti;

void setup() {
delay(1000);

// We start by connecting to a WiFi network
WiFi.mode(WIFI_STA);
WiFiMulti.addAP("SSID", "password");

while(WiFiMulti.run() != WL_CONNECTED) {
delay(500);

}
delay(500);

}

void loop() {
const uint16_t port = 80;
const char * host = "192.168.1.1"; // ip or dns

// Use WiFiClient class to create TCP connections
WiFiClient client;

if (!client.connect(host, port)) {
delay(5000);
return;

}

// This will send the request to the server
client.println("Send this data to server");

//read back one line from server
String line = client.readStringUntil('\r');
Serial.println(line);
Serial.println("closing connection");
client.stop();

Serial.println("wait 5 sec...");
delay(5000);

}

ESP8266 and UDP
This sketch (based on standard example) demonstrates how to program ESP8266 as NTP
client using UDP packets (send and receive):

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

char ssid[] = "**************"; // your network SSID (name)
char pass[] = "**************"; // your network password

4.4. Espressif SoC Overview

147

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

unsigned int localPort = 2390; // local port to listen for UDP packets

// NTP servers
IPAddress ntpServerIP; // 0.pl.pool.ntp.org NTP server address
const char* ntpServerName[] =
{"0.pl.pool.ntp.org","1.pl.pool.ntp.org","2.pl.pool.ntp.org","3.pl.pool.ntp.org"};

const int timeZone = 1; //Central European Time
int servernbr=0;

// NTP time stamp is in the first 48 bytes of the message
const int NTP_PACKET_SIZE = 48;

//buffer to hold incoming and outgoing packets
byte packetBuffer[NTP_PACKET_SIZE];

// A UDP instance to let us send and receive packets over UDP
WiFiUDP udp;

void setup()
{

Serial.begin(115200);
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

// WiFi.persistent(false);
WiFi.mode(WIFI_OFF);
delay(2000);

// We start by connecting to a WiFi network
WiFi.mode(WIFI_STA);
delay(3000);
WiFi.begin(ssid, pass);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

Serial.println("");
Serial.println("WiFi connected");
Serial.println("DHCP assigned IP address: ");
Serial.println(WiFi.localIP());
Serial.println("Starting UDP");
udp.begin(localPort);
Serial.print("Local port: ");
Serial.println(udp.localPort());
// first ntp server
servernbr = 0;

}

void loop()
{

4. IoT Hardware Overview

148

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

//get a random server from the pool

WiFi.hostByName(ntpServerName[servernbr], ntpServerIP);
Serial.print(ntpServerName[servernbr]);
Serial.print(":");
Serial.println(ntpServerIP);
sendNTPpacket(ntpServerIP); // send an NTP packet to a time server
// wait to see if a reply is available
delay(1000);

int cb = udp.parsePacket();
if (!cb) {

Serial.println("no packet yet");
if (servernbr = 5) {

servernbr =0;
}
else {

servernbr++;
}

}
else {

Serial.print("packet received, length=");
Serial.println(cb);
// We've received a packet, read the data from it
udp.read(packetBuffer, NTP_PACKET_SIZE); // read the packet into the buffer

//the timestamp starts at byte 40 of the received packet and is four bytes,
// or two words, long. First, esxtract the two words:

unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
// combine the four bytes (two words) into a long integer
// this is NTP time (seconds since Jan 1 1900):
unsigned long secsSince1900 = highWord << 16 | lowWord;
Serial.print("Seconds since Jan 1 1900 = ");
Serial.println(secsSince1900);
// now convert NTP time into everyday time:
Serial.print("Unix time = ");
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
const unsigned long seventyYears = 2208988800UL;
// subtract seventy years:
unsigned long epoch = secsSince1900 - seventyYears;
// print Unix time:
Serial.println(epoch);

// print the hour, minute and second:
// UTC is the time at Greenwich Meridian (GMT)
Serial.print("The UTC time is ");
// print the hour (86400 equals secs per day)
Serial.print((epoch % 86400L) / 3600);
Serial.print(':');
if (((epoch % 3600) / 60) < 10) {

// In the first 10 minutes of each hour, we'll want a leading '0'
Serial.print('0');

}

4.4. Espressif SoC Overview

149

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

// print the minute (3600 equals secs per minute)
Serial.print((epoch % 3600) / 60);
Serial.print(':');
if ((epoch % 60) < 10) {

// In the first 10 seconds of each minute, we'll want a leading '0'
Serial.print('0');

}
Serial.println(epoch % 60); // print the second

}
// wait ten seconds before asking for the time again
delay(10000);

}

// send an NTP request to the time server at the given address
void sendNTPpacket(IPAddress& address)
{

Serial.print("sending NTP packet to: ");
Serial.println(address);
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011; // LI, Version, Mode
packetBuffer[1] = 0; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = 0xEC; // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;
packetBuffer[13] = 0x4E;
packetBuffer[14] = 49;
packetBuffer[15] = 52;

// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
udp.beginPacket(address, 123); //NTP requests are to port 123
udp.write(packetBuffer, NTP_PACKET_SIZE);
udp.endPacket();

}

4.4.4. ESP8266 Wifi Scanner

This sketch demonstrates how to scan WiFi networks. ESP8266 is programmed in access
point mode. All found WiFi networks will be printed in TTY serial window.

#include "ESP8266WiFi.h"
void setup() {

Serial.begin(115200);
// Set WiFi to station mode and disconnect
// from an AP if it was previously connected
WiFi.mode(WIFI_STA);
WiFi.disconnect();
delay(100);

Serial.println("Setup done");

4. IoT Hardware Overview

150

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

}

void loop() {
Serial.println("scan start");
// WiFi.scanNetworks will return the number of networks found
int n = WiFi.scanNetworks();
Serial.println("scan done");
if (n == 0)

Serial.println("no networks found");
else
{

Serial.print(n);
Serial.println(" networks found");
for (int i = 0; i < n; ++i)
{

// Print SSID and RSSI for each network found
Serial.print(i + 1);
Serial.print(": ");
Serial.print(WiFi.SSID(i));
Serial.print(" (");
Serial.print(WiFi.RSSI(i));
Serial.print(")");
Serial.println((WiFi.encryptionType(i) == ENC_TYPE_NONE)?" ":"*");
delay(10);

}
}
Serial.println("");
// Wait a bit before scanning again
delay(5000);

}

4.4.5. ESP32 Wifi Scanner

There are many different development software and tools which can be used for ESP32
programming [98]:

▪ Arduino COre (C++)

▪ ESP-IDF (Espressif IoT Development Framework)

▪ Mongoose OS

▪ MicroPython

▪ Simba Embedded Programming Platform

▪ Lua

▪ JacvaSript

▪ mruby

▪ BASIC

Of course, for programming ESP32 We can use all the previously described Arduino
examples for sensors and actuators. But in our example, we will focus on programming
in ESP-IDF, as this is the native Development Platform for ESP32. A detailed description
of the installation of the development environment can be found here.

4.4. Espressif SoC Overview

151

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://esp-idf.readthedocs.io/en/latest/get-started/windows-setup.html

This example shows how to use the All Channel Scan or Fast Scan to connect to a
Wi-Fi network. In the Fast Scan mode, the scan will stop as soon as the first network
matching the SSID is found. In this mode, an application can set the threshold for the
authentication mode and the Signal strength. Networks that do not meet the threshold
requirements will be ignored. In the All Channel Scan mode, the scan will end after
all the channels are scanned, and the connection will start with the best network. The
networks can be sorted based on Authentication Mode or Signal Strength. The priority
for the Authentication mode is: WPA2 > WPA > WEP > Open.

#include "freertos/FreeRTOS.h"
#include "freertos/event_groups.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"
/*Set the SSID and Password via "make menuconfig"*/
#define DEFAULT_SSID CONFIG_WIFI_SSID
#define DEFAULT_PWD CONFIG_WIFI_PASSWORD
#if CONFIG_WIFI_ALL_CHANNEL_SCAN
#define DEFAULT_SCAN_METHOD WIFI_ALL_CHANNEL_SCAN
#elif CONFIG_WIFI_FAST_SCAN
#define DEFAULT_SCAN_METHOD WIFI_FAST_SCAN
#else
#define DEFAULT_SCAN_METHOD WIFI_FAST_SCAN
#endif /*CONFIG_SCAN_METHOD*/
#if CONFIG_WIFI_CONNECT_AP_BY_SIGNAL
#define DEFAULT_SORT_METHOD WIFI_CONNECT_AP_BY_SIGNAL
#elif CONFIG_WIFI_CONNECT_AP_BY_SECURITY
#define DEFAULT_SORT_METHOD WIFI_CONNECT_AP_BY_SECURITY
#else
#define DEFAULT_SORT_METHOD WIFI_CONNECT_AP_BY_SIGNAL
#endif /*CONFIG_SORT_METHOD*/
#if CONFIG_FAST_SCAN_THRESHOLD
#define DEFAULT_RSSI CONFIG_FAST_SCAN_MINIMUM_SIGNAL
#if CONFIG_EXAMPLE_OPEN
#define DEFAULT_AUTHMODE WIFI_AUTH_OPEN
#elif CONFIG_EXAMPLE_WEP
#define DEFAULT_AUTHMODE WIFI_AUTH_WEP
#elif CONFIG_EXAMPLE_WPA
#define DEFAULT_AUTHMODE WIFI_AUTH_WPA_PSK
#elif CONFIG_EXAMPLE_WPA2
#define DEFAULT_AUTHMODE WIFI_AUTH_WPA2_PSK
#else
#define DEFAULT_AUTHMODE WIFI_AUTH_OPEN
#endif
#else
#define DEFAULT_RSSI -127
#define DEFAULT_AUTHMODE WIFI_AUTH_OPEN
#endif /*CONFIG_FAST_SCAN_THRESHOLD*/
static const char *TAG = "scan";

static esp_err_t event_handler(void *ctx, system_event_t *event)

4. IoT Hardware Overview

152

{
switch (event->event_id) {

case SYSTEM_EVENT_STA_START:
ESP_LOGI(TAG, "SYSTEM_EVENT_STA_START");
ESP_ERROR_CHECK(esp_wifi_connect());
break;

case SYSTEM_EVENT_STA_GOT_IP:
ESP_LOGI(TAG, "SYSTEM_EVENT_STA_GOT_IP");
ESP_LOGI(TAG, "Got IP: %s\n",

ip4addr_ntoa(&event->event_info.got_ip.ip_info.ip));
break;

case SYSTEM_EVENT_STA_DISCONNECTED:
ESP_LOGI(TAG, "SYSTEM_EVENT_STA_DISCONNECTED");
ESP_ERROR_CHECK(esp_wifi_connect());
break;

default:
break;

}
return ESP_OK;

}

/* Initialize Wi-Fi as sta and set scan method */
static void wifi_scan(void)
{

tcpip_adapter_init();
ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));

wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));

ESP_LOGI(TAG, DEFAULT_SSID);
ESP_LOGI(TAG, DEFAULT_PWD);

wifi_config_t wifi_config = {
.sta = {

.ssid = DEFAULT_SSID,

.password = DEFAULT_PWD,

.scan_method = DEFAULT_SCAN_METHOD,

.sort_method = DEFAULT_SORT_METHOD,

.threshold.rssi = DEFAULT_RSSI,

.threshold.authmode = DEFAULT_AUTHMODE,
},

};
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
ESP_ERROR_CHECK(esp_wifi_start());

}

void app_main()
{

// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES) {

ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();

}
ESP_ERROR_CHECK(ret);

wifi_scan();
}

4.4. Espressif SoC Overview

153

To properly set up Station mode, it is necessary to enter SSID and password. To enter
these values, before compiling the program, run the command:

make menuconfig

and then

make all

or

make flash

ESP Application Layer

ESP application layer may offer simplified a vast number of services as known from
the PC world and the Internet yet. The limitation is the RAM size, storage, number of
concurrent connections and limited CPU capabilities. Response routines should be kept
simple as ESP8266 is single-threaded and uses timers and interrupt system to handle
WiFi tasks in the background.

ESP8266 Samples
Below we present a number of samples, introducing programming of the various
scenarios with ESP8266.

ESP8266 Web Server Sample

This example can be compiled in Arduino IDE. It allows through the website to change
the output state of PIN 4 and PIN 5 [99]. We can connect LED to these pins and change
its state remotely using a web browser. Before compiling this example it is necessary to
change these two lines, to enable the module to connect to the WIFI network:

const char* ssid = ".. put here your own SSID name ...";
const char* password = ".. put here your SSID password.. ";

Now please check in the serial console the ESp8266 IP number and connect with any
browser to address: http://esp8266_ipnumber

// Load Wi-Fi library
#include <ESP8266WiFi.h>
// Replace with your network credentials
const char* ssid = ".. put here your own SSID name ...";
const char* password = ".. put here your SSID password.. ";

// Set web server port number to 80
WiFiServer server(80);

// Variable to store the HTTP request
String header;

4. IoT Hardware Overview

154

http://esp8266_ipnumber/

// Auxiliar variables to store the current output state
String gpio5State = "off";
String gpio4State = "off";

// Assign output variables to GPIO pins
const int gpiopin5 = 5;
const int gpiopin4 = 4;

void setup() {
Serial.begin(115200);
// Initialize the output variables as outputs
pinMode(gpiopin5, OUTPUT);
pinMode(gpiopin4, OUTPUT);
// Set outputs to LOW
digitalWrite(gpiopin5, LOW);
digitalWrite(gpiopin4, LOW);

// Connect to Wi-Fi network with SSID and password
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
// Print local IP address and start web server
Serial.println("");
Serial.println("WiFi connected.");
Serial.println("ESP8266 IP address: ");
Serial.println(WiFi.localIP());
server.begin();

}

void loop(){
WiFiClient client = server.available(); // Listen for incoming clients

if (client) { // If a new client connects,
Serial.println("New Client."); // print a message out in the serial port
String currentLine = ""; // make a String to hold incoming data
while (client.connected()) { // loop while the client's connected

if (client.available()) { // if there's bytes to read from the client,
char c = client.read(); // read a byte, then
Serial.write(c); // print it out the serial monitor
header += c;
if (c == '\n') { // if the byte is a newline character

// if the current line is blank, you got two newline characters in a row.
// that's the end of the client HTTP request, so send a response:
if (currentLine.length() == 0) {

// HTTP headers always start with a response code
// (e.g. HTTP/1.1 200 OK)
// and a content-type so the client knows what's coming,
// then a blank line:
client.println("HTTP/1.1 200 OK");
client.println("Content-type:text/html");
client.println("Connection: close");
client.println();

// turns the GPIOs on and off

4.4. Espressif SoC Overview

155

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

if (header.indexOf("GET /5/on") >= 0) {
Serial.println("GPIO 5 on");
gpio5State = "on";
digitalWrite(gpiopin5, HIGH);

} else if (header.indexOf("GET /5/off") >= 0) {
Serial.println("GPIO 5 off");
gpio5State = "off";
digitalWrite(gpiopin5, LOW);

} else if (header.indexOf("GET /4/on") >= 0) {
Serial.println("GPIO 4 on");
gpio4State = "on";
digitalWrite(gpiopin4, HIGH);

} else if (header.indexOf("GET /4/off") >= 0) {
Serial.println("GPIO 4 off");
gpio4State = "off";
digitalWrite(gpiopin4, LOW);

}

// Display the HTML web page
client.println("<!DOCTYPE html><html>");
client.println("<head><meta name=\"viewport\"

content=\"width=device-width, initial-scale=1\">");
client.println("<link rel=\"icon\" href=\"data:,\">");
// CSS to style the on/off buttons
// Feel free to change the background-color and
// font-size attributes to fit your preferences
client.println("<style>html { font-family: Helvetica; display:

inline-block; margin: 0px auto; text-align: center;}");
client.println(".button { background-color: #195B6A;

border: none; color: white; padding: 16px 40px;");
client.println("text-decoration: none;

font-size: 30px; margin: 2px; cursor: pointer;}");
client.println(".button2 {background-color: #77878A;}</style></head>");

// Web Page Heading
client.println("<body><h1>ESP8266 Web Server</h1>");

// Display current state, and ON/OFF buttons for GPIO 5
client.println("<p>GPIO 5 - State " + gpio5State + "</p>");
// If the output5State is off, it displays the ON button
if (gpio5State=="off") {

client.println("<p><button
class=\"button\">ON</button></p>");

} else {
client.println("<p><button

class=\"button button2\">OFF</button></p>");
}

// Display current state, and ON/OFF buttons for GPIO 4
client.println("<p>GPIO 4 - State " + gpio4State + "</p>");
// If the output4State is off, it displays the ON button
if (gpio4State=="off") {

client.println("<p><button
class=\"button\">ON</button></p>");

} else {
client.println("<p><button

class=\"button button2\">OFF</button></p>");
}

4. IoT Hardware Overview

156

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

client.println("</body></html>");

// The HTTP response ends with another blank line
client.println();
// Break out of the while loop
break;

} else { // if you got a newline, then clear currentLine
currentLine = "";

}
} else if (c != '\r') { // if you got anything

// else but a carriage return character,
currentLine += c; // add it to the end of the currentLine

}
}

}
// Clear the header variable
header = "";
// Close the connection
client.stop();
Serial.println("Client disconnected.");
Serial.println("");

}
}

After connecting with web browser to ESP8266 there will be such web page (figure 166),
and we can change the input status of PIN 4 and 5 simply by pressing the appropriate
button

Figure 166: ESP8266 web page

ESP32 Samples
ESP32 “Hello World”

This is simple program printing “Hello World” and it is written in Espressif IoT
Development Framework

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "esp_spi_flash.h"

4.4. Espressif SoC Overview

157

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

void app_main()
{

printf("Hello world!\n");
/* Print chip information */
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
printf("This is ESP32 chip with %d CPU cores, WiFi%s%s, ",

chip_info.cores,
(chip_info.features & CHIP_FEATURE_BT) ? "/BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "/BLE" : "");

printf("silicon revision %d, ", chip_info.revision);

printf("%dMB %s flash\n", spi_flash_get_chip_size() / (1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ?

"embedded" : "external");

for (int i = 10; i >= 0; i--) {
printf("Restarting in %d seconds...\n", i);
vTaskDelay(1000 / portTICK_PERIOD_MS);

}
printf("Restarting now.\n");
fflush(stdout);
esp_restart();

}

ESP32 Web Server

This example of ESP32 programming in Arduino and shows how to implement simple
www server.

First we do a little initialisation

//################# LIBRARIES ################
#include <WiFi.h>
#include <ESP32WebServer.h>
#include <WiFiClient.h>
//################ VARIABLES ################

String webpage = ""; // General purpose variable to hold HTML code
const char* ssid = "ssdi"; // WiFi SSID
const char* password = "password"; // WiFi Password

int status = WL_IDLE_STATUS;
int curr_index;
String SensorStatusBME;

// Site's Main Title
String siteheading = "ESP32 Webserver";
// Sub-heading for all pages
String subheading = "Sensor Readings";
// Appears on the tabe of a Web Browser
String sitetitle = "ESP32 Webserver";
// A foot note e.g. "My Web Site"
String yourfootnote = "ESP32 Webserver Demonstration";
// Version of your Website

4. IoT Hardware Overview

158

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

String siteversion = "v1.0";

Then we must implement the main www server activities. Mind, to access the server from
outside of your network WiFi (LAN) e.g. on port 80 when in NAT mode, add a rule on
your router that forwards a connection request to http://your_network_WAN_address:80
to http://your_network_LAN_address:80 and then you can access your ESP server from
virtually anywhere on the Internet.

ESP32WebServer server(80);
void setup()
{

Serial.begin(115200); // initialize serial communications
curr_index = 1;

time_to_measure = millis();

StartWiFi(ssid, password);
StartTime();
//--
Serial.println("To connect, uss: http://" + WiFi.localIP().toString() + "/");
// If the user types at their browser
// http://192.168.0.100/ control is passed here and then
// to user_input, you get values for your program...
server.on("/", homepage);
// If the user types at their browser
// http://192.168.0.100/homepage or via menu control
// is passed here and then to the homepage, etc
server.on("/homepage", homepage);

// If the user types something that is not supported, say so
server.onNotFound(handleNotFound);
// Start the webserver
server.begin(); Serial.println(F("Webserver started..."));

}

void handleNotFound() {
String message = "The request entered could not be found,

please try again with a different option\n";
server.send(404, "text/plain", message);

}

void homepage() {
append_HTML_header();
webpage += "<P class='style2'>This is the server home page</p>
";
webpage += "<p class='style2'>";
webpage += "This is sample webpage";
webpage += "</p>
";
webpage += "<p>This page was displayed on : " + GetTime() + " Hr</p>";
String Uptime = (String(millis() / 1000 / 60 / 60)) + ":";
Uptime += (((millis() / 1000 / 60 % 60) < 10) ? "0" +

String(millis() / 1000 / 60 % 60) :
String(millis() / 1000 / 60 % 60)) + ":";

Uptime += ((millis() / 1000 % 60) < 10) ? "0" +
String(millis() / 1000 % 60) :
String(millis() / 1000 % 60);

4.4. Espressif SoC Overview

159

http://your_network_wan_address/
http://your_network_lan_address/
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

webpage += "<p>Uptime: " + Uptime + "</p>";
append_HTML_footer();
server.send(200, "text/html", webpage);

}

void page1() {

append_HTML_header();
webpage += "<H3>This is the server Page-1</H3>";
webpage += "<P class='style2'>This is the server home page</p>";
webpage += "<p class='style2'>";
webpage += "This is sample 1 page";
webpage += "</p>";
append_HTML_footer();
server.send(200, "text/html", webpage);

}

next we must start Wifi :

void StartWiFi(const char* ssid, const char* password) {
int connAttempts = 0;
Serial.print(F("\r\nConnecting to: ")); Serial.println(String(ssid));
WiFi.begin(ssid, password);

status = WiFi.status();

while (status != WL_CONNECTED) {
Serial.print(".");
// wait 10 second for re-trying
delay(10000);
status = WiFi.status();
Serial.println(status);
if (connAttempts > 5) {

Serial.println("Failed to connect to WiFi");
// printWiFiStatus();

}
connAttempts++;

}
Serial.print(F("WiFi connected at: "));
Serial.println(WiFi.localIP());

}

and last step is to implement main loop function:

void loop() {

delay(2000);
server.handleClient();

}

ESP32 Parallel Programming

As it is known, some of the microcontrollers, in order to increase performance provide
more than one core. ESP32 is one of them providing two physical cores. In practice, it

4. IoT Hardware Overview

160

means that the program developed can run simultaneously on both cores. Thereby it
is possible to optimize some of the tasks in a way that they are not waiting for each
other but running in parallel instead. This is the main advantage of parallel programming
comparing to a sequential one. However, it requires both dedicated program control
structures and hardware support.

At the time while this chapter is being written, the simplest way of developing a parallel
code on ESP32 is via using FreeRTOS™ [100], which is a widely used real-time library
for different microcontrollers. The RTOS allows using most of the real-time and parallel
programming features including semaphores, process assignments to cores and more.
The following code chunks explain how to apply the most useful parallel programming
features.

Let's start with an example of blinking LED and Text output (based on material found
here [101].

The first task is task1, that simply outputs a string “Hi there!” to default serial port with
delay of 100 ms, i.e. 10 times per second:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "driver/gpio.h"
#define BLINK_GPIO 13
void task1_SayHi(void * parameters)
{

while(1)
{

printf("Hi there!\n");
vTaskDelay(100 / portTICK_RATE_MS);

}
}

▪ #include “freertos/FreeRTOS.h” and #include “freertos/
task.h” – adds needed libraries of FreeRTOS™.

▪ #define BLINK_GPIO 13 – defines output pin that will be
used to switch on or off the LED.

▪ portTICK_RATE_MS refers to constant
portTICK_PERIOD_MS that is used to calculate real-time
from the tick rate – with the resolution of one tick period.

The second task is to bilk a LED with a period of 2 seconds (1 second on, 1 second off):

void task2_BlinkLED(void * parameters)

4.4. Espressif SoC Overview

161

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

{

gpio_pad_select_gpio(BLINK_GPIO);
gpio_set_direction(BLINK_GPIO, GPIO_MODE_OUTPUT);
while(1) {

/*Sets the LED low for one second*/
gpio_set_level(BLINK_GPIO, 0);
vTaskDelay(1000 / portTICK_RATE_MS);

/*Sets the LED high for one second*/
gpio_set_level(BLINK_GPIO, 1);
vTaskDelay(1000 / portTICK_RATE_MS);

}
}

Once both task functions are defined, they can be executed simultaneously:

void app_main()
{

nvs_flash_init();
xTaskCreate(&task1_SayHi, "task1_SayHi", 2000, NULL, 5, NULL);
xTaskCreate(&task2_BlinkLED, "task2_BlinkLED", 2000,NULL,5,NULL);

}

▪ nvs_flash_init() – initializes a non-volatile memory in flash
memory, so it can be used by concurrent tasks

▪ xTaskCreate – creates a task, without specifying a core, on
which it is executed, with rather low priority (5). More on
parameters can be found here [102].

In fact, the code does not run in parallel physically, it uses the
full speed of the ESP32 that is far beyond human perception
speed and shares the computation time between both tasks.
Therefore for the human, it seems to be running in parallel.
Each of the tasks uses Idle (defined by vTaskDelay()) time of
the other task. Since both are simply the time slot is enough
to complete.

To run the code physically in parallel it is necessary to assign task explicitly to the
particular core, which requires a slight modification of the main() function:

void app_main()
{

nvs_flash_init();

4. IoT Hardware Overview

162

xTaskCreatePinnedToCore(&task1_SayHi, "task1_SayHi", 2000, NULL, 5, NULL,0);
xTaskCreatePinnedToCore(&task2_BlinkLED, "task2_BlinkLED", 2000,NULL,5,NULL,1);

}

▪ xTaskCreatePinnedToCore – creates a task and assigns it
to the particular core, on which it is executed. In this
case, task1_SayHi() is assigned to core 0, while
task2_BlinkLED() to core 1. For more information refer to
[103].

While ESP32 provide two computing nodes, other devices like particular serial port or
other peripherals are only single devices. In some cases, it might be needed to access
those devices by multiple processes in a way that does not disturb the others. In a
terminology of parallel programming, those “single” devices are called resources that
need to be shared or simply shared resources. To share a resource it is necessary to have
a signal that is available to all processes and that determines if the resource is available
or not. Those signals are dedicated data structures and are called - semaphores.
Depending on the particular platform they might represent a different data structure to
address particular use case. RTOS support three main semaphore types – Binary (True/
False), Counting (represents a queue) and Mutex (binary semaphore with priority).
More details on each type and use examples might be found here [104]. To explain
the concept of resource sharing here a simple binary-semaphore example is provided.
Example uses two SayHi tasks to share the same output device:

Since we need to define a semaphore at the beginning a setup function is also needed:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_system.h"
#include "driver/gpio.h"
SemaphoreHandle_t xSemaphore = NULL;

void setup()
{

vSemaphoreCreateBinary(xSemaphore);
}

Now it is possible to define the task functions and modify them in a way they use the
same resource

void task1_SayHi(void * parameters)
{

while(1)
{

/*check and waits for semaphore to be released for 100 ticks.

4.4. Espressif SoC Overview

163

If the semaphore is available it is taken / blocked */
if(xSemaphoreTake(xSemaphore, (TickType_t) 100) == pdTRUE)
{

printf("TASK1: Hi there!\n");
vTaskDelay(100 / portTICK_RATE_MS);
xSemaphoreGive(xSemaphore);

}
else
{

//Does something else in case the semaphore is not available
}

}
}

void task2_SayHi(void * parameters)
{

while(1)
{

/*check and waits for semaphore to be released for 100 ticks.
If the semaphore is available it is taken / blocked */
if(xSemaphoreTake(xSemaphore, (TickType_t) 100) == pdTRUE)
{

printf("TASK2: Hi there!\n");
vTaskDelay(100 / portTICK_RATE_MS);
xSemaphoreGive(xSemaphore);

}
else
{

//Does something else in case the semaphore is not available
}

}
}

Now both of the tasks are ready to be executed on the same or different cores as
explained previously.

Please note that semaphore mechanism is a powerful tool to
synchronize tasks, prioritize tasks or simply make sure that a
single resource is used properly in a multi-task application.

4.5. Raspberry Pi Overview
Raspberry Pi (referred as RPi or RPI) and its clones, i.e. Orange Pi, Banana Pi, Ordroid,
Cubie, Olimex, are the class of devices located somewhere between low constraint IoT
boards and regular PC/Mac machines.

4. IoT Hardware Overview

164

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

While authors create this text, Raspberry Pi is a standard
and reference solution for other manufacturers. However 3rd
party manufacturers indeed offer more powerful solutions
(regarding processor power, RAM size, connectivity
capabilities, and integrated flash) usually by the cost of no
support and not so well tailored operating system that lacks
many features and present serious bugs.

Those devices technically are very close to smartphones and are far away from energy-
efficient IoT solutions powered by a single battery that lasts for weeks or even years.
They need DC, usually 5 or 12V and about 2-3W total, with external power adapter.
It is still far less than even most efficient ultrabooks or PCs, requiring some 50-90W
PSUs. They also use an operating system booted from storage like regular PCs - usually
from flashed MicroSD card or embedded eMMC flash. The OS is mostly Linux based, but
there do exist Microsoft Windows for certified Raspberry Pi devices. It is how this class of
devices differ from, i.e. Arduino, where software is in the SoC model. The RPi and clones
are holding a one-board solution that includes a processor, memory, storage slot, USB
and networking. Many devices also offer hardware-based graphics acceleration, usually
integrated with the processor core. Some devices like Orange Pi frequently provide an
integrated flash for OS storage, so you do not necessarily need to boot and use an
external flash like a USB dongle or TransFlash card. The most common processor in this
class of the devices is an ARM architecture family, in case of the RPI it is Broadcom (i.e.
BCM2936), other manufacturers use, i.e. Exynos, All-Winner and Samsung manufactured
processors. What is pretty similar to the low-power, constrained IoT boards, RPi and
clones offer GPIO, and you can connect various sensors and expansion boards (called
here “hats”), and you have a wide choice of operating systems and modules. You can also
extend the hardware by connecting hats that offer to sense and to actuate but sometimes
advanced computing like dedicated coprocessors or FPGA-based AI. Interestingly, their
GPIOs usually provide (among others) popular protocols like I2C, SPI, One-Wire, so
you can directly connect with many sensors known as designed for Arduino-compatible
development boards. This way, you can use those boards like conventional IoT devices
with integrated networking capabilities, similar to, i.e. ESP chips.

What is much different from low constrained IoT devices is that they offer at least a
command terminal you can connect to, and also most boards offer a capability to connect
it to the external display via HDMI, analogue output or dedicated connector for LCD.
They also provide the ability to interact with HID devices like regular keyboards, mouses,
via USB but also wireless, i.e. using a Bluetooth connection. Of course, those features
are dependent on operating systems. Manufacturers usually are trying to keep those
development boards as small as possible, and it is a case that among high-end devices
they also offer some constrained solution yet usually 50 % smaller in size and power
consumption (i.e. RPi zero). Many boards also offer dedicated camera connector.

Being so far from the low-power, constrained IoT devices does not exclude them from IoT
devices, however. They find their application everywhere, when there is a need for higher
processing resources (i.e. voice recognition), high capacity and complex networking
operations, i.e. gatewaying other devices to the Internet, convert networking protocols,
implement software-based or hardware-assisted Artificial Intelligence, implementing rich
user interface (GUI) where constrained devices are not powerful enough to fulfil the

4.5. Raspberry Pi Overview

165

requirements yet there is still a limited power source, or there is not a need to set up
a regular, PC-based solution, because of its cost. Most of the devices belonging to this
class still can be switched to low power consumption modes, where low power means a
dozen mA here.

On the other hand, most modern representatives of those devices are powered with
multicore processors and large RAM and are powerful enough to replace the desktop
computer in daily operations like web browsing, multimedia playback, software
development and so on.

▪ “4.5.1. Raspberry Pi General Information”;

▪ “4.5.2. Raspberry Pi Sensors”;

▪ “4.5.3. Raspberry Pi Drivers and Driving”;

▪ “4.5.4. Raspberry Pi OS Guide”;

▪ “4.5.5. Programming Fundamentals Raspbian OS”;

▪ “4.5.6. Programming Fundamentals Windows 10 IOT Core”.

4.5.1. Raspberry Pi General Information

The Raspberry Pi is a series of small single-board computers developed in the UK by the
Raspberry Pi Foundation to promote modern computer science in schools and developing
electronic communities. Adding the 40-pin GPIO connector to the computer board allows
developers not only improving their programming skills but also open them new horizons
in controlling processes and devices not available for desktop computers. According
to the Raspberry Pi Foundation, the entire boards' sales in July 2017 has reached
nearly 15 million units. The first generation of this new board type was developed and
then released in February 2012 – Raspberry Pi Model B. Each Raspberry Pi board
contains hardware modules which together makes it fully usable PC like a computer
which size fits the typical credit card (85/56 mm) size and small power consumption
< 3.5 W. This makes this kind of single board computers one of the most popular in
developers community. For today there exist thousands of hardware implementation
projects available for users who want to learn the modern hardware and software
controlling units within their projects. The general Raspberry Pi features are listed below.

Hardware

Hardware boards (depending on the manufactured model) contains interfaces: Ethernet,
Bluetooth, WiFi, USB, AUDIO, HDMI and GPIO ports [105] based on 700 MHz micro USB
port.

Processor

The first Raspberry Pi 2 models use the 900 MHz Broadcom BCM2836 SoC 32-bit quad-
core ARM Cortex-A7 processor, with shared 256 KB L2 cache. After this earlier models,
the Raspberry Pi 2 V1.2 has been upgraded to a Broadcom BCM2837 SoC equipped with
a 1.2 GHz 64-bit quad-core ARM Cortex-A53 processor. Latest Raspberry Pi 3 series uses
the same SoC. They use the Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core
ARM Cortex-A53 processor, equipped with 512 KB shared L2 cache. The Raspberry Pi
3B+ uses the same processor (BCM2837B0) but running at 1.4 GHz. Next Raspberry Pi
generations are going to be more and more powerful, but their power consumption is still

4. IoT Hardware Overview

166

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/hardware_platform
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/sensors_and_sensing
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/drivers_and_driving
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/introduction_to_programming_rpi
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/programming_fundamentals_python
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/programming_fundamentals_winiot

rising to force developers to use CPU and GPU heatsinks.

RAM

Older B board models were designed with 128 MB RAM which was by default allocated
between the GPU and CPU. The Model B (including Model A) release the RAM was
extended to 256 MB split to there regions. The default split was 192 MB (RAM for
CPU), which is sufficient for standalone 1080p video decoding, or for 3D modelling.
Models B with 512 MB RAM initially, memory was split to files released (arm256_start.elf,
arm384_start.elf, arm496_start.elf) for 256 MB, 384 MB and 496 MB CPU RAM (and 256
MB, 128 MB and 16 MB video RAM). The Raspberry Pi 2 and 3 are shipped with 1 GB of
RAM. The Raspberry Pi Zero and Zero W contains 512 MB of RAM.

Networking

The Model A, A+ and Pi Zero have no dedicated Ethernet interface and can be connected
to a network using an external USB Ethernet or WiFi adapter. In Models B and B+, the
Ethernet port is built-in to the USB Ethernet adapter using the SMSC LAN9514 chip. The
Raspberry Pi 3 and Pi Zero W (wireless) models are equipped with 2.4 GHz WiFi 802.11n
(150 Mbit/s) and Bluetooth 4.1 (24 Mbit/s) based on Broadcom BCM43438 FullMAC chip.
The Raspberry Pi 3 also has a 10/100 Ethernet port.

Peripherals

The Raspberry Pi may be controlled with any generic USB computer keyboard and
mouse. It can also use USB storage, USB to MIDI converters, and virtually any other
device/component which is USB compatible. Other peripherals can be attached through
the various pins and connectors on the surface of the Raspberry Pi.

Video

The video controller supports standard modern TV resolutions, such as HD and Full HD,
and higher. It can emit 640 × 350 EGA; 640 × 480 VGA; 800 × 600 SVGA; 1024 ×
768 XGA; 1280 × 720 720p HDTV; 1280 × 768 WXGA variant; 1280 × 800 WXGA
variant; 1280 × 1024 SXGA; 1366 × 768 WXGA variant; 1400 × 1050 SXGA+; 1600 ×
1200 UXGA; 1680 × 1050 WXGA+; 1920 × 1080 1080p HDTV; 1920 × 1200 WUXGA.
Higher resolutions, such as, up to 2048 × 1152, may work or even 3840 × 2160 at
15 Hz. Although the Raspberry Pi 3 does not include H.265 hardware decoders, the
CPU is more powerful than its predecessors, potentially fast enough for software decode
H.265-encoded videos. The Raspberry Pi 3 GPU runs at a higher clock frequency – 300
MHz or 400 MHz, compared to 250 MHz previous versions. The Raspberry Pis is capable
of generating 576i and 480i composite video signals, as used on old-style (CRT) TV
screens and less-expensive monitors through standard connectors – either RCA or 3.5
mm phono connector depending on models. The television signal standards supported
are PAL-BGHID, PAL-M, PAL-N, NTSC and NTSC-J.

Real-Time Clock

None of the current Raspberry Pi models is equipped with a built-in real-time clock.
Developers which needs the real clock time in their project can retrieve the time from
a network time server (NTP) or use the external RTC module connected to the board
via SPI or I²C interface. To save the file system consistency of time, the Raspberry

4.5. Raspberry Pi Overview

167

Pi automatically saves the time on shutdown, and reload it time at boot. One of the
best RTC solutions for keeping the proper boards time is to use the I²C DS1307 chip
containing hardware clock with battery power supply.

Specification

Table 14: Raspberry Pi Models A Comparative Table

Version Model A

RPi 1 Model A RPi 1 Model A+ RPi 3 Model
A+

Release date 2/1/2013 11/1/2014 11/1/2018

Target price
(USD) 25 20 25

Instruction
set ARMv6Z (32-bit) ARMv8 (64-bit)

SoC Broadcom BCM2835 Broadcom
BCM2837B0

FPU VFPv2; NEON not supported VFPv4 + NEON

CPU 1× ARM1176JZF-S 700 MHz 4× Cortex-A53
1.4 GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @
300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8
GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-
profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM) 256 MB (shared with GPU)

512 MB (shared with GPU) as of 4
May 2016. Older boards had 256

MB (shared with GPU)

USB 2.0
ports 1 (direct from BCM2835 chip)

1 (direct from
BCM2837B0

chip)

Video input 15-pin MIPI camera interface (CSI) connector, used with the
Raspberry Pi camera or Raspberry Pi NoIR camera

Video
outputs

HDMI (rev 1.3) composite video
(RCA jack), MIPI display
interface (DSI) for raw LCD
panels

HDMI (rev 1.3), composite video
(3.5 mm TRRS jack), MIPI display
interface (DSI) for raw LCD panels

Audio inputs As of revision 2 boards via I²S

Audio
outputs

Analog via 3.5 mm phone jack; digital via HDMI and, as of revision 2
boards, I²S

4. IoT Hardware Overview

168

Version Model A

On-board
storage

SD, MMC, SDIO card slot (3.3 V
with card power only) MicroSDHC slot

On-board
network None

2.4 GHz and 5
GHz IEE
802.11.b/g/n/ac
wireless LAN,
Bluetooth 4.2/
BLE

Low-level
peripherals

8× GPIO plus the following,
which can also be used as GPIO:
UART, I²C bus, SPI bus with two
chip selects, I²S audio +3.3 V,
+5 V, ground

17× GPIO plus the same specific
functions, and HAT ID bus

Power
ratings 300 mA (1.5 W) 200 mA (1 W)

Power source 5 V via MicroUSB or GPIO header

Size
85.60 mm × 56.5 mm (3.370
in × 2.224 in), excluding
protruding connectors

65 mm × 56.5
mm × 10 mm
(2.56 in × 2.22 in
× 0.39 in), same
as HAT board

65 mm x 56.5
mm

Weight 31 g (1.1 oz) 23 g (0.81 oz)

Console Adding a USB network interface via tethering or a serial cable with
optional GPIO power connector

Generation 1 1 + 3+

Obsolescence
n/a n/a

in production
until at least
January 2023Statement

Type Model A

Table 15: Raspberry Pi Models B Comparative Table

Version Model B

RPi 1
Model B

RPi 1
Model B+

RPi 2
Model B

RPi 2
Model
B v1.2

RPi 3
Model B

RPi 3
Model B+

Release date April–June
2012 7/1/2014 2/1/2015 10/1/

2016 2/1/2016 3/14/2018

Target price
(USD) 35 25 35

Instruction ARMv6Z (32-bit) ARMv7-A ARMv8-A (64/32-bit)

4.5. Raspberry Pi Overview

169

Version Model B

set (32-bit)

SoC Broadcom BCM2835 Broadcom
BCM2836

Broadcom
BCM2837

Broadcom
BCM2837B0

FPU VFPv2; NEON not
supported

VFPv3 +
NEON VFPv4 + NEON

CPU 1× ARM1176JZF-S 700
MHz

4×
Cortex-
A7 900
MHz

4×
Cortex-
A53
900
MHz

4× Cortex-
A53 1.2
GHz

4× Cortex-
A53 1.4
GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @
300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8
GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-
profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM)

512 MB (shared with
GPU) as of 4 May 2016.
Older boards had 256
MB (shared with GPU)

1 GB (shared with GPU)

USB 2.0
ports

2 (via on-
board
3-port USB
hub)

4 (via on-board 5-port USB hub)

Video input 15-pin MIPI camera interface (CSI) connector, used with the
Raspberry Pi camera or Raspberry Pi NoIR camera

Video
outputs

HDMI (rev
1.3),
composite
video (RCA
jack), MIPI
display
interface
(DSI) for
raw LCD
panels

HDMI (rev 1.3), composite video (3.5 mm TRRS jack),
MIPI display interface (DSI) for raw LCD panels

Audio inputs As of revision 2 boards via I²S

Audio
outputs

Analog via 3.5 mm phone jack; digital via HDMI and, as of revision 2
boards, I²S

On-board
storage

SD, MMC,
SDIO card
slot

MicroSDHC slot MicroSDHC slot, USB
Boot Mode

4. IoT Hardware Overview

170

Version Model B

On-board
network

10/100 Mbit/s Ethernet (8P8C) USB adapter
on the USB hub

10/100
Mbit/s
Ethernet,

10/100/
1000 Mbit/s
Ethernet
(real speed
max 300
Mbit/s),

802.11b/
g/n single
band 2.4
GHz
wireless,

802.11b/g/
n/ac dual
band 2.4/5
GHz
wireless,

Bluetooth
4.1 BLE

Bluetooth
4.2 LS BLE

Low-level
peripherals

8× GPIO
plus the
following,
which can
also be used
as GPIO:
UART, I²C
bus, SPI bus
with two
chip selects,
I²S audio
+3.3 V, +5
V, ground.

17× GPIO plus the same specific functions, and HAT ID
bus

An
additional
4× GPIO are
available on
the P5 pad if
the user is
willing to
make solder
connections

Power
ratings

700 mA (3.5
W)

200 mA (1
W)
average
when idle,
350 mA
(1.75 W)
maximum
under
stress
(monitor,

220 mA (1.1 W)
average when idle,
820 mA (4.1 W)
maximum under
stress (monitor,
keyboard and
mouse connected)

300 mA
(1.5 W)
average
when idle,
1.34 A
(6.7 W)
maximum
under
stress
(monitor,

459 mA
(2.295 W)
average
when idle,
1.13 A
(5.661 W)
maximum
under
stress
(monitor,

4.5. Raspberry Pi Overview

171

Version Model B

keyboard
and mouse
connected)

keyboard,
mouse and
WiFi
connected)

keyboard,
mouse and
WiFi
connected)

Power source 5 V via MicroUSB or GPIO header

Size 85.60 mm × 56.5 mm (3.370 in × 2.224 in),
excluding protruding connectors

85.60 mm × 56.5 mm
× 17 mm (3.370 in ×
2.224 in × 0.669 in)

Weight 45 g (1.6 oz)

Console Adding a USB network interface via tethering or a serial cable with
optional GPIO power connector

Generation 1 1 + 2 2 ver
1.2 3 3+

Obsolescence

n/a n/a n/a n/a n/a

in
production
until at
least
January
2023

Statement

Type Model B

Table 16: Raspberry Pi Models Compute Module Comparative Table

Version Compute Module*

Compute
Module 1

Compute
Module

3

Compute
Module 3

lite
Compute Module 3+

Release date 4/1/2014 1/1/2017 1/1/2019

Target price
(USD)

$30 (in batches
of 100) 30 25

Instruction
set ARMv6Z (32-bit) ARMv8-A (64/32-bit)

SoC Broadcom
BCM2835 Broadcom BCM2837 Broadcom BCM2837B0

FPU VFPv2; NEON not
supported VFPv4 + NEON

CPU 1× ARM1176JZF-
S 700 MHz 4× Cortex-A53 1.2 GHz

GPU Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @
300 MHz, video part of GPU @ 400 MHz)

4. IoT Hardware Overview

172

Version Compute Module*

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8
GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-
profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM)

512 MB (shared
with GPU) 1 GB (shared with GPU)

USB 2.0
ports

1 (direct from
BCM2835 chip) 1 (direct from BCM2837 chip)

Video input 2× MIPI camera interface (CSI)

Video
outputs

HDMI, 2× MIPI display interface (DSI) for
raw LCD panels, composite video

Audio inputs As of revision 2 boards via I²S

Audio
outputs Analog, HDMI, I²S

On-board
storage

4 GB eMMC flash memory
chip MicroSDHC

On-board
network None

Low-level
peripherals

46× GPIO, some of which can be used for specific functions including
I²C, SPI, UART, PCM, PWM

Power
ratings 200 mA (1 W) 700 mA (3.5 W)

Power source 5 V via MicroUSB or GPIO header

Size
67.6 mm × 30
mm (2.66 in ×
1.18 in)

67.6 mm × 31 mm (2.66 in × 1.22 in)

Weight 7 g (0.25 oz)

Console Adding a USB network interface via tethering or a serial cable with
optional GPIO power connector

Generation 1 3 3 lite 3+ lite

Obsolescence
n/a n/a n/a

CM3+ will remain in
production until at least
January 2026Statement

Type Compute Module*

Table 17: Raspberry Pi Models Zero Comparative Table

Version Zero

RPi Zero RPi Zero PCB v1.3 RPi Zero W

4.5. Raspberry Pi Overview

173

Version Zero

PCB v1.2

Release date 11/1/2015 5/1/2016 2/28/2017

Target price
(USD) 5 10

Instruction
set ARMv6Z (32-bit)

SoC Broadcom BCM2835

FPU VFPv2; NEON not supported

CPU 1× ARM1176JZF-S 1 GHz

GPU

Broadcom VideoCore IV @ 250 MHz (BCM2837: 3D part of GPU @
300 MHz, video part of GPU @ 400 MHz)

OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28.8
GFLOPS)

MPEG-2 and VC-1 (with license), 1080p30 H.264/MPEG-4 AVC high-
profile decoder and encoder (BCM2837: 1080p60)

Memory
(SDRAM) 512 MB (shared with GPU)

USB 2.0
ports 1 Micro-USB (direct from BCM2835 chip)

Video input None MIPI camera interface (CSI)

Video
outputs

Mini-HDMI, 1080p60, composite video via marked points on PCB for
optional header pins

Audio inputs As of revision 2 boards via I²S

Audio
outputs Mini-HDMI, stereo audio through PWM on GPIO

On-board
storage MicroSDHC

On-board
network None

802.11b/g/n single
band 2.4 GHz wireless,

Bluetooth 4.1 BLE

Low-level
peripherals 17× GPIO plus the same specific functions, and HAT ID bus

Power
ratings

100 mA (0.5 W) average when idle, 350 mA (1.75 W) maximum under
stress (monitor, keyboard and mouse connected)

Power source 5 V via MicroUSB or GPIO header

Size 65 mm × 30 mm × 5 mm (2.56 in × 1.18 in × 0.20 in)

4. IoT Hardware Overview

174

Version Zero

Weight 9 g (0.32 oz)

Console Adding a USB network interface via tethering or a serial cable with
optional GPIO power connector

Generation PCB ver 1.2 PCB ver 1.3 W (wireless)

Obsolescence
n/a, or see
PCB ver 1.3

Zero is currently stated as being
not before January 2022 n/a

Statement

Type Zero

Raspberry Pi Boards

As for today, on the market there are available few models of Raspberry Pi boards,
from tiny ones to more powerful. User can choose the right board to fit the price and
functionality to his project development needs. Below figures are listed form the tiny/
cheap to most sophisticated Raspberry Pi models.

Figure 167: Raspberry Pi Zero [106].

Figure 168: Raspberry Pi 1 Model A.

4.5. Raspberry Pi Overview

175

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_zero.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_1a.png?id=en%3Abook

Figure 169: Raspberry Pi 1 Model A+ revision 1.1 [107].

Figure 170: Raspberry Pi 1 Model B revision 1.2 [108].

Figure 171: Raspberry Pi 2 [109].

Figure 172: Raspberry Pi 3 [110].

4. IoT Hardware Overview

176

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_a_rev1.1.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_b_rev2.0.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberry_pi_b_rev1.2.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/raspberrypi_3_b.png?id=en%3Abook

General-Purpose Input-Output (GPIO) Connector

Each Raspberry Pi model is equipped with standard 34/40-pis male connector containing
universal GPIO ports, VCC 3.3/5V, GND, CLK, I2C/SPI buses pins which developers
can use to connect their external sensors, switches and other controlled devices to the
Raspberry Pi board and then program their behaviour within the code loaded to the
board.

▪ Raspberry Pi 1 Models A+ and B+, Pi 2 Model B, Pi 3 Model B and Pi Zero (and Zero
W) GPIO J8 have a 40-pin pinout. Raspberry Pi 1 Models A and B have only the first
26 pins.

Figure 173: Raspberry Pi 1 pins.

▪ Model B rev. 2 also has a pad (called P5 on the board and P6 on the schematics) of 8
pins offering access to an additional 4 GPIO connections.

Figure 174: Raspberry Pi 2 & 3 pins.

HDMI Port
Each Raspberry Pi model is equipped with the standard mini HDMI port allows user
connect the monitor or TV set with the board.The electronic schematic is shown on the
picture.

4.5. Raspberry Pi Overview

177

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gpio1.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gpio2.png?id=en%3Abook

Figure 175: Raspberry HDMI port connection schematic.

Camera Port CSI

Raspberry Pi boars Zero, 1, A+, 2, 3 are equipped with Camera interface (CSI) port
allowing user connect the CCD camera following the MIPI standard.

Figure 176: Raspberry CSI camera schematic [111].

4. IoT Hardware Overview

178

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_hdmi_port.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_cam_port.png?id=en%3Abook

Figure 177: Raspberry CSI camera view [112].

Display Port (DSI)

Raspberry Pi boars 2, 3 are equipped with LCD Display interface(DSI) port allowing the
user to connect the LCD touch display to the board. The official Raspberry Pi LCD touch
display shown in the figure below is 800 x 480 dpi 7“ size can be connected to the
Raspberry board using the DSI interface. Such an assembly can be used in the projects
to display controlling application view and with the ability to handle fingers touchscreen
controls the project behaviour. The LCD can be mounted in portrait/landscape orientation
fitting the best user needs.

Figure 178: Raspberry DSI display port schematic [113].

Figure 179: Raspberry DSI LCD display kit [114].

4.5. Raspberry Pi Overview

179

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_cam.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_ds_port.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_dsi.png?id=en%3Abook

USB and LAN Ports

Raspberry PI models boars Zero, 1, A+, 2, 3 contains USB ports (from 1 up to 4) and
models boars 1, A+, 2, 3 the LAN port for TCP/IP network connections. This ports can be
used for mouse/keyboard connection or if the software has appropriate driver installed
to handle other USB devices.

Figure 180: Raspberry LAN/USB ports view [115].

4.5.2. Raspberry Pi Sensors

Raspberry Pi boards offer an easy way to connect different sensors and control devices.
With specially designed I/O pins available to program them by developers the amount
of possible implementations growth year by year. Any I/O General Purpose Input-Output
Ports (GPIO) can be set as Digital Input or Output. The board contains two PWM pins
which can be used as output analogue signals. Some of the interface libraries, such
as pigpio or wiringPi, support this feature. It is also the way the Raspberry Pi outputs
analogue audio.

Touch Sensors

Button
A pushbutton is an electromechanical sensor that connects or disconnects two points in
a circuit when the force is applied. Button output discrete value is either HIGH or LOW.

A microswitch, also called a miniature snap-action switch, is an electromechanical
sensor that requires a very little physical force and uses tipping-point mechanism.
Microswitch has three pins, two of which are connected by default. When the force is
applied, the first connection breaks and one of the pins is connected to the third pin.

The most common use of a push button is as an input device. Both force solutions can
be used as simple object detectors, or as end switches in the industrial devices.

4. IoT Hardware Overview

180

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/rpbi_usb_ports.jpg?id=en%3Abook

Figure 181: A push button[116] and a microswitch [117].

Figure 182: Schematics of Raspberry Pi and a push button.

To proper work with the button, the GPIO4 must be configured as an digital input.
Pressing the push button connects the GPIO4 pin to the boards GND. On Raspberry
Pi GPIO input pins are normally pulled up to 3.3 V. When the button is pressed, and
GPIO4 is read using GPIO.input, it will return the FALSE result. Each GPIO pin can be
configured to use internal pull-up or pull-down resistors. Using a GPIO pin as an input,
these resistors can be configured using the optional pull_up_down parameter in the
GPIO.setup. If this parameter is omitted, resistors will not be activated. In this case, the
input may floating giving unpredicted results during reading it. If the GPIO pin is set to
GPIO.UD_UP, the pull-up resistor is enabled; if it is set to GPIO.PUD_DOWN, the pull-
down resistor is enabled.

An example code:

#Python code for Raspberry Pi

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
s_pin = 7 #Select the GPIO4 pin

#Set the GPIO4 port to input mode
GPIO.setup(s_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

while True:
input_state = GPIO.input(s_pin)
if input_state == False:

print('Button Pressed')
time.sleep(0.2)

Running the code as superuser shows:

pi@raspberrypi ~ $ sudo python switch.py
Button Pressed
Button Pressed
Button Pressed
Button Pressed

4.5. Raspberry Pi Overview

181

https://home.roboticlab.eu/lib/exe/fetch.php?tok=fdf94a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fpush.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_switch.png?id=en%3Abook

Force Sensor
A force sensor predictably changes resistance, depending on the applied force to its
surface. Force-sensing resistors are manufactured in different shapes and sizes, and they
can measure not only direct force but also the tension, compression, torsion and other
types of mechanical forces. The voltage is measured by applying and measuring constant
voltage to the sensor.

Force sensors are used as control buttons or to determine weight.

Figure 183: 0.5 inch force sensing resistor (FSR) [118].

Figure 184: Raspberry Pi and Force Sensitive Resistor circuit schematics.

An example code:

#Python code for Raspberry Pi

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)

a_pin = 7 #Select the GPIO4 pin
b_pin = 29 #Select the GPIO5 pin

def discharge():
GPIO.setup(a_pin, GPIO.IN)
GPIO.setup(b_pin, GPIO.OUT)
GPIO.output(b_pin, False)
time.sleep(0.005)

def charge_time():
GPIO.setup(b_pin, GPIO.IN)
GPIO.setup(a_pin, GPIO.OUT)
count = 0
GPIO.output(a_pin, True)
while not GPIO.input(b_pin):

count = count + 1
return count

def analog_read():
discharge()

4. IoT Hardware Overview

182

https://home.roboticlab.eu/lib/exe/fetch.php?tok=c37542&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fforcesensor.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_r_switch.png?id=en%3Abook

return charge_time()

while True:
print(analog_read())
time.sleep(1)

Running the code as superuser shows:

$ sudo python pot_step.py
10
12
10
10
16
23
43
53
67
72
86
105
123
143
170

The idea of how to read the force sensor changing value is called step response.
It works by checking how the circuit responds to the step change when an output
is switched from low to high. Raspberry Pi isn't equipped with an ADC converter. So
it is impossible to read voltage directly. However, it can be measured how long the
capacitor will fill with the charge to the extent that it gets voltage above 1.65 V or so
that constitutes a high digital input. The speed at which the capacitor fills with charge
depends on the value of the variable resistor (Rt). The lower the resistance, the faster the
capacitor fills with charge, and the voltage rises. To get the proper value, the circuit must
empty the capacitor each time before the reading starts. In the schematic the GPIO4 is
used to charge the capacitor and GPIO5 is used to discharge the capacitor through the 10
kΩ resistor. Both resistors are used to make sure that there is no way too much current
can flow as the capacitor is charged and discharged. To discharge it, connection GPIO4
is set to be an input, effectively disconnecting Rc and Rt from the circuit. Connection
GPIO5 is then set to be an output and low. It is held there for 5 milliseconds, to empty
the capacitor.

Capacitive Sensor
Capacitive sensors are a range of sensors that use capacitance to measure changes in
the surrounding environment. A capacitive sensor consists of a capacitor that is charged
with a certain amount of current until the threshold voltage. A human finger, liquids or
other conductive or dielectric materials that touch the sensor, can influence a charge
time and a voltage level in the sensor. Measuring charge time and a voltage level gives
information about changes in the environment.

Capacitive sensors are used as input devices and can measure proximity, humidity, fluid
level and other physical parameters or serve as an input for electronic device control.

4.5. Raspberry Pi Overview

183

Figure 185: Digital capacitive touch sensor v2.0 switch module [119].

Figure 186: Raspberry Pi and capacitive sensor schematics.

#Python code for Raspberry Pi

import time
import pigpio #http://abyz.co.uk/rpi/pigpio/python.html
RXD=15 #Define the RxD serial input port

pi = pigpio.pi()
if not pi.connected:

exit(0)

pigpio.exceptions = False #Ignore error if already set as bit bang read.
pi.bb_serial_read_open(RXD, 9600) #Set baud rate here.
pigpio.exceptions = True
pi.bb_serial_invert(RXD, 1) #Invert line logic.
stop = time.time() + 60.0
while time.time() < stop:

(count, data) = pi.bb_serial_read(RXD)
if count:

print(data)
time.sleep(0.2)

pi.bb_serial_read_close(RXD)

pi.stop()

Proximity and Distance Sensors

Ultrasound Sensor
Ultrasound (ultrasonic) sensor measures the distance to objects by emitting ultrasound
and measuring its returning time. The sensor consists of an ultrasonic emitter and
receiver; sometimes, they are combined in a single device for emitting and receiving.
Ultrasonic sensors can measure greater distances and cost less than infrared sensors,
but are more imprecise and interfere which each other measurement if more than one
is used. Simple sensors have trigger pin and echo pin, when the trigger pin is set high
for the small amount of time ultrasound is emitted and on echo pin, response time is
measured. Ultrasonic sensors are used in car parking sensors and robots for proximity
detection.

4. IoT Hardware Overview

184

https://home.roboticlab.eu/lib/exe/fetch.php?tok=dbedf0&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2F20150331175832j7qsika.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_c_snsr.png?id=en%3Abook

Figure 187: Ultrasonic proximity sensor HC-SR04 [120].

Examples of IoT applications are robotic obstacle detection and room layout scanning.

Figure 188: Raspberry Pi and ultrasound proximity sensor circuit.

An example code:

#Python code for Raspberry Pi

import RPi.GPIO as GPIO
import time
TRIG = 7 #Define a trigger pin GPIO4
ECHO = 29 #Define an echo pin GPIO5

print ("Distance Measurement In Progress")

GPIO.setup(TRIG, GPIO.OUT) #Set the GPIO4 as trigger output port
GPIO.setup(ECHO,GPIO.IN) #Set the GPIO5 pin as echo input

GPIO.output (TRIG,False)

print ("Waiting for Sensor to Settle")
time.sleep(2)
GPIO.output (TRIG, True)
time.sleep (0.00001)
GPIO.output (TRIG, False)

while GPIO.input(ECHO) == 0:
pulse_start = time.time()

while GPIO.input(ECHO) == 1:
pulse_end = time.time()

pulse_duration = pulse_end - pulse_start
distance = pulse_duration*17150
distance = round(distance,2) #Calculating the distance
print ("Distance:", distance, "cm")

Running the code as superuser shows:

4.5. Raspberry Pi Overview

185

https://home.roboticlab.eu/lib/exe/fetch.php?tok=cdb6ec&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fultrasound.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_u_snsr.png?id=en%3Abook

pi@raspberrypi > $ sudo python range_sensor.py
Distance Measurement To Settle
Distance: 23.54 cm
pi@raspberrypi > $

Motion Detector
The motion detector is a sensor that detects moving objects, most people. Motion
detectors use different technologies, like passive infrared sensors, microwaves and
Doppler effect, video cameras and previously mentioned ultrasonic and IR sensors.
Passive IR sensors are the simplest motion detectors that sense people trough detecting
IR radiation that is emitted through the skin. When the motion is detected, the output of
a motion sensor is a digital HIGH/LOW signal.

Motion sensors are used for security purposes, automated light and door systems. As an
example in IoT, the PIR motion sensor can be used to detect motion in security systems
a house or any building.

Figure 189: PIR motion sensor HC-SR501 [121].

Figure 190: Raspberry Pi and PIR motion sensor circuit.

An example code:

#Python code for Raspberry Pi

pirPin = 7; //Passive Infrared (PIR) sensor output is connected to the GPIO4 pin

GPIO.setup(pirPin ,GPIO.IN) #Set the GPIO5 pin as echo input

while 1:
#Read the digital value of the PIR motion sensor GPIO4
pirReading = GPIO.input(pirPin)
print (piReading) #Print out

if pirReading == True: #Motion was detected
print ('Motion Detected')

time.sleep(10)

4. IoT Hardware Overview

186

https://home.roboticlab.eu/lib/exe/fetch.php?tok=944915&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fpir_module.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_m_snsr.png?id=en%3Abook

Gyroscope
A gyroscope is a sensor that measures the angular velocity. The sensor is made of the
microelectromechanical system (MEMS) technology and is integrated into the chip. The
output of the sensor can be either analogue or digital value of information, using I2C or
SPI interface. Gyroscope microchips can vary in the number of axes they can measure.
The available number of the axis is 1, 2 or 3 axes in the gyroscope. For gyroscopes with 1
or 2 axes, it is essential to determine which axis the gyroscope measures and to choose
a device according to the project needs. A gyroscope is commonly used together with an
accelerometer, to determine the orientation, position and velocity of the device precisely.
Gyroscope sensors are used in aviation, navigation and motion control.

Gyroscope sensors are used in aviation, navigation and motion control.

Figure 191: MPU 6050 GY-521 breakout board [122].

Figure 192: Raspberry Pi and MPU 6050 GY-521 gyro breakout schematics.

The example code for the FXAS21002C sensor used in the breakout board:

#Python code for Raspberry Pi
#!/usr/bin/env python

from __future__ import division, print_function
from nxp_imu import IMU
import time
imu = IMU(gs=4, dps=2000, verbose=True)
header = 67
print('-'*header)
print("| {:17} | {:20} | {:20} |".format("Accels [g's]", " Magnet [uT]", "Gyros [dps]"))
print('-'*header)
for _ in range(10):

a, m, g = imu.get()
print('| {:>5.2f} {:>5.2f} {:>5.2f} | {:>6.1f} {:>6.1f}

{:>6.1f} | {:>6.1f} {:>6.1f} {:>6.1f} |'.format(
a[0], a[1], a[2],
m[0], m[1], m[2],
g[0], g[1], g[2])

)
time.sleep(0.50)

4.5. Raspberry Pi Overview

187

https://home.roboticlab.eu/lib/exe/fetch.php?tok=a1eea5&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fgy-521_1_gyro.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_g_snsr.png?id=en%3Abook

print('-'*header)
print(' uT: micro Tesla')
print(' g: gravity')
print('dps: degrees per second')
print('')

Compass
A compass is a sensor, that can measure the orientation of the device to the magnetic
field of the Earth. Solid state compass consists of the magnetometer and accelerometers
in a single chip to precisely calculate the position of the device. Devices communicate
through I2C or SPI interfaces and can return calculated heading, pitch and roll and raw
accelerometer and magnetometer values. Compass is used in outdoor navigation for
mobile devices, robots, quadcopters.

Figure 193: Compass module HMC5883L [123].

Figure 194: Raspberry Pi and Compass module HMC5883L schematics.

The example code:

1. Install i2c:
sudo apt-get install i2c-tools

2. edit file /etc/modprobe.d/raspi-blacklist.conf
and comment out the line blacklist i2c-bcm2708

3. edit /etc/modules, and add the lines:
i2c-bcm2708
i2c-dev

4. Allow i2c access from users other than root,
by creating the file /etc/udev/rules.d/99-i2c.rules with this line:

SUBSYSTEM=="i2c-dev", MODE="0666"
5. Reboot the Pi. When it goes up again, type:

ls /dev/i2c*
On Pi (Model B, Revision 2 version, early 2013) it generates:
/dev/i2c-0 /dev/i2c-1
Optional: For python, install the smbus python library with:
1. apt-get install python-smbus
2. Install Python 3, can’t hurt, and i2clibraries needs it.

Just type sudo apt-get install python3
3. Test if the compass is detected, by typing:

4. IoT Hardware Overview

188

https://home.roboticlab.eu/lib/exe/fetch.php?tok=f6998f&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fcompass5883l_bob-small.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_cs_snsr.png?id=en%3Abook

i2cdetect -y 1 (for Revision 1 Pis, replace 1 with 0).
4. Replace with 0 for Revision 1 Raspberry Pis and with

1 for Revision 2 boards. This is the output:
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1e --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

Tip: if you don’t see it, it’s because you haven’t welded the pins to the sensor. Just press with your finger. Or weld it.
1. Add the quick2wire code. Pull from git:

git clone https://github.com/quick2wire/quick2wire-python-api.git.
On /etc/profile, add: export QUICK2WIRE_API_HOME=/home/pi/quick2wire-python-api

2. export PYTHONPATH=$PYTHONPATH:$QUICK2WIRE_API_HOME
Add i2clibraries. Pull from git:git
clone https://bitbucket.org/thinkbowl/i2clibraries.git

Environment Sensors

Temperature Sensor
A temperature sensor is a device that is used to determine the temperature of the
surrounding environment. Most temperature sensors work on the principle that the
resistance of the material is changed depending on its temperature. The most common
temperature sensors are:

▪ thermocouple – consists of two junctions of dissimilar metals,

▪ thermistor – includes the temperature-dependent ceramic resistor,

▪ resistive temperature detector – is made of a pure metal coil.

The main difference between sensors is the measured temperature range, precision
and response time. Temperature sensor usually outputs the analogue value, but some
existing sensors have a digital interface [124].

The temperature sensors most commonly are used in environmental monitoring devices
and thermoelectric switches. In IoT applications, the sensor can be used for greenhouse
temperature monitoring, warehouse temperature monitoring to avoid frozen fire
suppression systems and tracking temperature of the soil, water and plants.

Figure 195: Thermistor sensor [125].

4.5. Raspberry Pi Overview

189

https://home.roboticlab.eu/lib/exe/fetch.php?tok=5ddc86&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Ftemperature_ntc10kepoxythermistor_lrg.jpg

Figure 196: Raspberry Pi and thermistor circuit.

An example code is similar to the Raspberry Pi force sensor sample. The thermistor
changes its resistance depends on the environment temperature, and it can be read
using similar code:

#Python code for Raspberry Pi

import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)

a_pin = 7 #Select the GPIO4 pin
b_pin = 29 #Select the GPIO5 pin

def discharge():
GPIO.setup(a_pin, GPIO.IN)
GPIO.setup(b_pin, GPIO.OUT)
GPIO.output(b_pin, False)
time.sleep(0.005)

def charge_time():
GPIO.setup(b_pin, GPIO.IN)
GPIO.setup(a_pin, GPIO.OUT)
count = 0
GPIO.output(a_pin, True)
while not GPIO.input(b_pin):

count = count + 1
return count

def analog_read():
discharge()
return charge_time()

while True:
print(analog_read())
time.sleep(1)

Humidity Sensor
A humidity sensor (hygrometer) is a sensor that detects the amount of water or water
vapour in the environment. The most common principle of the air humidity sensors is
the change of capacitance or resistance of materials that absorb the moisture from the
environment. Soil humidity sensors measure the resistance between the two electrodes.
The resistance between electrodes is influenced by soluble salts and water amount in the
soil. The output of a humidity sensor is usually an analogue signal value [126].

Example IoT applications are monitoring of humidor, greenhouse temperature and
humidity, agricultural environment and art gallery and museum environment.

4. IoT Hardware Overview

190

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_r_switch.png?id=en%3Abook

Figure 197: DHT11 temperature and humidity sensor breakout [127].

Figure 198: Raspberry Pi and humidity sensor schematics.

An example code [128]:

1. Enter this at the command prompt to download the library:
git clone https://github.com/adafruit/Adafruit_Python_DHT.git

2. Change directories with:
cd Adafruit_Python_DHT

3. Now enter this:
sudo apt-get install build-essential python-dev

4. Then install the library with:
sudo python setup.py install

#Python code for Raspberry Pi
#!/usr/bin/python

import sys
import Adafruit_DHT

while True:
humidity, temperature = Adafruit_DHT.read_retry(11, 7) #Read GPIO4 Pin 7
print ('Temp: {0:0.1f} C Humidity: {1:0.1f} %'.format(temperature, humidity))

Sound Sensor
A sound sensor is a sensor that detects vibrations in a gas, liquid or solid environments.
At first, the sound wave pressure makes mechanical vibrations, who transfers to changes
in capacitance, electromagnetic induction, light modulation or piezoelectric generation to
create an electric signal. The electrical signal is then amplified to the required output
levels. Sound sensors, can be used to record sound, detect noise and its level.

Sound sensors are used in drone detection, gunshot alert, seismic detection and vault
safety alarm.

4.5. Raspberry Pi Overview

191

https://home.roboticlab.eu/lib/exe/fetch.php?tok=aad0fc&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fhumidity.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_h_snsr.png?id=en%3Abook

Figure 199: Digital sound detector sensor module [129].

Figure 200: Raspberry Pi and sound sensor schematics.

An example code:

#Python code for Raspberry Pi

import time
import RPi.GPIO as GPIO
from qhue import Bridge

GPIO.setmode(GPIO.BCM) #Use board pin numbers
pin = 7 #Define GPIO4 as Input
GPIO.setup(pin, GPIO.IN)

def callback (pin)
if GPIO.input (pin)

print ("Sound detected!")
else:

print ("Sound detected!")
#Activate when pin changed its state
GPIO.add_event_detect(pin,GPIO_BOTH, bouncetime=300)
#Assign function to GPIO PIN run it on changes
GPIO.add_event_callback(pin,callback)

#Infinite loop
while True:
time.sleep(1)

Chemical/Smoke and Gas Sensor
Gas sensors are a sensor group, that can detect and measure a concentration of certain
gasses in the air. The working principle of electrochemical sensors is to absorb the
gas and to create current from an electrochemical reaction. For process acceleration, a
heating element can be used. For each type of gas, different kind of sensor needs to be
used. Multiple different types of gas sensors can be combined in a single device as well.
The single gas sensor output is an analogue signal, but devices with multiple sensors
used to have a digital interface.

Gas sensors are used for safety devices, to control air quality and for manufacturing
equipment. Examples of IoT applications are air quality control management in smart

4. IoT Hardware Overview

192

https://home.roboticlab.eu/lib/exe/fetch.php?tok=fb2a36&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsound-sensor-module-digital-1.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_m_snsr.png?id=en%3Abook

buildings and smart cities or toxic gas detection in sewers and underground mines.

Figure 201: MQ2 gas sensor [130].

Figure 202: Raspberry Pi and MQ2 gas sensor schematics.

An example code:

#Python code for Raspberry Pi

1. git clone https://github.com/tutRPi/Raspberry-Pi-Gas-Sensor-MQ
2. cd Raspberry-Pi-Gas-Sensor-MQ
3. sudo python example.py

#Python code for Raspberry Pi
#!/usr/bin/env python

import PCF8591 as ADC
import RPi.GPIO as GPIO
import time
import math
DO = 17
Buzz = 18
GPIO.setmode(GPIO.BCM)

def setup():
ADC.setup(0x48)
GPIO.setup (DO, GPIO.IN)
GPIO.setup (Buzz, GPIO.OUT)
GPIO.output (Buzz, 1)

def Print(x):
if x == 1:

print ('')
print (' *********')
print (' * Safe~ *')
print (' *********')
print ('')
if x == 0:

print ('')
print (' ***************')
print (' * Danger Gas! *')

4.5. Raspberry Pi Overview

193

https://home.roboticlab.eu/lib/exe/fetch.php?tok=d26602&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fgas_sensor_module.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_ch_snsr.png?id=en%3Abook

print (' ***************')
print ('')

def loop():
status = 1
count = 0
while True:

print (ADC.read(0))

tmp = GPIO.input(DO);
if tmp != status:

print(tmp)
status = tmp
if status == 0:

count += 1
if count % 2 == 0:

GPIO.output(Buzz, 1)
else:

GPIO.output(Buzz, 0)
else:

GPIO.output(Buzz, 1)
count = 0

time.sleep(0.2)
def destroy():

GPIO.output(Buzz, 1)
GPIO.cleanup()

if __name__ == '__main__':
try:

setup()
loop()
except KeyboardInterrupt:
destroy()

Other Sensors

Global Positioning System
A GPS receiver is a device, that can receive information from a global navigation satellite
system and calculate its position on the Earth. GPS receiver uses a constellation of
satellites and ground stations to compute position and time almost anywhere on the
Earth. GPS receivers are used for navigation only in the outdoor area because it needs
to receive signals from the satellites. The precision of the GPS location can vary.

A GPS receiver is used for device location tracking. Real world applications might be pet,
kid or personal belonging location tracking.

4. IoT Hardware Overview

194

Figure 203: LS20031 GPS receiver [131].

Figure 204: Raspberry Pi and LS20031 GPS receiver schematics.

The example code:

#Python code for Raspberry Pi
#!/usr/bin/python

import os
import pygame, sys
from pygame.locals import *
import serial

#Initialise serial port on /ttyUSB0
ser = serial.Serial('/dev/ttyUSB0',4800,timeout = None)
#Set font size MAX 100
fontsize = 50

#Calculate window size
width = fontsize * 17
height = fontsize + 10

#Initilaise pygame
pygame.init()
windowSurfaceObj = pygame.display.set_mode((width,height),1,16)
fontObj = pygame.font.Font('freesansbold.ttf',fontsize)
pygame.display.set_caption('GPS Location')
redColor = pygame.Color(255,0,0)
greenColor = pygame.Color(0,255,0)
yellowColor = pygame.Color(255,255,0)
blackColor = pygame.Color(0,0,0)

fix = 1
color = redColor
x = 0
while x == 0:

gps = ser.readline()
#Print (all NMEA strings)
print (gps)
#Check gps fix status
if gps[1:6] == "GPGSA":

fix = int(gps[9:10])

4.5. Raspberry Pi Overview

195

https://home.roboticlab.eu/lib/exe/fetch.php?tok=6b787d&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fgps.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_gps_snsr.png?id=en%3Abook

if fix == 2:
color = yellowColor

if fix == 3:
color = greenColor

#Print (time, lat and long from #GPGGA string)
if gps[1 : 6] == "GPGGA":

#Clear window
pygame.draw.rect(windowSurfaceObj,blackColor,Rect(0,0,width,height))
pygame.display.update(pygame.Rect(0,0,width,height))
#Get time
time = gps[7:9] + ":" + gps[9:11] + ":" + gps[11:13]
#If 2 or 3D fix get lat and long
if fix > 1:

lat = " " + gps[18:20] + "." + gps[20:22] + "." + gps[23:27] + gps[28:29]
lon = " " + gps[30:33] + "." + gps[33:35] + "." + gps[36:40] + gps[41:42]

#If no fix
else:

lat = " No Valid Data "
lon = " "

#Print new values
msgSurfaceObj = fontObj.render(str(time), False,color)
msgRectobj = msgSurfaceObj.get_rect()
msgRectobj.topleft =(2,0)
windowSurfaceObj.blit(msgSurfaceObj, msgRectobj)

msgSurfaceObj = fontObj.render(str(lat), False,color)
msgRectobj = msgSurfaceObj.get_rect()
msgRectobj.topleft =(210,0)
windowSurfaceObj.blit(msgSurfaceObj, msgRectobj)

msgSurfaceObj = fontObj.render(str(lon), False,color)
msgRectobj = msgSurfaceObj.get_rect()
msgRectobj.topleft =(495,0)
windowSurfaceObj.blit(msgSurfaceObj, msgRectobj)
pygame.display.update(pygame.Rect(0,0,width,height))
fix = 1
color = redColor

#Check for ESC key pressed, or GPS Location window closed, to quit
for event in pygame.event.get():

if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()

}

4.5.3. Raspberry Pi Drivers and Driving

Optical Device Drivers and Their Devices

Light-Emitting Diode
The light-emitting diode also called LED is a special type of diodes which emits light,
unlike the other diodes. LED has a completely different body which is made of
transparent plastic that protects the diode and lets it emit light. Like the other diodes
LED conducts the current in only one way, so it is essential to connect it to the scheme
correctly. There are two safe ways how to determine the direction of the diode:

4. IoT Hardware Overview

196

▪ in the cathodes side of the diode its side is chipped,

▪ anodes leg usually is longer than the cathodes leg.

Figure 205: White LED [132].

The LED is one of the best light sources. Unlike incandescent light bulb LED transforms
most of the power into light, not warmth; it is more durable, works for a more extended
period and can be manufactured in a smaller size.

The LED colour is determined by the semiconductors material. Diodes are usually made
from silicon then LEDs are made from elements like gallium phosphate, silicon carbide
and others. Because the semiconductors used are different, the voltage needed for the
LED to shine is also different. In the table, you can see with which semiconductor you
can get a specific colour and the voltage required to turn on the LED.

When LED is connected to the voltage and turned on a huge current starts to flow
through it, and it can damage the diode. That is why all LEDs have to be connected to
current limiting resistor.

Current limiting resistors resistance is determined by three parameters:

▪ I_D – current that can flow through the LED,

▪ U_D – Voltage that is needed to turn on the LED,

▪ U – combined voltage for LED and resistor.

To calculate the resistance needed for a diode, this is what you have to do.

1. Find out the voltage needed for the diode to work UD; you can find it in the diodes
parameters table.

2. Find out the amperage needed for the LED to shine ID; it can be found in the LEDs
datasheet, but if you can’t find it then 20 mA current is usually a correct and safe
choice.

3. Find out the combined voltage for the LED and resistor; usually, it is the feeding
voltage for the scheme.

4. Insert all the values into this equation: R = (U – U_D) / I_D.

5. You get the resistance for the resistor for the safe use of the LED.

6. Find resistors nominal that is the same or bigger than the calculated resistance.

4.5. Raspberry Pi Overview

197

https://home.roboticlab.eu/lib/exe/fetch.php?tok=89fc4e&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fled.jpg

Figure 206: Raspberry Pi and LED control schematic.

The example of the blinking LED code:

#Raspberry Pi Python sample code

import RPi.GPIO as GPIO
import time
LED = 18 #GPIO04 port

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(LED,GPIO.OUT)
print ("LED on")
GPIO.output(LED,GPIO.HIGH)
time.sleep(1)
print ("LED off")
GPIO.output(LED,GPIO.LOW)

Displays

Using display is a quick way to get a feedback information from the device. There are
many display technologies compatible with Arduino. For IoT solutions low power, easy to
use and monochrome displays are used:

▪ Liquid-crystal display (LCD),

▪ Organic light-emitting diode display (OLED),

▪ Electronic ink display (E ink).

Liquid-Crystal Display (LCD)
LCD uses modulating properties of liquid crystal light to block the incoming light. Thus
when a voltage is applied to a pixel, it has a dark colour. A display consists of layers
of electrodes, polarising filters, liquid crystals and reflector or back-light. Liquid crystals
do not emit the light directly; they do it through reflection or backlight. Because of
this reason, they are more energy efficient. Small, monochrome LCDs are widely used
in devices to show a little numerical or textual information like temperature, time,
device status etc. LCD modules commonly come with an onboard control circuit and are
controlled through parallel or serial interface.

4. IoT Hardware Overview

198

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_led_drv.png?id=en%3Abook

Figure 207: 16×2 LCD display [133].

Figure 208: Raspberry Pi and LCD screen schematics.

The example code:

#Raspberry Pi Python sample code
#!/usr/bin/python
#Example using a character LCD connected to a Raspberry Pi

import time
import Adafruit_CharLCD as LCD

#Raspberry Pi pin setup
lcd_rs = 25
lcd_en = 24
lcd_d4 = 23
lcd_d5 = 17
lcd_d6 = 18
lcd_d7 = 22
lcd_backlight = 2

#Define LCD column and row size for 16x2 LCD.
lcd_columns = 16
lcd_rows = 2

lcd = LCD.Adafruit_CharLCD(lcd_rs, lcd_en, lcd_d4, lcd_d5, lcd_d6,
lcd_d7, lcd_columns, lcd_rows, lcd_backlight)

lcd.message('Hello\nworld!')
#Wait 5 seconds

time.sleep(5.0)
lcd.clear()

4.5. Raspberry Pi Overview

199

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/lcd.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_lcd_drv.png?id=en%3Abook

text = raw_input("Type Something to be displayed: ")
lcd.message(text)

#Wait 5 seconds
time.sleep(5.0)
lcd.clear()
lcd.message('Goodbye\nWorld!')

time.sleep(5.0)
lcd.clear()

Organic Light-Emitting Diode Display (OLED)
OLED display uses electroluminescent materials that emit light when the current passes
through these materials. The display consists of two electrodes and a layer of an organic
compound. OLED displays are thinner than LCDs, they have higher contrast, and they
can be more energy efficient depending on usage. OLED displays are commonly used
in mobile devices like smartwatches, cell phones and they are replacing LCDs in other
devices. Small OLED display modules usually have an onboard control circuit that uses
digital interfaces like I2C or SPI.

Figure 209: OLED I2C display [134].

Figure 210: Raspberry Pi and OLED I2C schematics.

1. git clone https://github.com/adafruit/Adafruit_Python_SSD1306.git
2. cd Adafruit_Python_SSD1306
For Python 2:
3. sudo python setup.py install
For Python3:
4. sudo python3 setup.py install

cd examples
Choose one of existing examples:

- animate.py
- buttons.py
- image.py
- shapes.py
- stats.py

4. IoT Hardware Overview

200

https://home.roboticlab.eu/lib/exe/fetch.php?tok=6dc622&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Foled.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_oled_drv.png?id=en%3Abook

Electronic Ink Display (E-ink)
E-ink display uses charged particles to create a paper-like effect. The display consists
of transparent microcapsules filled with oppositely charged white and black particles
between electrodes. Charged particles change their location, depending on the
orientation of the electric field, thus individual pixels can be either black or white. The
image does not need the power to persist on the screen; power is used only when the
image is changed. Thus e-ink display is very energy efficient. It has high contrast and
viewing angle, but it has a low refresh rate. E-ink displays are commonly used in e-riders,
smartwatches, outdoor signs, electronic shelf labels.

Figure 211: E ink display module [135].

Figure 212: Raspberry Pi and E ink display module schematics.

#Raspberry Pi Python sample code
#From https://www.instructables.com/id/Waveshare-EPaper-and-a-RaspberryPi

import time, datetime, sys, signal, urllib, requests
from EPD_driver import EPD_driver
def handler(signum, frame):

print ('SIGTERM')
sys.exit(0)

signal.signal(signal.SIGTERM, handler)
bus = 0
device = 0
disp = EPD_driver(spi = SPI.SpiDev(bus, device))
print ("disp size : %dx%d"%(disp.xDot, disp.yDot))
print ('------------init and Clear full screen------------')
disp.Dis_Clear_full()
disp.delay()
#Display part
disp.EPD_init_Part()
disp.delay()
imagenames = []
search = "http://api.duckduckgo.com/?q=Cat&format=json&pretty=1"
if search:

req = requests.get(search)
if req.status_code == 200:

for topic in req.json()["RelatedTopics"]:

4.5. Raspberry Pi Overview

201

https://home.roboticlab.eu/lib/exe/fetch.php?tok=24e398&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fe-ink.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_epd_drv.png?id=en%3Abook

if "Topics" in topic:
for topic2 in topic["Topics"]:

try:
url = topic2["Icon"]["URL"]
text = topic2["Text"]
if url:

imagenames.append((url,text))
except:

#Print topic
pass

try:
url = topic["Icon"]["URL"]
if url:

imagenames.append(url)
except:

#Print topic
pass

else:
print (req.status_code)

#Font for drawing within PIL
myfont10 = ImageFont.truetype("amiga_forever/amiga4ever.ttf", 8)
myfont28 = ImageFont.truetype("amiga_forever/amiga4ever.ttf", 28)
#Mainimg is used as screen buffer, all image composing/drawing is done in PIL,
#The mainimg is then copied to the display (drawing on the disp itself is no fun)
mainimg = Image.new("1", (296,128))
name = ("images/downloaded.png", "bla")
skip = 0
while 1:

for name2 in imagenames:
print ('---------------------')
skip = (skip+1)%7
try:

starttime = time.time()
if skip==0 and name2[0].startswith("http"):

name = name2
urllib.urlretrieve(name[0], "images/downloaded.png")
name = ("images/downloaded.png", name2[1])
im = Image.open(name[0])
print (name, im.format, im.size, im.mode)
im.thumbnail((296,128))
im = im.convert("1") #, dither=Image.NONE)
#Print ('thumbnail', im.format, im.size, im.mode)
loadtime = time.time()
print ('t:load+resize:', (loadtime - starttime))
draw = ImageDraw.Draw(mainimg)
#Clear
draw.rectangle([0,0,296,128], fill=255)
#Copy to mainimg
ypos = (disp.xDot - im.size[1])/2
xpos = (disp.yDot - im.size[0])/2
print ('ypos:', ypos, 'xpos:', xpos)
mainimg.paste(im, (xpos,ypos))
#Draw info text
ts = draw.textsize(name[1], font=myfont10)
tsy = ts[1]+1
oldy = -1
divs = ts[0]/250
for y in range(0, divs):

4. IoT Hardware Overview

202

newtext = name[1][(oldy+1)*len(name[1])/divs:(y+1)*len(name[1])/divs]
#Print (divs, oldy, y, newtext)
oldy = y
draw.text((1, 1+y*tsy), newtext, fill=255, font=myfont10)
draw.text((1, 3+y*tsy), newtext, fill=255, font=myfont10)
draw.text((3, 3+y*tsy), newtext, fill=255, font=myfont10)
draw.text((3, 1+y*tsy), newtext, fill=255, font=myfont10)
draw.text((2, 2+y*tsy), newtext, fill=0, font=myfont10)
#Draw time
now = datetime.datetime.now()
tstr = "%02d:%02d:%02d"%(now.hour,now.minute,now.second)
#Draw a shadow, time
tpx = 36
tpy = 96
for i in range(tpy-4, tpy+32, 2):

draw.line([0, i, 295, i], fill=255)
draw.text((tpx-1, tpy), tstr, fill=0, font=myfont28)
draw.text((tpx-1, tpy-1), tstr, fill=0, font=myfont28)
draw.text((tpx , tpy-1), tstr, fill=0, font=myfont28)
draw.text((tpx+2, tpy), tstr, fill=0, font=myfont28)
draw.text((tpx+2, tpy+2), tstr, fill=0, font=myfont28)
draw.text((tpx , tpy+2), tstr, fill=0, font=myfont28)
draw.text((tpx , tpy), tstr, fill=255, font=myfont28)
del draw
im = mainimg.transpose(Image.ROTATE_90)
drawtime = time.time()
print ('t:draw:', (drawtime - loadtime))
listim = list(im.getdata())
#Print (im.format, im.size, im.mode, len(listim))
listim2 = []
for y in range(0, im.size[1]):

for x in range(0, im.size[0]/8):
val = 0
for x8 in range(0, 8):

if listim[(im.size[1]-y-1)*im.size[0] + x*8 + (7-x8)] > 128:
#Print (x,y,x8,'ON')
val = val | 0x01 << x8

else:
#Print (x,y,x8,'OFF')
pass
#Print val
listim2.append(val)

for x in range(0,1000):
listim2.append(0)

#Print len(listim2)
convtime = time.time()
print ('t:conv:', (convtime - loadtime))
ypos = 0
xpos = 0
disp.EPD_Dis_Part(xpos, xpos+im.size[0]-1, ypos,
ypos+im.size[1]-1, listim2) #xStart, xEnd, yStart, yEnd, DisBuffer
#disp.delay()
uploadtime = time.time()
print ('t:upload:', (uploadtime - loadtime))

except IOError as ex:
print ('IOError', str(ex))

4.5. Raspberry Pi Overview

203

Mechanical Drivers

Relay
Relays are electromechanical devices that use electromagnets to connect or disconnect
plates of a switch. Relays are used to control high power circuits with low power circuits.
Circuits are mechanically isolated and thus protect logic control. Relays are used in
household appliance automation, lighting and climate control.

Figure 213: 1 channel relay module [136].

Figure 214: Raspberry Pi and 1 channel relay module schematics.

The example code:

#Raspberry Pi Python sample code

import RPi.GPIO as GPIO
import time
REL = 18 #GPIO04 port

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(REL,GPIO.OUT)
print ("REL on")
GPIO.output(REL,GPIO.HIGH)
time.sleep(1)
print ("REL off")
GPIO.output(REL,GPIO.LOW)

Solenoid
Solenoids are devices that use electromagnets to pull or push iron or steel core. They are
used as linear actuators for locking mechanisms indoors, pneumatic and hydraulic valves
and in-car starter systems.

Solenoids and relays both use electromagnets and connecting them to Arduino is very
similar. Coils need a lot of power, and they are usually attached to the power source of
the circuit. Turning the power of the coil off makes the electromagnetic field to collapse
and creates very high voltage. For the semiconductor devices protection, a shunt diode
is used to channel the overvoltage. For extra safety, optoisolator can be used.

4. IoT Hardware Overview

204

https://home.roboticlab.eu/lib/exe/fetch.php?tok=f946b9&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Frelay.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_sch_drv.png?id=en%3Abook

Figure 215: Long-stroke latching solenoid [137].

Figure 216: Raspberry Pi and solenoid schematics.

The example code:

#Raspberry Pi Python sample code

import RPi.GPIO as GPIO
import time
SOL = 18 #GPIO04 port

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(SOL,GPIO.OUT)
print ("SOL on")
GPIO.output(SOL,GPIO.HIGH)
time.sleep(1)
print ("SOL off")
GPIO.output(SOL,GPIO.LOW)

DC Motor (One Direction)
An electric motor is an electro-technical device which can turn electrical energy into
mechanical energy; motor turns because of the electricity that flows in its winding.
Electric motors have seen many technical solutions over the year from which the simplest
is the permanent-magnet DC motor.

DC motor is a device which converts direct current into the mechanical rotation. DC
motor consists of permanent magnets in stator and coils in the rotor. By applying the
current to coils, the electromagnetic field is created, and the rotor tries to align itself to
the magnetic field. Each coil is connected to a commutator, which in turns supplies coils
with current, thus ensuring continuous rotation. DC motors are widely used in power
tools, toys, electric cars, robots, etc.

4.5. Raspberry Pi Overview

205

https://home.roboticlab.eu/lib/exe/fetch.php?tok=da8eb6&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Flong-stroke-latching-solenoid.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_apz_drv.png?id=en%3Abook

Figure 217: A DC motor [138].

Figure 218: Raspberry Pi and DC motor schematics.

#Raspberry Pi Python sample code

import RPi.GPIO as GPIO
import time
DCM = 18 #GPIO04 port

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(DCM,GPIO.OUT)
print ("DCM on")
GPIO.output(DCM,GPIO.HIGH)
time.sleep(1)
print ("DCM off")
GPIO.output(DCM,GPIO.LOW)

Stepper Motor
Stepper motors are motors, that can be moved by a certain angle or step. Full rotation
of the motor is divided into small, equal steps. Stepper motor has many individually
controlled electromagnets, by turning them on or off, the motor shaft rotates by one
step. Changing switching speed or direction can precisely control turn angle, direction or
full rotation speed. Because of very precise control ability they are used in CNC machines,
3D printers, scanners, hard drives etc. Example of use can be found in the source [139].

Figure 219: A stepper motor [140].

4. IoT Hardware Overview

206

https://home.roboticlab.eu/lib/exe/fetch.php?tok=bc2fa7&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fdcmotor.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_dcm_drv.png?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a7971d&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fstepper_motor.jpg

Figure 220: Raspberry Pi and stepper motor schematics.

The example code:

#Raspberry Pi Python sample code
#From https://www.rototron.info/raspberry-pi-stepper-motor-tutorial/

from time import sleep
import RPi.GPIO as GPIO

DIR = 20 #Direction GPIO Pin
STEP = 21 #Step GPIO Pin
CW = 1 #Clockwise Rotation
CCW = 0 #Counterclockwise Rotation
SPR = 48 #Steps per Revolution (360/7.5)

GPIO.setmode(GPIO.BCM)
GPIO.setup(DIR, GPIO.OUT)
GPIO.setup(STEP, GPIO.OUT)
GPIO.output(DIR, CW)

step_count = SPR
delay = .0208

for x in range(step_count):
GPIO.output(STEP, GPIO.HIGH)
sleep(delay)
GPIO.output(STEP, GPIO.LOW)
sleep(delay)

sleep(.5)
GPIO.output(DIR, CCW)
for x in range(step_count):
GPIO.output(STEP, GPIO.HIGH)
sleep(delay)
GPIO.output(STEP, GPIO.LOW)
sleep(delay)

GPIO.cleanup()

This code may result in motor vibration and jerky motion especially at low speeds. One
way to counter these result is with microstepping. Adding the code above avoid it:

MODE = (14, 15, 18) #Microstep Resolution GPIO Pins
GPIO.setup(MODE, GPIO.OUT)

4.5. Raspberry Pi Overview

207

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/pi_stp_drv.png?id=en%3Abook

RESOLUTION = {'Full': (0, 0, 0),
'Half': (1, 0, 0),
'1/4': (0, 1, 0),
'1/8': (1, 1, 0),
'1/16': (0, 0, 1),
'1/32': (1, 0, 1)}

GPIO.output(MODE, RESOLUTION['1/32'])

step_count = SPR * 32
delay = .0208 / 32

4.5.4. Raspberry Pi OS Guide

Supported Operating Systems (OS)

Raspberry Pi all models are based on ARM processors which are typically quad-core
Cortex-A7 CPUs. This means that most of popular multitasking OS systems can be
uploaded and used to create and develop user software operations. The list of supported
OS systems contains Linux, Windows and thirty part OS systems. The following list of
figures of OS are specially designed for Raspberry Pi boards:

Figure 221: Raspbian [141].

Figure 222: Ubuntu Mate [142].

Figure 223: Snappy Ubuntu Core [143].

Figure 224: Windows 10 IOT Core [144].

4. IoT Hardware Overview

208

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/raspbian.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/ubuntu-mate.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/ubuntu.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/windows-10-iot.png?id=en%3Abook

Figure 225: OSMC [145].

Figure 226: LibreELEC [146].

Figure 227: Pinet [147].

Figure 228: Risc OS [148].

Before start installing the OS system on the Raspberry Pi board developer must prepare
his hardware for it [149]. It means that the minimum hardware equipment is needed:

▪ Raspberry Pi board,

▪ monitor or TV with HDMI port,

▪ HDMI cable,

▪ USB keyboard,

▪ USB mouse,

▪ power supply,

▪ at least 8 GB micro SD card (C10 class is welcome).

Connecting all establishes the minimum PC desktop kit which will allow to install and run
the selected OS system on the SD card.

Downloading OS System

There are few ways to get the right OS system for Raspberry Pi board:

▪ buy pre-installed SD card from RS [150] or PiHut [151],

▪ install Raspbian with NOOBS [152],

▪ download Raspbian image directly from Raspberry Pi software repository [153],

4.5. Raspberry Pi Overview

209

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/osmc-1.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/libreelec.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/pinet.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/riscos.png?id=en%3Abook

▪ download the Windows 10 IOT OS from Microsoft Windows Insider Preview [154].

Other Raspberry OS Systems

For other then Windows and NOOBS systems use the Etcher SD [155] card image utility
which is designed to format and upload to the SD card different operating systems
images. Then follow its instructions.

Figure 229: Etcher SD card image utility view.

4.5.5. Programming Fundamentals Raspbian OS

Installing the Raspbian OS

To install the OS system on SD card the best way is to use specially designed software
which will provide SD card formatting tool.

Step 1
Download and install the SD Formatter [156] tool. Run the SD Formatter tool.

4. IoT Hardware Overview

210

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/etcher.png?id=en%3Abook

Figure 230: SD Formatter view.

Step 2
Insert the SD card into the computer SD card reader.

Step 3
Run the SD Formatter, select the drive letter for the SD card and format it.

Step 4
Simply drag and drop the extracted NOOBS OS image files from unzipped NOOBS folder
onto the SD card drive. The necessary files will be transferred to the SD card.

Step 5
Gently remove SD card from the reader and push it into the Raspberry Pi SD card slot.

Step 6
Power on the Raspberry Pi board and follow its instructions.

After the board reboot the Raspbian screen displays.

4.5. Raspberry Pi Overview

211

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/sdformatter.png?id=en%3Abook

Figure 231: Raspbian desktop view.

Raspberry Pi Python Programming Guide

Python Language
Python belongs to the high-level programming languages class which was first time
developed by Guido van Rossum in 1991. The Python is similar to C++, C# or Java
programming languages. It is very useable with a clean syntax and easy to learn even
for programming beginners.

Raspberry Raspbian OS is shipped with pre installed two versions of Python language:
Python2 and Python3 which are available from the Raspbian Menu.

Figure 232: Python menu view.

Choosing the Python version from the menu, the command window with cursor opens.

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 20 2018, 15:12:02)
[MSC v.1900 64 bit (AMD64)] on Win32
Type "copyright", "credits" or "license()" for more information.

4. IoT Hardware Overview

212

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/raspbian-scr.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/menu-python.png?id=en%3Abook

>>>

To test the simply program ”Hello World!“ User just can entry:

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 20 2018, 15:12:02)
[MSC v.1900 64 bit (AMD64)] on Win32
Type "copyright", "credits" or "license()" for more information.
>>>printf("Hello World")
Hello World!
>>>

Writing the same code in C language will look following:

#include <stdio.h>
int main()
{

printf ("Hello World!");
return 0;

}

Python Program Features
Python can automate tasks using the batch commands renaming and move large
amounts of files like shell scripts. It can be used as a command line with IDLE, Python’s
REPL (read, eval, print, loop) functions. However, there are more useful tasks which can
be done with Python. For example, Python can be used to program things like:

▪ web applications,

▪ desktop applications and utilities,

▪ special GUIs,

▪ small databases,

▪ 2D games.

Because Python stays very popular, it has a large collection of libraries, which speeds
up the development process. There exist libraries for – game programming, rendering
graphics, GUI interfaces, web frameworks, and scientific computing.

Many of the programmings stuff in C language can also be programmed in Python.
Python is generally slower at computations regarding the C compiler, but its ease for
use, which makes Python a very popular tool for prototyping programs and designing
applications which are not computationally intensive. One of the best Python tutorials
can be found in the book: “Learning Python, 5th Edition by Mark Lutz”.

Installing and Updating Python
Python 2 and Python 3 come pre-installed on Raspbian OS systems, but if necessary to
install Python on another Linux OS or to update it, the simple commands can be executed
at the command prompt:

sudo apt-get install python3

4.5. Raspberry Pi Overview

213

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Installs or updates Python 3.

sudo apt-get install python

Installs or updates Python 2.

Opening the PYTHON REPL
To access the Python REPL (where the user can type Python commands just like the
command line) the user can enter python or python3 commands depending on which
version of Raspbian to use in the command prompt.

Figure 233: Python REPL view.

Pressing (CTRL-D) exits the REPL.

Running a Python Program
To run the program without making it executable, the user must navigate to the location
where the file exists and enter the command:

python hello-world.py

Make Python File Executable
Making a Python program executable allows to run the program without entering python
before the file name. User can make a file executable executing the following commands
in the command prompt:

chmod +x file-name.py

Now to run the program:

4. IoT Hardware Overview

214

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/python-cmd.png?id=en%3Abook

./file-name.py

Additional Resources for Python programming

1. The Python syntax and semantics: Python Semantics.

2. The Python Package Index (PyPi): PyPi.

3. The Python Standard Library: PSL.

Python Building the First Program

The IDLE Editor is designed to write and execute programs using Python language. The
IDLE Editor is a part of the Raspbian OS. To execute it, User can simply press (CTRL +
N) and enter the Python commands like:

#Raspberry Pi Python sample code

import RPi.GPIO as GPIO
import time
#Blinking function
def blink(pin):
GPIO.output(pin,GPIO.HIGH)
time.sleep(1)
GPIO.output(pin,GPIO.LOW)
time.sleep(1)
return

#Use the Raspberry Pi GPIO pin numbers
GPIO.setmode(GPIO.BOARD)
#Set up GPIO output channel
GPIO.setup(5, GPIO.OUT)
#Blink GPIO5 5 times
for i in range(0,5):
blink(5)
GPIO.cleanup()

To save the the file and run it User must simply press F5. This sample above blinks the
LED diode connected to the GPIO17 pin on the Raspberry Pi board.

It is also possible to run Python programs without using Python interpreter. Programs
like Py2exe or Pyinstaller are designed to package the Python code into stand-alone
executable programs.

Python Data Types and Variables

Python aims to be consistent and straightforward in the design of its syntax. The best
advantage of this language is that it can dynamically set the variable types depending on
values types which are set for variables.

Base Types
Python has a wide range of data types, like many simple programming languages:

▪ number,

4.5. Raspberry Pi Overview

215

https://en.wikipedia.org/wiki/Python_syntax_and_semantics
https://pypi.org/
https://docs.python.org/3/library/

▪ string,

▪ list,

▪ tuple

▪ dictionary.

Numbers
Standard Python methods are used to create the numbers:

var = 1234 #Creates Integer number assignment
var = 'George' #Creates String type var

Python can automatically convert types of the number from one type to another. Type
can be also defined explicitly.

int a = 10
long a = 123L
float a = 12.34
complex a = 3.23J
<code>

==String==
To define Strings use eclosing characters in quotes.
Python uses single quotes ', double " and triple """ to denote strings.
<code Python>
Name = "George'
lastName = "Smith"
message = """this is the string message which is spanning across multiple lines."""

List
List contains a series of values. To declare list variables uses brackets [].

A = [] #Blank list variable
B = [1, 2, 3] #List with 3 numbers
C = [1, 'aa', 3] #List with different types

List are zero-based indexed. Data can be assigned to a specific element of the list using
an index into the list.

mylist[0] = 'sasa'
mylist[1] = 'wawa'

print mylist[1]

List aren't limited to a single dimension.

myTable = [[],[]]

In two-dimensional array the first number is always the rows number, when the second
is the columns number.

4. IoT Hardware Overview

216

Tuple
Python Tuples are defined as a group of values like a list and can be processed in similar
ways. When assigned Tuples got the fixed size. In Python, the fixed size is immutable.
The lists are dynamic and mutable. To define Tuples, parenthesis () must be used.

TestSet = ('Piotr', 'Jan', 'Adam')

Dictionary
To define the Dictionaries in the Python the lists of key–value pairs are used. This
datatype is used to hold related information that can be associated through Keys. The
Dictionary is used to extract a value based on the key name. Lists use the index numbers
to access its members when dictionaries use a key. Dictionaries generally are used to
sort, iterate and compare data.

To define the Dictionaries the braces ({}) are used with pairs separated by a comma (,)
and the key values associated with a colon (:). Dictionaries Keys must be unique.

box_nbr = {'Alan': 111, 'John': 222}
box_nbr['Alan'] = 222 #Set the associated 'Alan' key to value 222'
print (box nbr['John']) #Print the 'John' key value
box_nbr['Dave'] = 111 #Add a new key 'Dave' with value 111
print (box_nbr.keys()) #Print the keys list in the dictionary
print ('John' in box_nbr) #Check if 'John' is in the dictionary

#This returns true

All variables in Python hold references to objects, and are passed to functions. Function
can't change the value of variable references in its body. The object's value may be
changed in the called function with the “alias”.

>>> alist = ['a', 'b', 'c']
>>> def myfunc(al):

al.append('x')
print al

>>> myfunc(alist)
['a', 'b', 'c', 'x']
>>> alist
['a', 'b', 'c', 'x']

Python Program Control Structures

if Statements
If an expression returns TRUE statements are carried out. Otherwise they aren't.

if expression:
statements

Sample:

4.5. Raspberry Pi Overview

217

no = 11
if no >10:
print ("Greater than 10")
if no <=30

printf ("Between 10 and 30")

Output:

>>>
Greater than 10
Between 10 and 30
>>>

else Statements
An else statement follows an if statement and contains code that is called when the if
statement is FALSE.

x = 2
if x == 6

printf ("Yes")
else:

printf ("No")

elif Statements
The elif (shortcut of else if) statement is used when changing if and else statements. A
series of if…elif statements can have a final else block, which is called if none of the if or
elif expression is TRUE.

num = 12
if num == 5:

printf ("Number = 5")
elif num == 4:

printf ("Number = 4")
elif num == 3:

printf ("Number = 3")
else:

printf ("Number = 12")

Output:

>>>
Number = 12

>>>

Boolean Logic
Python uses logic operators like AND, OR and NOT.

The AND operator uses two arguments, and evaluates to TRUE if, and only if, both of the
arguments are TRUE. Otherwise, it evaluates to FALSE.

4. IoT Hardware Overview

218

>>> 1 == 1 and 2 == 2
True
>>> 1 == 1 and 2 == 3
False
>>> 1 != 1 and 2 == 2
False
>>> 4 < 2 and 2 > 6
False
>>>

Boolean operator or uses two arguments, and evaluates as TRUE if either (or both) of its
arguments are TRUE, and FALSE if both arguments are FALSE.

The result of NOT TRUE is FALSE, and NOT FALSE goes to TRUE.

>>> not 2 == 2
False
>>> not 6 > 10
True
>>>

Operator Precedence
Operator Precedence uses mathematical idea of operation order, e.g. multiplication begin
performed before addition.

>>> False == False or True
True
>>> False == (False or True)
False
>>> (False == False) or True
>>>True
>>>

Python Looping

while Loop
An if statement is run once if its condition evaluates to TRUE, and never if it evaluates to
FALSE.

A while statement is similar, except that it can be run more than once. The statements
inside it are repeatedly executed, as long as the condition holds. Once it evaluates to
FALSE, the next section of code is executed.

i = 1
while i<=4:

print (i)
i+=1

print ('End')

Output:

4.5. Raspberry Pi Overview

219

>>>
1
2
3
4
End
>>>

The infinite loop is a particular kind of the while loop, it never stops running. Its
condition always remains TRUE.

while 1 == 1:
print ('in the loop')

To end the while loop prematurely, the break statement can be used. When encountered
inside a loop, the break statement causes the loop to finish immediately.

i = 0
while 1==1:

print (i)
i += 1
if i >=3:

print('breaking')
break;

print ('finished')

Output:

>>>
0
1
2
3
breaking
finished
>>>

Another statement that can be used within loops is continue.

Unlike break, continue jumps back to the top of the loop, rather than stopping it.

i = 0
while True:

i+=1
if i == 2:

printf ('skipping 2')
continue

if i == 5:
print ('breaking')
break

print (i)
print ('finished')

Output:

4. IoT Hardware Overview

220

>>>
1
skipping 2
3
4
breaking
finished
>>>

for Loop

n = 9
for i in range (1,5):

ml = n * i
print ("{} * {} = {}".format (n, i, ml))

Output:

>>>
9 * 1 = 9
9 * 2 = 18
9 * 3 = 27
9 * 4 = 36
>>>

Python Sub-Programs and Interrupts

Subprograms
One of the most important in mathematics concept is to use functions. Functions in
computer languages implement mathematical functions. The executing function produces
one or more results, which are dependent by the parameters passed to it.

In general, a function is a structuring element in the programming language which
groups a set of statements so they can be called more than once in a program.
Programming without functions will need to reuse code by copying it and changing its
different context. Using functions enhances the comprehensibility and quality of the
program. It also lowers the memory usage, development cost and maintenance of the
software.

Different naming is used for functions in programming languages, e.g. as subroutines,
procedures or methods.

Python language defines function by a def statement. The function syntax looks:

def function-name(Parameter list):
statements, i.e. the function body

Function bodie can contain one or more return statement. It can be situated anywhere in
the function body. A return statement ends the function execution and returns the result,
i.e. to the caller. If the return statement does not contain expression, the value None is
returned.

4.5. Raspberry Pi Overview

221

def Fahrenheit(T_in_celsius):
""" returns the temperature in degrees Fahrenheit """
return (T_in_celsius * 9 / 5) + 32

for t in (22.6, 25.8, 27.3, 29.8):
print(t, ": ", fahrenheit(t))

Output:

>>>
22.6 : 72.68
25.8 : 78.44
27.3 : 81.14
29.8 : 85.64
>>>

Optional Parameters
Functions can be called with optional parameters, also named default parameters. If
function is called without parameters the default values are used. The following code
greets a person. If no person name is defined, it greets everybody:

def Hello(name="everybody"):
""" Say hello to the person """
print("Hello " + name + "!")

Hello("George")
Hello()

Output:

>>>
Hello George!
Hello everybody!
>>>

Docstrings
The string is usually the first statement in the function body, which can be accessed with
function_name.doc. This is Docstring statement.

def Hello(name="everybody"):
""" Say hello """
print("Hello " + name + "!")

print("The docstring of the function Hello: " + Hello.__doc__)

Output:

>>>
The function Hello docstring: Say hello
>>>

4. IoT Hardware Overview

222

Keyword Parameters
The alternative way to make function calls is to use keyword parameters. The function
definition stay unchanged.

def sumsub(a, b, c=0, d=0):
return a - b + c - d

print(sumsub(12,4))
print(sumsub(42,15,d=10))

Only keyword parameters are valid, which are not used as positional arguments. If
keyword parameters don't exist, the next call to the function will need all four arguments,
even if the c needs just the default value:

print(sumsub(42,15,0,10))

Return Values
In above examples, the return statement exist in sumsub but not in Hello function. The
return statement is not mandatory. If explicitly return statement doesn't exist in the
sample code it will not show any result:

def no_return(x,y):
c = x + y

res = no_return(4,5)
print(res)

Any result will not be displayed in:

>>>

Executing this script, the None will be printed. If a function doesn't contain expression
the None will also be returned:

def empty_return(x,y):
c = x + y
return

res = empty_return(4,5)
print(res)

Otherwise the expression value following return will be returned. In this example 11 will
be printed:

def return_sum(x,y):
c = x + y
return c

res = return_sum(6,5)
print(res)

Output:

4.5. Raspberry Pi Overview

223

>>>
9
>>>

Multiple Values Returning
Any function can return only one object. An object can be a numerical value – integer,
float, list or a dictionary. To return i.e. three integer values, we can return a list or a tuple
with these three integer values. It means that function can indirectly return multiple
values. This following example calculates the Fibonacci boundary for a positive number,
returns a 2-tuple. The Largest Fibonacci Number smaller than x is the first and the
Smallest Fibonacci Number larger than x is next. The return value is stored via unpacking
into the variables lub and sup:

def fib_intervall(x):
""" returns the largest Fibonacci number, smaller than x and the lowest
Fibonacci number, higher than x"""
if x < 0:

return -1
(old, new, lub) = (0,1,0)
while True:

if new < x:
lub = new
(old,new) = (new,old+new)

else:
return (lub, new)

while True:
x = int(input("Your number: "))
if x <= 0:

break
(lub, sup) = fib_intervall(x)
print("Largest Fibonacci Number < than x: " + str(lub))
print("Smallest Fibonacci Number > than x: " + str(sup))

Interrupts Handling
Following Python rules for working with signals and their handlers are listed below.

1. A particular signal handler, once set, remains installed until it is explicitly reset
(Python emulates the BSD style interface), except the SIGCHLD handler, which
follows the underlying implementation.

2. The critical section signal can't be “blocked” temporarily (it is not supported by all
Unix flavours).

3. Python signal handlers are called asynchronously as far as the Python user is
concerned, they can only occur between the “atomic” instructions of the Python
interpreter. Signals arriving during long calculations implemented in C (such as
regular expression matches on large bodies of text) may be delayed for an arbitrary
amount of time.

4. When a signal arrives during an I/O operation, it is possible that the I/O operation
raises an exception after the signal handler returns. It depends on the underlying
Unix system’s semantics.

4. IoT Hardware Overview

224

5. The C signal handler always returns; it makes little sense to catch synchronous
errors like SIGFPE or SIGSEGV.

6. Python installs a small number of signal handlers by default: SIGPIPE is ignored,
and SIGINT is translated into a KeyboardInterrupt exception. All of them can be
overridden.

7. If both signals and threads are used in the same program, some care must be taken.
When using signals and threads simultaneously always perform signal() operations
in the main thread of execution.

8. Any thread can perform an alarm(), getsignal(), pause(), setitimer() or getitimer();
only the main thread can set a new signal handler, and the main thread will be the
only one to receive signals. It means that signals can’t be used as a means of inter-
thread communication.

9. Use locks instead.

The example program is shown below. It uses the alarm() function to limit the time
spent waiting to open a file; very useful if the file needs to be transmitted over a serial
device that may not be turned on, which would typically cause the os.open() to hang
indefinitely. The best solution is to make 5-second alarm before opening the file; if
the operation takes too long, the alarm signal will be sent, and the handler raises an
exception.

#Raspberry Pi Python sample code
import RPi.GPIO as GPIO
import time
state = 0

GPIO.setmode(GPIO.BCM)
GPIO.setup(26, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(19, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def interrupt_handler(channel):
global state

print("interrupt handler")

if channel == 19:
if state == 1:

state = 0
print("state reset by event on pin 19")

elif channel == 26:
if state == 0:

state = 1
print("state set by event on pin 26")

GPIO.add_event_detect(26, GPIO.RISING,
callback=interrupt_handler,
bouncetime=200)

GPIO.add_event_detect(19, GPIO.RISING,
callback=interrupt_handler,
bouncetime=200)

while (True):
time.sleep(0)

4.5. Raspberry Pi Overview

225

4.5.6. Programming Fundamentals Windows 10 IOT Core

Installing the Windows 10 IOT Core

Microsoft Windows 10 IOT OS system is available for download from Windows Insider
Preview Downloads page [157].

Step 1

Register into the Microsoft Insider Program. To download images of the Microsoft IOT
Core user must be logged into Microsoft Insider Program web page.

Step 2

On the download page, User must choose which OS edition he wants to use in his project
ieg. Windows 10 IOT Core Insider preview – build 17083 or 17035. The core numbers
are changing depending on the latest developer editions available in the Microsoft
repository. Microsoft IOT development policy is straightly tied with the latest Visual
Studio environment. To fully use its power, users are asked to use the latest Visual
Studio and Windows 10 IOT core builds in the development process synchronously. The
Windows 10 IOT Core platform is still under development and improvement.

Figure 234: Windows Insider Program Win10 Core download page.

Step 3

Install the right Windows10_InsiderPreview_IoTCore_RPi_ARM32_en-us_17035.iso

4. IoT Hardware Overview

226

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/w_insider_p.jpg?id=en%3Abook

image on your Windows 10 PC. This package installs the Windows IOT Core Image Helper
application and stores the latest Raspberry Pi Windows 10 core image flash.ffu file into
the C:\Program Files (x86)\Microsoft IoT\ directory.

Step 4

Insert the SD card to your computer SD cards reader slot.

Step 5

Run the Windows IOT Core Image Helper and follow its instructions – select the SD card
drive letter, select the right FFU image in the C:\Program Files (x86)\Microsoft IoT\FFU\
RaspberryPi2 folder.

Figure 235: Windows IOT Core Helper view.

4.5. Raspberry Pi Overview

227

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/windows_iot_core_image_helper.png?id=en%3Abook

Step 6

Start formatting the SD card and install the FFU image on it.

Step 7

Gently remove SD card from the reader and push it into the Raspberry Pi SD card slot.

Step 8

Power on the Raspberry Pi board and follow the Windows 10 Core setup commands
configuring the Windows 10 Core features.

After the board reboot the Main Windows 10 Core screen displays:

Figure 236: Windows 10 Core system view.

Raspberry Pi Programming Guide

This chapter describes the typical programming technics used in Raspberry Pi boards
developing projects.

Raspberry Pi Under Windows 10 IoT Core
To create and develop control applications on the Raspberry Pi boards needs the following
development environment:

▪ PC with Windows 10 System installed,

▪ Visual Studio 2015 or higher,

▪ Raspberry PI 2 or 3 board with Windows 10 IoT Core installed,

▪ configured TCP/IP network for Raspberry Pi and Windows 10 Desktop computer (Local
LAN or WiFi subnet),

4. IoT Hardware Overview

228

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/win10_iot_core.jpg?id=en%3Abook

Programming skills needed:

▪ C# language knowledge,

▪ XML/XAML language knowledge,

▪ Windows API understanding.

For better development Raspberry applications, the Windows IoT Remote Client is
welcome. This application is available for download from Microsoft Store. This application
captures keyboard, mouse and screen from the Raspberry Pi board running the Windows
10 IoT Core system on the desktop PC. It allows developers to use standalone Raspberry
board without a connected mouse, keyboard and monitor to it.

Figure 237: Microsoft Store – Windows IoT Remote Client.

To write and develop applications under Windows 10 IoT Core developer must possess
basic knowledge of how Windows operating system interacts with User applications. The
major advantage of using Windows 10 IoT Core is that Microsoft concept based on use
the same Kernel API available on different hardware platforms – desktop PCs, IoT boards
suitable to run Windows Core, Tablets, phones etc. It reduces development costs due to
the unifying system environment, and the only difference is in display view of the same
application code written in C#/C++. Windows 10 Core is specially designed to handle
applications working as standalone on the IoT platforms in 24/7 time model.

Configuring the Windows 10 IoT Core Platform
After installing the Windows 10 IoT Core, the developer must configure IoT platform
using Windows Device Portal (WDP).

4.5. Raspberry Pi Overview

229

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/windows_iot_rc.png?id=en%3Abook

Figure 238: Windows Device Portal view.

IoT board can be managed using any Internet browser – Chrome, Microsoft Edge,
Firefox etc. To open the WDB portal on the IoT board user must enter the board IP
address – IPaddress:8080/default.htm. The site is protected with username/password.
Default account credentials are: administrator/p@ssw0rd. Following tabs in the WDP,
it is possible to configure all necessary IoT platform settings, check the current board
status, download development crash/debug information, configure network/Bluetooth
settings, download drivers and configure security TPM modules. If all tasks are ready,
the developer can start to write his own IoT application under Windows 10 IoT Core.
Following steps are recommended before IoT board will be used for application:

Step 1
In the Device Settings user is recommended to Change your device name. The
default name is minwinpc. The aim to change it is that if a user uses many of the IoT
devices connected to the same network segment, it is difficult to recognise which role
each device is set for. Enumerating IoT devices will show boards with the same name
but with different IP addresses. Proper naming will make it easy to know what role each
device plays.

Step 2
Because RPI boards don't have their own RTC clock modules, Windows 10 IoT Core sets
the time using the NTP services during its work. So very important in the industrial
implementations and in a case when the time is important in developed applications is to
set the proper time zone for the board. In the Device settings user is recommended to
select proper Time zone

4. IoT Hardware Overview

230

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/wdp.png?id=en%3Abook

Step 3
Security reasons – the default password for the newly flashed device is p@ssw0rd. It
is strongly recommended right after the first board boot to change it – to set it unique!
It will prevent the IoT device from remote hacking. The password can be changed in
Device Settings tab.

Step 4
The Windows 10 IoT Core comes with Cortana service ready. If the board is equipped
with microphone and speakers, it is always possible to turn the Cortana service on for
voice commands communication with the board.

Step 5
If the IoT board needs special hardware connected to it then in the Devices/Device
Manager user can upload and install appropriate driver for it in case if it is not
preinstalled in the IoT Core.

Figure 239: Device Manager view.

Step 6
Raspberry Pi boards 1/2/3 are equipped with network connection modules. In case if the
board under Windows 10 IoT Core is connected to LAN RJ45 connector the IP number
can be set via DHCP server. In case if user wants to use WiFi connection or to activate

4.5. Raspberry Pi Overview

231

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_9.png?id=en%3Abook

Bluetooth then he can do it directly on the board main display or manage them via
Windows Device Portal.

Figure 240: Network & WiFi view.

Figure 241: Network view.

4. IoT Hardware Overview

232

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/rpbi_network.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_10.png?id=en%3Abook

Step 7
Security. In a case when IoT device must be protected for remote hacking one of
solutions is to use Trusted Platform Modules (TPM) module following ISO/IEC 11889
standards for a secure cryptoprocessor, a dedicated microcontroller designed to secure
hardware through integrated cryptographic keys. The chip contains physical security
mechanisms to protect it from tampering, and malicious software is unable to hack the
TPM security functions. Some of the TPM key advantages are:

▪ generate and store the cryptographic keys;

▪ use the TPM unique RSA key technology for platform device authentication, which is
burned into the chip;

▪ help ensure platform integrity.

The most common TPM functions are used for system integrity measurements, key
creation and use. During the system boot process, the boot code is loaded (including
firmware and OS components) and can be measured and recorded in the TPM module.
The integrity measurements are used for evidence how OS started and to be sure when
correct boot software was used with TPM-based key. Windows 10 IoT Core supports few
TPM modules standards which can be connected to the 40-pin GPIO connector.

Figure 242: TPM module view.

Under the TPM Configuration tab in the Windows Device, Portal user can select the right
communication protocol for the TPM module installed in the Raspberry Pi board. Then
appropriate driver for the TPM module can be installed in the Device Manager tab.

4.5. Raspberry Pi Overview

233

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/tpm.jpg?id=en%3Abook

Figure 243: TPM Configuration view.

RPI Windows 10 IoT Sample Project

Create Simple Hello World Application for Raspberry Pi Board
To create simple Hello Word application under Windows 10 IoT Core the Visual Studio
2015 or higher is needed. Visual Studio must be installed with the Universal Windows
Platform development extension.

4. IoT Hardware Overview

234

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_11.png?id=en%3Abook

Figure 244: Visual Studio UWP development view.

Step 1
Create new UWP project choosing the Windows Universal/Blank App Project.

Figure 245: Create new UWP App.

Step 2
Select target version (according to Raspberry Pi Windows 10 IoT Core build version)

4.5. Raspberry Pi Overview

235

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_development.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_1.png?id=en%3Abook

Figure 246: Select target version.

Step 3
Create Hello solution.

Figure 247: Select target version.

Step 4
Design the application screen modifying the MainPage.xaml file. To add different screen
features use the Toolbox/All XAML controls.

4. IoT Hardware Overview

236

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_2.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_3.jpg?id=en%3Abook

Figure 248: Add TextBlock control.

Step 5
Modify the MainPage.cs file content if you need controls events programming.

Figure 249: Add TextBlock control.

Step 6
Compile and run Hello solution. Choosing the Solution Platform to the x86 user will be
able to debug and run Hello application on the computers desktop emulator. This step
is useful for program touchscreen design but is not capable of testing the sensors and
controls programming due to software emulator restrictions.

4.5. Raspberry Pi Overview

237

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_6.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_5.png?id=en%3Abook

Figure 250: Run Hello solution.

Software emulators aren't capable of simulating their behaviour. To use sensors and
controls instead, the Solution Platform must be changed to the ARM platform in the
VC Solution Configuration property. To debug it application package must be then
transferred to the real IoT device.

Figure 251: Select hardware platform for the solution.

Step 7
To deploy and debug the application package on the real IoT device user must configure
the debug application settings. In the Debug property page user must enter the proper
Remote IoT device IP number.

4. IoT Hardware Overview

238

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_6.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_7.png?id=en%3Abook

Figure 252: Set the Remote machine IP number.

Step 8
Start debugging application and after deploy application package to the board SD card it
will be displayed on the monitor.

Figure 253: Hello Application on the Raspberry Pi display.

C# Variables and Data Types

The C# [158] variables are categorized into the following types:

▪ value types,

4.5. Raspberry Pi Overview

239

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/setting_up_development/vc_uwp_8.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi/hello_app.jpg?id=en%3Abook

▪ reference types,

▪ pointer types.

Value Type Variables
Value type variables can assign a value directly. The class System.ValueType defines
them.

The value types directly contain data. Value types may be: int, char and float, storing
numbers, strings or floating point values. When an int type is declared, the system
allocates memory to store its value.

The available value types list in C# is presented following:

Table 18: C# 2010 Value Definitions

Type Represents Range Default
Value

bool Boolean value True or False False

byte 8-bit unsigned integer 0 to 255 0

char 16-bit Unicode character U +0000 to U +ffff '\0'

decimal 128-bit precise decimal values
with 28-29 significant digits

(–7.9 × 10E28 to 7.9 × 10E28) /
10E0 to 28 0.0M

double 64-bit double-precision floating
point type

(+/–)5.0 × 10E–324 to (+/–)1.7
× 10E308 0.0D

float 32-bit single-precision floating
point type –3.4 × 10E38 to + 3.4 × 10E38 0.0F

int 32-bit signed integer type –2 147 483 648 to 2 147 483 647 0

long 64-bit signed integer type –9 223 372 036 854 775 808 to 9
223 372 036 854 775 807 0L

sbyte 8-bit signed integer type –128 to 127 0

short 16-bit signed integer type –32 768 to 32 767 0

uint 32-bit unsigned integer type 0 to 4 294 967 295 0

ulong 64-bit unsigned integer type 0 to 18 446 744 073 709 551 615 0

ushort 16-bit unsigned integer type 0 to 65 535 0

Reference Type
The reference types don't contain the actual data stored in a variable. They contain a
reference to the variables.

Using multiple variables, the reference types can refer to a memory location. If the
variable changes the data in the memory location, the other variable automatically
reflects this change in value. Built-in reference example types are: object, dynamic,
and string.

4. IoT Hardware Overview

240

Object Type
The Object Type is an alias for the System.Object class. It is the ultimate base class
for all data types in C# Common Type System (CTS). The object types can be assigned
with values of any other types, value types, reference types, predefined or user-defined
types. Before assigning values, the type conversion is needed.

When a value type is converted to an object type, it is called boxing and when an object
type is converted to a value type, it is called unboxing.

object obj;
obj = 100; //This is boxing

Dynamic Type
The data type variable can store any value. But this type checking takes place at run-
time.

Syntax for declaring a dynamic type is:

dynamic <variable_name> = value;

For example,

dynamic d = 20;

Dynamic types are similar to object types. That type checking for object type variables
takes place at compile time. For the dynamic type variables checking takes place at run
time.

String Type
The string type allows assigning any string values to a variable. The string type is an
alias for the System.String class and is derived from object type. The string type value
can be assigned using string literals in two forms: quoted and @quoted.

For example,

string str = "Tutorials Point";

A @quoted string literal looks as follows:

@"Tutorials Point";

The user-defined reference types are: class, interface, or delegate.

Pointer Type
Pointer type variables store the memory address, which is another type. Pointers in C#
are similar to pointers in C or C++.

Syntax for declaring a pointer type is:

4.5. Raspberry Pi Overview

241

type* identifier;

For example,

char* cptr;
int* iptr;

C# Variables

Each variable in C# has a specific type, which determines the size and layout of the
variable's memory.

The basic value types in C# can be categorised as follows:

Table 19: C# 2010 Variables

Type Example

Integral types sbyte, byte, short, ushort, int, uint, long, ulong, and char

Floating point types float and double

Decimal types decimal

Boolean types true or false values, as assigned

Nullable types Nullable data types

Variable Definitions
Variable syntax definition in C# is:

<data_type> <variable_list>;

data_type must be a valid C# data type like char, int, float, double, or any user-
defined data type. variable_list may consist of one or more identifier names separated
by commas.

Examples of valid variable definitions are shown below:

int i, j, k;
char c, ch;
float f, salary;
double d;

Variable can be initialized immediately during definition time:

int i = 100;

Variables Initialization
Variables are initialized with an equal sign followed by a constant expression. The general
initialization form looks:

4. IoT Hardware Overview

242

variable_name = value;

Variables can be initialized during their declaration. The initializer consists of an equal
sign followed by a constant expression as:

<data_type> <variable_name> = value;

Some examples are:

int d = 3, f = 5; /* Initializing d and f */
byte z = 22; /* Initializes z */
double pi = 3.14159; /* Declares an approximation of PI */
char x = 'x'; /* The variable x has the value 'x' */

It is important to initialize variables properly, otherwise sometimes it may produce
unexpected result.

The following example uses various types of variables:

using System;

namespace VariableDefinition {
class Program {

static void Main(string[] args) {
short a;
int b ;
double c;
/* Actual initialization */
a = 10;
b = 20;
c = a + b;
Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c);
Console.ReadLine();

}
}

}

Output:

a = 10, b = 20, c = 30

C# Looping

C# [159] provides following types of loop to handle looping requirements.

Table 20: C# 2010 Loops Definitions

Sr.No. Loop Type & Description

1 while loop – it repeats a statement or a group of statements while a given
condition is true. It tests the condition before executing the loop body

2 for loop – it executes a sequence of statements multiple times and

4.5. Raspberry Pi Overview

243

Sr.No. Loop Type & Description

abbreviates the code that manages the loop variable

3 do…while loop – it is similar to a while statement, except that it tests the
condition at the end of the loop body

4 Nested loop – you can use one or more loop inside any another while, for or
do…while loop

while Loop
A while loop statement in C# repeatedly executes a target statement as long as a given
condition is true.

while(condition) {
statement(s);

}

Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* while loop execution */
while (a < 20) {

Console.WriteLine("value of a: {0}", a);
a++;

}
Console.ReadLine();

}
}

}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

for Loop
A for loop is a repetition control structure that allows you to efficiently write a loop that

4. IoT Hardware Overview

244

needs to execute a specific number of times. The syntax of a for loop in C# is:

for (init; condition; increment) {
statement(s);

}

Here is the flow of control in a for loop.

1. The init step is executed first, and only once. This step allows you to declare and
initialise any loop control variables. You are not required to put a statement here, as
long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it
is false, the body of the loop does not run, and flow of control jumps to the next
statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to
the increment statement. This statement allows you to update any loop control
variables. This statement can be left blank, as long as a semicolon appears after the
condition.

4. The condition is now evaluated again. If it is true, the loop executes, and the process
repeats itself (body of the loop, then increment step, and then again testing for a
condition). After the condition becomes false, the for loop terminates.

Example:

using System;
namespace Loops {

class Program {
static void Main(string[] args) {

/* for loop execution */
for (int a = 10; a < 20; a = a + 1) {

Console.WriteLine("value of a: {0}", a);
}
Console.ReadLine();

}
}

}

Output:

alue of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

4.5. Raspberry Pi Overview

245

The C# do...while Loop
The syntax of a do…while loop in C# is:

do {
statement(s);

} while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s)
in the loop execute again. This process repeats until the given condition becomes false.
Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* do loop execution */
do {

Console.WriteLine("value of a: {0}", a);
a = a + 1;

}
while (a < 20);
Console.ReadLine();

}
}

}

Output:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

C# Nested for Loop
C# allows using one loop inside another loop (loop nesting). The following section shows
a few examples to illustrate the concept. The syntax for a nested for loop statement in
C# is as follows:

for (init; condition; increment) {

4. IoT Hardware Overview

246

for (init; condition; increment) {
statement(s);

}
statement(s);

}

The syntax for a nested while loop statement in C# is as follows:

while(condition) {
while(condition) {

statement(s);
}
statement(s);

}

The syntax for a nested do…while loop statement in C# is as follows:

do {
statement(s);
do {

statement(s);
}
while(condition);

}
while(condition);

A final note on loop nesting is that you can put any type of loop inside of any other type
of loop. For example, a for loop can be inside a while loop or vice versa. Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
/* local variable definition */
int i, j;

for (i = 2; i < 100; i++) {
for (j = 2; j <= (i / j); j++)

if ((i % j) == 0) break; // if factor found, not prime
if (j > (i / j)) Console.WriteLine("{0} is prime", i);

}
Console.ReadLine();

}
}

}

Output:

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime

4.5. Raspberry Pi Overview

247

13 is prime
17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime
41 is prime
43 is prime
47 is prime
53 is prime
59 is prime
61 is prime
67 is prime
71 is prime
73 is prime
79 is prime
83 is prime
89 is prime
97 is prime

Infinite Loop
A loop becomes infinite loop if a condition never becomes false. The for loop is
traditionally used for this purpose. Since none of the three expressions that form the
for loop is required, you can make an endless loop by leaving the conditional expression
empty.

Example:

using System;

namespace Loops {
class Program {

static void Main(string[] args) {
for (; ;) {

Console.WriteLine("Hey! I am Trapped");
}

}
}

}

When the conditional expression is absent, it is assumed to be true.

C# Program Control Structures

C# [160] Specifying one or more conditions to be evaluated or tested by the program
require decision making structures. If the condition is determined to be true or false, the
proper statements must be performed.

C# provides following types of decision making statements:

4. IoT Hardware Overview

248

Table 21: C# 2010 Loops Definitions

Sr.No. Loop Type & Description

1 An if statement consists of a boolean expression followed by one or more
statements

2 if…else statement – an if statement can be followed by an optional else
statement, which executes when the boolean expression is false

3 Nested if statements – you can use one if or else if statement inside another if
or else if statement(s)

4 switch statement – a switch statement allows a variable to be tested for
equality against a list of values

5 Nested switch statements – you can use one switch statement inside another
switch statement(s)

6 The ? Operator

if Statement
An if statement consists of a boolean expression followed by one or more statements.
The syntax of an if statement in C# is:

if(boolean_expression) {
/* Statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code inside the if statement
is executed. If the boolean expression evaluates to false, then the first set of code after
the end of the if statement (after the closing curly brace) is executed.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 10;

/* Check the boolean condition using if statement */
if (a < 20) {

/* If condition is true then print the following */
Console.WriteLine("a is less than 20");

}
Console.WriteLine("value of a is : {0}", a);
Console.ReadLine();

}
}

}

Output:

4.5. Raspberry Pi Overview

249

a is less than 20;
value of a is : 10

if...else Statement
An if statement can be followed by an optional else statement, which executes when the
boolean expression is false. The syntax of an if…else statement in C# is:

if(boolean_expression) {
/* Statement(s) will execute if the boolean expression is true */

} else {
/* Statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true, then the if block of code is executed,
otherwise else block of code is executed.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
int a = 100;

/* Check the boolean condition */
if (a < 20) {

/* If condition is true then print the following */
Console.WriteLine("a is less than 20");

} else {
/* If condition is false then print the following */
Console.WriteLine("a is not less than 20");

}
Console.WriteLine("value of a is : {0}", a);
Console.ReadLine();

}
}

}

Output:

a is not less than 20;
value of a is : 100

Nested if Statement
It is always legal in C# to nest if…else statements, which means you can use one if
or else if statement inside another if or else if statement(s). The syntax for a nested if
statement is as follows:

if(boolean_expression 1) {

4. IoT Hardware Overview

250

/* Executes when the boolean expression 1 is true */
if(boolean_expression 2) {

/* Executes when the boolean expression 2 is true */
}

}

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
//* Local variable definition */
int a = 100;
int b = 200;

/* Check the boolean condition */
if (a == 100) {

/* If condition is true then check the following */
if (b == 200) {

/* If condition is true then print the following */
Console.WriteLine("Value of a is 100 and b is 200");

}
}
Console.WriteLine("Exact value of a is : {0}", a);
Console.WriteLine("Exact value of b is : {0}", b);
Console.ReadLine();

}
}

}

Output:

Value of a is 100 and b is 200
Exact value of a is : 100
Exact value of b is : 200

switch Statement
A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable being switched on is checked for each switch
case.

The syntax for a switch statement in C# is as follows:

switch(expression) {
case constant-expression :

statement(s);
break; /* Optional */

case constant-expression :
statement(s);
break; /* Optional */

4.5. Raspberry Pi Overview

251

/* You can have any number of case statements */
default : /* Optional */
statement(s);

}

The following rules apply to a switch statement.

1. The expression used in a switch statement must have an integral or enumerated
type or be of a class type in which the class has a single conversion function to an
integral or enumerated type.

2. You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

3. The constant-expression for a case must be the same data type as the variable in
the switch, and it must be a constant or a literal.

4. When the variable being switched on is equal to a case, the statements following
that case will execute until a break statement is reached.

5. When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

6. Not every case needs to contain a break. If no break appears, the flow of control will
fall through to subsequent cases until a break is reached.

7. A switch statement can have an optional default case, which must appear at the end
of the switch. The default case can be used for performing a task when none of the
cases is true. No break is needed in the default case.

Example:

using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
/* Local variable definition */
char grade = 'B';

switch (grade) {
case 'A':

Console.WriteLine("Excellent!");
break;

case 'B':
case 'C':

Console.WriteLine("Well done");
break;

case 'D':
Console.WriteLine("You passed");
break;

case 'F':
Console.WriteLine("Better try again");
break;

default:
Console.WriteLine("Invalid grade");
break;

}

4. IoT Hardware Overview

252

Console.WriteLine("Your grade is {0}", grade);
Console.ReadLine();

}
}

}

Output:

Well done
Your grade is B

Nested switch Statement
It is possible to have a switch as part of the statement sequence of an outer switch. Even
if the case constants of the inner and outer switch contain common values, no conflicts
will arise.

The syntax for a nested switch statement is as follows:

switch(ch1) {
case 'A':

Console.WriteLine("This A is part of outer switch");

switch(ch2) {
case 'A':

Console.WriteLine("This A is part of inner switch");
break;

case 'B': /* Inner B case code */
}
break;
case 'B': /* Outer B case code */

}

Example:
<code C>
using System;

namespace DecisionMaking {
class Program {

static void Main(string[] args) {
int a = 100;
int b = 200;

switch (a) {
case 100:

Console.WriteLine("This is part of outer switch ");

switch (b) {
case 200:

Console.WriteLine("This is part of inner switch ");
break;

}
break;

}
Console.WriteLine("Exact value of a is : {0}", a);
Console.WriteLine("Exact value of b is : {0}", b);

4.5. Raspberry Pi Overview

253

Console.ReadLine();
}

}
}

Output:

This is part of outer switch
This is part of inner switch
Exact value of a is : 100
Exact value of b is : 200

C# Classes

Defining a Class
A C# [161] class definition starts with the keyword class followed by the class name, and
the class body enclosed by a pair of curly braces. Following is the general form of a class
definition:

<access specifier> class class_name {
//Member variables
<access specifier> <data type> variable1;
<access specifier> <data type> variable2;
...
<access specifier> <data type> variableN;
//Member methods
<access specifier> <return type> method1(parameter_list) {

//Method body
}
<access specifier> <return type> method2(parameter_list) {

//Method body
}
...
<access specifier> <return type> methodN(parameter_list) {

//Method body
}

}

Note:

▪ access specifiers specify the access rules for the members as well as the class itself.
If not mentioned, then the default access specifier for a class type is internal. Default
access for the members is private;

▪ data type specifies the type of variable, and return type specifies the data type of the
data the method returns if any;

▪ to access the class members, you use the dot (.) operator;

▪ the dot operator links the name of an object with the name of a member.

Example:

using System;

4. IoT Hardware Overview

254

namespace BoxApplication {

class Box {
public double length; //Length of a box
public double breadth; //Breadth of a box
public double height; //Height of a box

}
class Boxtester {

static void Main(string[] args) {
Box Box1 = new Box(); //Declare Box1 of type Box
Box Box2 = new Box(); //Declare Box2 of type Box
double volume = 0.0; //Store the volume of a box here

//Box1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

//Box2 specification
Box2.height = 10.0;
Box2.length = 12.0;
Box2.breadth = 13.0;

//Volume of Box1
volume = Box1.height * Box1.length * Box1.breadth;
Console.WriteLine("Volume of Box1 : {0}", volume);

//Volume of Box2
volume = Box2.height * Box2.length * Box2.breadth;
Console.WriteLine("Volume of Box2 : {0}", volume);
Console.ReadKey();

}
}

}

Output:

Volume of Box1 : 210
Volume of Box2 : 1560

Member Functions and Encapsulation
A member function of a class is a function that has its definition or its prototype within
the class definition similar to any other variable. It operates on an object of the class of
which it is a member, and has access to all the members of a class for that object.

Member variables are the attributes of an object (from the design perspective), and they
are kept private to implement encapsulation. These variables can only be accessed using
the public member functions.

Sample:

using System;

4.5. Raspberry Pi Overview

255

namespace BoxApplication {
class Box {

private double length; //Length of a box
private double breadth; //Breadth of a box
private double height; //Height of a box

public void setLength(double len) {
length = len;

}
public void setBreadth(double bre) {

breadth = bre;
}
public void setHeight(double hei) {

height = hei;
}
public double getVolume() {

return length * breadth * height;
}

}
class Boxtester {

static void Main(string[] args) {
Box Box1 = new Box(); //Declare Box1 of type Box
Box Box2 = new Box();
double volume;

//Declare Box2 of type Box
//Box1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

//Box2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

//Volume of Box1
volume = Box1.getVolume();
Console.WriteLine("Volume of Box1 : {0}" ,volume);

//Volume of Box2
volume = Box2.getVolume();
Console.WriteLine("Volume of Box2 : {0}", volume);

Console.ReadKey();
}

}
}

Output:

Volume of Box1 : 210
Volume of Box2 : 1560

C# Constructors
A class constructor is a special member function of a class that is executed whenever we

4. IoT Hardware Overview

256

create new objects of that class.

A constructor has the same name as that of class, and it does not have any return type.

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line() {
Console.WriteLine("Object is being created");

}
public void setLength(double len) {

length = len;
}
public double getLength() {

return length;
}

static void Main(string[] args) {
Line line = new Line();

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());
Console.ReadKey();

}
}

}

Output:

Object is being created
Length of line : 6

A default constructor does not have any parameter, but you can make one if you need to
pass some setup values on the initialisation – such constructors are called parameterised
constructors. This technique helps you to assign an initial value to an object at the time
of its creation.

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line(double len) { //Parameterized constructor
Console.WriteLine("Object is being created, length = {0}", len);
length = len;

}

4.5. Raspberry Pi Overview

257

public void setLength(double len) {
length = len;

}
public double getLength() {

return length;
}
static void Main(string[] args) {

Line line = new Line(10.0);
Console.WriteLine("Length of line : {0}", line.getLength());

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());
Console.ReadKey();

}
}

}

Output:

Object is being created, length = 10
Length of line : 10
Length of line : 6

C# Destructors
A destructor is a special member function of a class that is executed whenever an
object of its class goes out of scope. A destructor has the same name as that of the
class with a prefixed tilde (~), and it can neither return a value nor can it take any
parameters. C# (.NET environment) has a built-in memory management system that
tracks unused objects and release memory automatically, but in constrained memory
systems like RPI, it is sometimes essential to manually notify this mechanism about the
possibility to release memory once the object is no longer used. Here destructor helps
much. Moreover, destructor brings a possibility to handle hardware-related issues, e.g.
close connection, send a farewell message to the external device, etc. Destructors cannot
be inherited or overloaded.

Example:

using System;

namespace LineApplication {
class Line {

private double length; //Length of a line

public Line() { //Constructor
Console.WriteLine("Object is being created");

}
~Line() { //destructor

Console.WriteLine("Object is being deleted");
}
public void setLength(double len) {

length = len;
}
public double getLength() {

4. IoT Hardware Overview

258

return length;
}
static void Main(string[] args) {

Line line = new Line();

//Set line length
line.setLength(6.0);
Console.WriteLine("Length of line : {0}", line.getLength());

}
}

}

Output:

Object is being created
Length of line : 6
Object is being deleted

Static Members of a C# Class
We can define class members as static using the static keyword. When we declare a
member of a class as static, it means no matter how many objects of the class are
created, there is only one copy of the static member.

The keyword static implies that only one instance of the member exists for a class.
Static variables are used for defining constants because their values can be retrieved by
invoking the class without creating an instance of it. Static variables can be initialised
outside the member function or class definition. You can also initialise static variables
inside the class definition.

Example:

using System;

namespace StaticVarApplication {
class StaticVar {

public static int num;

public void count() {
num++;

}
public int getNum() {

return num;
}

}
class StaticTester {

static void Main(string[] args) {
StaticVar s1 = new StaticVar();
StaticVar s2 = new StaticVar();

s1.count();
s1.count();
s1.count();

s2.count();

4.5. Raspberry Pi Overview

259

s2.count();
s2.count();

Console.WriteLine("Variable num for s1: {0}", s1.getNum());
Console.WriteLine("Variable num for s2: {0}", s2.getNum());
Console.ReadKey();

}
}

}

Output:

Variable num for s1: 6
Variable num for s2: 6

You can also declare a member function as static. Such functions can access only static
variables. The static functions exist even before the object is created. Example:

using System;

namespace StaticVarApplication {
class StaticVar {

public static int num;

public void count() {
num++;

}
public static int getNum() {

return num;
}

}
class StaticTester {

static void Main(string[] args) {
StaticVar s = new StaticVar();

s.count();
s.count();
s.count();

Console.WriteLine("Variable num: {0}", StaticVar.getNum());
Console.ReadKey();

}
}

}

Output:

Variable num: 3

C# Events

Events occur when a user makes actions like a key press, clicks, mouse movements,
etc., or some other occurrence such as system-generated notifications. Applications must
respond to events if they occur, i.e. handle interrupts. Events are used during inter-

4. IoT Hardware Overview

260

process communication.

Using Delegates With Events
The events are declared and raised in a class. They are associated with the event
handlers using delegates within the same class or some other class. To publish the event,
the class containing it must be defined. It is called the publisher class. Some other
class that accepts this event is called the subscriber class. Events use the publisher-
subscriber model.

The object containing a definition of the event and the delegate is named publisher. The
event-delegate association is also defined in this object. A publisher class object invokes
the event, and it is notified to other objects.

A subscriber is an object that accepts the event and provides an event handler. The
delegate in the publisher class invokes the method (event handler) of the subscriber
class.

Declaring Events
To declare an event inside a class, first, a delegate type for the event must be declared.
For example,

public delegate string MyDel(string str);

Next, the event itself is declared, using the event keyword:

event MyDel MyEvent;

The preceding code defines a delegate named “BoilerLogHandler” and an event named
“BoilerEventLog”, which invokes the delegate when it is raised.

Example:

using System;

namespace SampleApp {
public delegate string MyDel(string str);

class EventProgram {
event MyDel MyEvent;

public EventProgram() {
this.MyEvent += new MyDel(this.WelcomeUser);

}
public string WelcomeUser(string username) {

return "Welcome " + username;
}
static void Main(string[] args) {

EventProgram obj1 = new EventProgram();
string result = obj1.MyEvent("Tutorials Point");
Console.WriteLine(result);

}
}

4.5. Raspberry Pi Overview

261

}

Output:

Welcome Tutorials Point

4. IoT Hardware Overview

262

5. Introduction to the IoT Communication and
Networking

Mind, there is “I” in IoT!

In no doubt, IoT is network oriented – even the name IoT naturally relates to the
Internet network. Communication is an essential part of IoT idea. Every IoT device must
communicate somehow, even most simple, passive RFID tag – it responds with some
data to the excitation. Communication is always performed with some rules known for
both communicating parties. Like people have their different languages to use, devices
have protocols. Communication protocol describes how to address the information to the
remote device, how to encode the data, how to check the correctness of the incoming
message. The physical layer of protocol description also tells how to transmit every bit of
data, what is the frequency of radio waves, how fast we can send the data, what is the
maximum range of the transmission.

Communication in IoT devices can be wired or wireless.

IoT networking is much different than typical, multilayered, stack-oriented TCP/IP or
similar communication model; we know well while using our PC, MAC, server or
Smartphone on a daily basis.

Indeed constrained IoT devices are usually unable to operate regular – full time on, ISO/
OSI layered stack, because of constrained resources. In details it primary means, IoT
devices are limited by the processor power, RAM and storage sizes and mainly because of
limited power resources. IoT device is expected to be energy efficient, thus low powered,
that in most cases excludes typical wireless connection standards, e.g. WiFi. On the
other hand, IoT devices are expected to communicate over long distances – some couple
or a dozen of kilometres – where wired infrastructure like Ethernet cables and related
infrastructure is non-existent and most of the wired technologies, copper-based is out of
range.

Also, IoT devices daily life-cycle is much different than, e.g. or PC life-cycle. We as
humans used to switch on the notebook, work extensively on the web, then put it to the
low power or off, making the machine to sleep, hibernate or just shutting it down. And
we wake it up when needed. It barely makes network operation during sleep. IoT devices
are expected to be sleeping providing low power mode whenever possible, and on the
other hand, they're supposed to be fully operable, when only needed. Most performed
IoT tasks related to the sensing have cyclical nature, i.e. measuring gases as a sensor-
network node whereas period can be something like between seconds and months or
even longer. Anyway, they're usually expected to trigger themselves to be awake from
sleep, perform some operation and connect to the network.

Because of the existence of different IoT devices including those very constrained from

5. Introduction to the IoT Communication and Networking

263

8-bit processors with some kB of the RAM to 32-bit multicore machines well-replacing
PCs, IoT networking is very competitive on protocols, approaches and solutions. There
are indeed some networking standards introduced by standardisation organisation like
IEEE, yet they are competed by large manufacturers forcing their complex solutions
including dedicated hardware, software and protocols. The third force driving this market
are open solutions and enthusiasts, usually working with cheap equipment, providing de-
facto standards for many hobbyists and also industry.

Following chapters explain some most popular concepts about how to organise network
fulfilling the above constraints on communication between IoT devices
(Machine-2-Machine) and how to let them communicate with the Internet: including
hardware, software and human-users. We focus on the de-facto standards existing in the
web, usually as open-source libraries and somewhat low-cost devices.

An interesting survey made by RS components [162] shows 11 wireless protocols used in
IoT. Some of them you can use free, without having any license to purchase, while some
others are proprietary, some of them need the subscription plan.

▪ “5.1. Networking Overview”;

▪ “5.2. Communication Models”;

▪ “5.3. Media Layers – Wired Networking”;

▪ “5.4. Media Layers – Wireless Protocols”;

▪ “5.5. Host Layer Protocols”.

5.1. Networking Overview
IoT devices are not separated from the global networking environment that nowadays is
highly integrated, connecting various wired and wireless transmission standards into one
network called the Internet. Indeed some networks are separated because of security
and safety reasons and regulations, yet they usually share the same standards that
global, Internet network.

XXI century brought wide acceptance of wireless connections. They became very popular
even in so-called pico-networks, like your PAN (Personal Area Network)[163][164] [165].
Naturally, many IoT devices share standard wireless protocols, models and ideas, but
some of them are not powerful enough to integrate with the Internet. On the other hand,
wireless connections are somehow natural to the IoT devices where they are expected to
be operating in remote destinations, usually without any wired infrastructure. Because
of it, some Internet standards were adapted to their constraints or such networks of
constrained devices are separated and gatewayed through some more powerful devices,
where protocol translation occurs. Those models are discussed below, in the following
chapters.

The similar way to the regular Internet networking, IoT networking is implemented using
(usually simplified) layered stack, similar to the regular ISO/OSI 7 layer networking stack
well known to all IT students [166].

5. Introduction to the IoT Communication and Networking

264

https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut/communication_stack_and_networking_model
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut/communication_models_device-device_device-cloud_device_-_gateway
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut/most_widely_used_wired_communication_protocols
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut/most_widely_used_wireless_communication_protocols
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut/high_level_communication

Figure 254: ISO/OSI multi-layer Internet networking protocol stack.

Level 1 is a Physical Layer (PHY). On top of it, there is level 2 is Data Link Layer with
Media Access Control and Logical Link Control (MAC/LLC). Level 3 is the Networking
layer (NET) where packets are formed and routed as presented in Figure 254. ISO-
OSI model was designed and implemented for dedicated network controller chips and
powerful processors; thus not all of the IoT devices are capable to fully implement this
model, particularly because of constrained RAM and storage memory sizes. Also, this
model requires an instant connection to the remote node (PHY dependent), so it has a
strong impact on the battery drain in case of the low power devices.

A quick overview of popular communication technologies for the Internet is presented in
Figure 255. Note wide distance range between nodes of the Wireless devices regarding
protocol used (mostly because of the PHY nature) where it varies from some meters
in case of piconets up to some 180–2000 km when considering LEO (Low Earth Orbit)
satellites, e.g. communicating through Iridium network and even up to about 35 786 km
in case of the use of the geostationary satellites [167].

Another factor is the communication bandwidth. Fortunately, IoT devices usually do not
require high bandwidth – some couple of kbps is enough; thus, almost all protocols apply
here.

5.1. Networking Overview

265

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika2.png?id=en%3Abook

Figure 255: Popular wireless networking standards.

In many cases, IoT remote, distant nodes do not need constant communication, i.e.
weather sensing would better communicate on datagram communication model (UDP
rather than TCP) [168]. In such case, IoT devices utilize differently, simplified IoT stack
as presented in Figure 256.

Figure 256: Simplified, IoT-oriented implementation of the protocol stack (using UDP).

5.2. Communication Models
IoT Devices can be classified regarding their ability to implement full protocol stacks of
the typical, Internet protocols like IPv4, IPv6, HTTP, etc.

▪ Devices unable to implement full, protocol stack without external support, like, i.e.
Arduino Uno (R3) with 32 kb of the flash memory, 16 MHz single core processor and
2 kB of static ram, battery powered, consuming some couple of mW while operating.

5. Introduction to the IoT Communication and Networking

266

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika6.png?id=en%3Abook

▪ Devices able to implement full, protocol stack yet still limited by their resources, i.e.
ESP8266 and ESP32 chips, battery powered, consuming some dozen or hundred of
mW while operating.

▪ Devices that do can offer various, advanced network services, capable of
implementing protocol stack with ease yet not servers, routers or gateways, i.e.
Raspberry Pi and its clones. Usually, DC powered with power consumption far above
1–2 W, usually up to 10–15 W.

▪ Dedicated solutions for gateways, routers, usually with embedded, hardware-based
implementations of the switching logic, utilising some 10-50W of power.

▪ Universal IoT computers (i.e. Intel IoT), using PC-grade processors (x86, but
sometime ARM), using some about up to 100 W of power.

Some IoT networks are also constrained by the number of IP addresses available
regarding the number of IoT devices ones need to connect, so their topology is a
priori prepared as NAT (Network Adress Translation) solution [169] thus it requires
automatically use of routers.

IoT devices are usually expected to deliver their data to some cloud for storage and
processing while the cloud can send back commands to the actuators/outputs.

Finally, there are security concerns, which make the IoT devices to be put in some
separate sub-network and guarded by the firewall.

All of it brings the three, main communication models, explained below.

5.2.1. Device to Device and Industry 4.0 Revolution

Device to device communication model, sometimes referenced as M2M (Machine to
Machine communication model) used to be implemented between the homogeneous
class of the IoT devices. Nowadays, there is a need to enable heterogeneous systems
to collaborate and talk one to another. In a device to a device model, communication is
usually held simple, sometimes with niche, proprietary protocols, i.e. ANT/ANT+ [170],
sometimes do employs heavy protocols like XML, so there is a need to provide common
communication ontologies and semantics. Devices participating in such networks usually
act as multimode, constituting self-organising networks, capable of exchanging the data
through routing and forwarding as it appears in 6LowPAN networks where nodes may not
only act as data producer/consumer but is also expected to act as message forwarder/
router.

Device to device model is highly utilized in the Industrial Automation Control systems and
recently very popular in developing Industry 4.0 (I4.0) solutions, where manufacturing
devices, i.e. robots and other Cyber-Physical systems (CPS) communicate to set
operation sequence for optimal manufacturing process (so-called Industry 4.0) thus
providing elastic working zones along with manufacturing flexibility and self-adaptation
of the processes. It happens because of the presence of various IoT devices (here
sometimes referenced as Industrial IoT) and advanced data processing including Big
and Small data. Such a device to device networks very frequently mimics popular P2P
(peer to peer) networks, where one device can virtually contact any other to ask for
information or deliver one. Comparing to the classical, tree-like topology, a device to
device communication constitutes a graph of relations rather than a hierarchized tree.
The Figure 257 presents comparison between pre-I4.0 (Industry 3.0) and I4.0 data

5.2. Communication Models

267

flow. Along with physical (real) devices participating in the manufacturing process,
there usually goes their virtual representation (“virtual twin”) to enable cognitive
manufacturing based on data science. The detailed description of the data analysis and
its use in I4.0 is out of the scope of this book, however.

Figure 257: Industry 3.0 vs Industry 4.0 communication topology.

The device to device communication assumes, participating devices are smart enough
to talk one another, without the need of the translation nor advanced data processing,
even if their nature is different (e.g. your intelligent door can inform your smart, IoT
kettle to start boiling water once they get informed about poor weather condition by the
Internet weather monitoring service, when you're back home after long day of work).
Devices constituting mesh or scatter network communicate virtually one another similar
way people do. The Figure 258 briefly presents the data flow idea

5. Introduction to the IoT Communication and Networking

268

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/i30vsi40.png?id=en%3Abook

Figure 258: Device to device communication model.

5.2.2. Device to Gateway

Device to gateway communication occurs when there is a need to provide the translate
information between different networks, i.e. some Zigbee [171], when acting opposite,
e.g. forwarding actuator requests to the IoT devices.

Gatewaying and protocol translation can also occur on the 6th and 7th level of the
ISO/OSI model when the implementation of high-level protocols overwhelms even more
advanced IoT devices, i.e. simple MQTT texting can be converted to the XML, heavy
messages or exposed as XHTML. Those solutions are mostly software-based, i.e. Node-
RED [172]. The Figure 259 briefly presents the data flow. Please note the protocol
change: arrows of the different colours reflect it.

5.2. Communication Models

269

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/dev-dev.png?id=en%3Abook

Figure 259: Device to gateway communication model

5.2.3. Device to Cloud

As IoT devices are usually unable to constitute an efficient computation structure (as
single IoT node or even their federation), most data is forwarded to the server, often
a cloud-based solution, where it is stored and processed. This data processing in the
cloud varies, depending on the type of information, their goal, etc. In any case, we
usually face the problem of the visualisation, data analytics (statistics, data mining,
knowledge discovery, big data processing). Those tasks are resource consuming, require
huge processing capabilities; thus, utilising cloud solution is usually a good choice. Note,
claiming “cloud” we consider not only public clouds like Amazon, Google or Microsoft but
also dedicated solutions hidden somewhere in the separated, manufacturing networks.
Eventually, there is a need to send back some actuation requests to the devices, from
the cloud. Cloud services are usually PC based solutions, thus they extensively use rich
protocols, providing their APIs via i.e. REST [173], SoAP [174], HTTP GET/POST methods
[175], etc. It requires the IoT devices interfacing cloud to implement full communication
stacks for the protocols needed. Some of the IoT devices can interface cloud services
directly, but some of them are unable to do so due to the constraints, so it is necessary
to use gateways as mentioned in the previous chapter.

5. Introduction to the IoT Communication and Networking

270

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/dev-gwy.png?id=en%3Abook

Figure 260: Device to cloud communication model.

5.3. Media Layers – Wired Networking
While the IoT ecosystem is usually considered to be composed of wireless devices, it is
still possible to connect IoT solutions using a wired connection. In this chapter, we do not
present communication protocols that are short distant one designed to connect sensors
to IoT device, like I2C, SPI, Serial, etc. Those are described in chapter “4.2. Embedded
Systems Communication Protocols”.

When wireless-enabled SoCs where about to be delivered to the market (i.e. ESP8266),
there were already available sorts of extension devices for popular Embedded systems,
like i.e. Ethernet Shield for Arduino boards.

5.3. Media Layers – Wired Networking

271

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/dev-cloud.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/a000068_iso.jpg?id=en%3Abook

Figure 261: Ethernet shields for Arduino boards.

Cooper based wired networks also bring an extra feature to the IoT designers – an ability
to power the device via a wired connection, i.e. PoE (Power over Ethernet) – 802.3af,
802.3at, 802.3bt [176]. Long distance connections may be implemented using optic-
based, fibre connections, but those require physical medium converters that are usually
quite complex, pretty expensive and power consuming; thus, they apply only to the niche
IoT solutions. Please note, mentioned optical connections do not cover so-called LiFi, as
those are considered to be wireless [177].

A non exhaustive list of some present and former wired networking solutions are
presented in the Table 22.

Table 22: A Short Review of the Most Popular Wired Networking Standards

Name Communication
medium Max speed Topology

Max range
(single segment,

passive)

Ethernet

Twisted pair:
10BaseT
Coaxial:
10Base2/
10Base5
Fibre: 10BaseF

10 Mbps
Bus, Star,
Mixed
(Tree)

10Base2: 0.5–200
m (185 m)
10Base5: 500 m
10BaseT: 100 m
(150 m)
10BaseF: 2 km
(multimode fibre)

Fast
Ethernet

Twisted pair:
100BaseTx
Fibre:
100BaseFx

100 Mbps Star
100BaseTx: 100 m
(Cat 5)
100BaseFx: 2 km

Gigabit
Ethernet

Twisted pair:
1000BaseT
Fibre:
1000BaseX (LX/
CX/SX)

1000BaseT: 1 Gbps
1000BaseX: 4.268 Gbps Star

1000BaseT: 100
m (Cat 5)
1000BaseLX: 5 km

Local
Talk
(Apple)

Twisted pair 0.23 Mbps Bus, Star
(PhoneNet) 1000 ft

5. Introduction to the IoT Communication and Networking

272

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/nano-w5100-ethernet-shield-network-expansion-board-nano-v3-0-top.jpg_640x640.jpg?id=en%3Abook

Name Communication
medium Max speed Topology

Max range
(single segment,

passive)

Token
ring Twisted pair 16 Mbps Star wired

ring
22.5 m / 100 m
(cable dependent)

FDDI Fibre
100 Mbps (200 Mbps on
two rings, but no
redundancy)

Dual ring 2 km

Nowadays, the most popular wired networks are 10/100/100BaseT – twisted pair with
Cat 5, 5e and 6 cables. They require the IoT system to implement full TCP/IP stack to
operate seamlessly with conventional Internet/Intranet/Extranet networks. Because it is
usually out of the scope of standard Arduino Uno processor capabilities to implement full
TCP stack, there are typically dedicated processors on the network interfaces that assist
the central processor or even handle all networking tasks themselves.

5.4. Media Layers – Wireless Protocols
Wireless connections define core communication for IoT devices. Wast and growing
amount of protocols, their variations and dynamic IoT networking market, all present
non-solid situation where old “adult” Internet protocols coexist along with new ideas
and IoT hardware and software platforms are more and more capable with every
new generation; thus new ideas appear almost daily. Currently, there are many IoT
networking protocols defined for various layers of the protocol implementation stack,
some of them compatible while others are concurring. The Figure 262 presents some
selected protocols existing for IoT. Please note, this covers only the most popular ones
and presents a non-exhaustive view. We discuss them more detailed below.

5.4. Media Layers – Wireless Protocols

273

Figure 262: IoT protocols.

5.4.1. PHY + MAC + LLC Layers

Below we present currently most popular, wireless protocols review for the lower ISO/
OSI layers (1–2, some of them also implement layer 3 – Networking).

WiFi

WiFI is the set of standards for wireless communication using the 2.4 GHz or 5 GHz
band, slightly different spectrum in different countries. The core specification of the 2.4
GHz contains 14 channels with 20 MHz (currently 40 MHz) bandwidth. While there is no
centralised physical layer controller, collisions frequently occur even more with a growing
number of devices sharing the band. The collision is handled using CSMA-CA with a
random binary exponential increase of repeating time.

With the high speed of transmission and range usually not exceeding 100 m, it is widely
used as the direct replacement of wired Ethernet in local area networks. It is a very good
choice while the amount of data to be transferred is larger, for example, video streams
or assembled IoT stream delivered by gateways. It is also possible to use it in direct
connectivity for smart sensors, and other IoT elements, but the protocol itself is not
designed to transmit small data packets. For many IoT applications, it is too much energy
consuming, especially when it comes to battery-powered devices. Moreover, WiFi itself
offers only 1-to-1 or star-like models of connection, where the central point is a WiFi
Access Point (1-to-many) and does not provide mechanisms for io.e. self-reorganizable,
failure-tolerant mesh networks. WiFi becomes a more and more popular choice for not-
so-constrained IoT devices because they need to implement full TCP/IP stack and those
devices that are also not so constrained by power consumption.

5. Introduction to the IoT Communication and Networking

274

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/iot_protocols.png?id=en%3Abook

Table 23: WiFi Standards Summary

802.11 standard Transmission speed Frequency

802.11b 11 Mbps 2.4 GHz

802.11g 54 Mbps 2.4 GHz

802.11n 150 Mbps 2.4 GHz

300 Mbps 5 GHz

802.11ac 1 Gbps 5 GHz

Bluetooth

Bluetooth is a prevalent method of connecting a variety of devices in short distance.
Almost every computer and a smartphone have Bluetooth module built-in. Standard
has been defined by Bluetooth SIG (Special Interest Group) founded in 1998. Bluetooth
operates in the 2.4 GHz band with 79 channels with automatic channel switching
when interference occurs (hopping frequency). The single channel offers up to about
1Mbps (where around 700kbps is available for the user) bandwidth, and it provides
communication within the range from up to 1 m (class 3, 1 mW) till up to 100 m (class
1, 100 mW). The most popular version is class 2 with 10 m range (2.5 mW).

Every Bluetooth device has a unique, 48-bit MAC address.

Bluetooth offers various “profiles”, for multimedia, serial ports, packet transmission
encapsulation (PAN), etc. The most useful for IoT devices is PAN (Personal Area Network)
Profile and of course SPP (Serial Port) Profile.

Now Bluetooth covers two branches: BR/EDR (Basic Rate/Enhanced Data Rate) for
high-speed audio and file transfer connections and LE (Low Energy) for short burst
connections [178].

Classical (prior to BLE and 4.0) Bluetooth networks can create ad-hoc, so-called WPAN
(Wireless Personal Area Networks) sometimes referenced as Piconets. Bluetooth Piconet
can handle up to 7 + 1 devices, where 1 device acts as Master, and it can contact up
to 7 Slave devices. Only the Master device can initiate a connection. Fortunately for the
IoT approach, much Bluetooth hardware can act as Slave and Master simultaneously,
constituting this way a kind of router; thus, devices can constitute a tree-like structure
called Scatternet.

5.4. Media Layers – Wireless Protocols

275

Figure 263: Bluetooth Scatternet.

Bluetooth Low Energy (BLE) uses an simplified implementation of the state machine
thus is more constrained-devices friendly. It offers a limited range, and it is designed to
expose the state rather than transmit streamed data. It provides a speed reaching up to
about 1.4 Mbps (2 Mbps aerial throughput) if needed, however. It uses 2.4 GHz band but
is designed to avoid interference with WiFi AP and clients. Communication is organised
into three advertising channels (located “between” WiFi) and 37 communication
channels.

Latest Bluetooth implementations (protocol version 5.0 and newer, implemented in
mid-2017) offer a Bluetooth mesh network extending ubiquitous connectivity via many-
to-many communication model, dedicated to IoT devices, lighting, Industry 4.0, etc.
The Bluetooth mesh is layer-organised, and since there is no longer Master-Slave model
used, but messages are relayed through the mesh, it is considered to be no longer
the Scatternet because of its flat structure [179]. Sample Bluetooth Mesh Network is
presented in Figure 264 (source: Bluetooth SIG, Mesh Profile Specification v1.0 [180].

Figure 264: Example Topology of the Bluetooth 5 Mesh Network.

5. Introduction to the IoT Communication and Networking

276

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/bt_piconets.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/g3737.png?id=en%3Abook

Table 24: Bluetooth Standard Summary

Bluetooth Transmission speed Remarks

1.0 21 kbps Few implementations

1.1 124 kbps

1.2 328 kbps First popular version

2.0 + EDR 3 Mbps Extended Data Rate

3.0 + HS 24 Mbps High Speed

3.1 + HS 40 Mbps

4.0 + LE 1 Mbps Low Energy

4.1 Designed for IoT

5.0 One standard for all purposes

Cellular

Cellular (mobile/GSM) networks are one of the possible options because of its wide
coverage and long range. Those network use orthogonality in frequency and time spaces.
Cellular networks are presented by the subsequent generations (G) – currently up to
4.5G present on the market and 5G in the experimental phase (should be fully functional
around the year 2020). Typical GSM network technology, sometimes referenced as an
era, runs out within about 10–15 years. It is pretty close but still less than expected
end-of-life for classes of IoT devices (15-25 years). GSM hardware used to be backwards
compatible, enabling users to access older, even before 2G GSM networks with latest
chips.

Figure 265 present GSM network evolution over time and generations. Cellular networks
use different frequencies in different countries, yet available radio implementations
nowadays are usually able to handle all of them.

5.4. Media Layers – Wireless Protocols

277

Figure 265: GSM network evolution and generations.

Figure 266 presents sample GSM hardware (separate module and ready shield for the
Arduino platform).

Figure 266: Sample GSM hardware for IoT prototyping.

GSM protocols are proprietary, quite complex (including advanced ciphering) and require
dedicated hardware. A sort of documentation and standards is not publicly available
because of security considerations (i.e. voice transmission ciphering details).

On the one hand, the GSM network seems to be a good solution for extended distant
IoT networks; on the other, they have many disadvantages, however. First of all, they

5. Introduction to the IoT Communication and Networking

278

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika3.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/sim800l.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/a000105_iso.jpg?id=en%3Abook

require the use of operators' infrastructure – as GSM bands are not free to use.

Important! Professional operation requires licencing and connecting existing
infrastructure involves a purchase of the unique identifier (phone ID and a number that
is given by the SIM card, physical or virtual) and a service fee.

By the limited access constraints there do exist one more – GSM boards are using quite
a significant amount of energy when establishing a connection because they need to
broadcast their existence as far as possible, to gain a connection with a possibly distant-
located base station. It requires tremendous power and drains the battery (even up to
10 W peak); thus, cellular solutions are not suitable for the IoT devices that use frequent
data communication.

ZigBee

ZigBee protocol is so far very popular in Smart House but also in Industry appliances.
Zigbee is a wireless technology developed as an open standard to address the needs of
low-cost, low-power wireless machine to machine networks. It is more popular in the
industry, however, but because of the relatively higher cost of equipment in comparison
with WiFi, Bluetooth or other RF modules. The Zigbee standard operates on the radio
bands 2.4 GHz for smart home applications, 915 MHz in US and Australia, 868 MHz in
Europe and 784 MHz in China. The advantage of ZigBee is the possibility of forming the
mesh networks where nodes are interconnected with others, so there are multiple paths
connecting each pair of nodes. Connections are dynamically updated, so when one node
turns off the path going through that node will be automatically rerouted via another
path. Transmission speed is up to 250 kbps, theoretical range up to 100 m but usually to
some 10–30 m. ZigBee does not provide direct, unique IP-addressing on the Networking
layer like 6LowPAN or Thread do. Single ZigBee network can handle up to 65 000 devices.

Z-Wave

Z-Wave is a protocol similar in principals to the ZigBee, but hardware is cheaper; thus, it
is more towards inexpensive home automation systems. Like in ZigBee, Z-Wave operates
on different frequencies depending on the world region, usually between 865 MHz and
926 MHz. Transmission speed is up to 200 kbps, and the range is up to 100m. A single
Z-Wave network is pretty limited on a number of concurrent devices in one network, that
is only 232 devices. Each Z-Wave network has a unique ID, and each node (device) in a
network has a unique 8-bit identifier.

Thread

Another standard [181] that works using the same 802.15.4 radio. There are some
differences in the protocol, like address allocation. In 6LowPAN it is done be nodes since
in Thread addresses are obtained from DHCPv6 server.

NFC

NFC (Near Field Communication) is a technology that enables two-way interactions
between electronic devices. What is important one of the devices does not have to be
equipped with the power source – it is powered by the receiving radio signal. That’s why
NFC is used in contactless card technology enabling devices to exchange the data at a
distance of less than 4 cm. Transmission speed varies between 100–420 kbps, range

5.4. Media Layers – Wireless Protocols

279

between both active devices is up to 10 cm, operating frequency 13.56 MHz.

Sigfox

Sigfox [182] is the idea to connect objects with sub 1 GHz radio frequency. It uses the
900 MHz European countries are covered with Sigfox.

LoRaWAN

LoRa (Long Range) is the technology for data transmission with relatively low speed (20
bps do 41 kbps) and the range about 2 km (new transceivers can transmit data up to 15
km). It uses CSS (Chirp Spread Spectrum) modulation in the 433 MHz ISM radio band.
The cell topology is the star with the gateway placed at the central point. End-devices use
one hop communication with the gateway, that is connected to the standard IP network
with a central network server. The LoRa technology is supported as LoRa WAN by LoRa
Alliance [183] designed as Sigfox for public networks, but it can also be used in private
networks that do not require a subscription.

5.4.2. NET (NWY) Layer

Traditionally, we use IP addressing (usually masked by DNS to be more user-friendly)
when accessing Internet resources. IoT devices may also benefit from this approach.
However, constrained devices do require special “editions” of the conventional protocols,
that are lightweight. Networking layer implements the basic communication mechanisms
on the packet level like routing, delivery, proxying, etc. Many IoT, lightweight
implementations of the protocols presented below benefit or at least inherit ideas from
regular “adult” implementations. Please note that some protocols implement more than
one layer, as presented on image 262. We also provide a short reference of the IPv4 and
IPv6, to show advantages and drawbacks.

IPv4

Internet Protocol v4 (1981) is perhaps the most widespread networking protocol. The
predecessor of the IPv4 protocol originally called IP was introduced in 1974 and
supported up to 2^8 hosts, organised in 2^4 subnetworks (RFC 675).

In IPv4 (RFC 760/RFC791) the logical addressing space was extended to 2^32 devices
that seemed to be quote much in 1981, but now we struggle with lack of free addressing
space. This number is less because some addresses are reserved, e.g. for broadcasting
and due to the existence of different classes of addresses and their pools [184]. Sample
IPv4 address is, for example, 192.168.1.1.

Some relief to suffocating Internet was brought as an ad-hoc solution with an
introduction of the NAT (Network Address Translation). NAT-enabled subnetworks are
those, where one public address represents a set of devices hidden behind the router,
but that limits usability because of lack of direct access and unique identification in the
global network of the devices sharing private address spaces. Even so, there are about
8.5 billion IoT devices expected to be connected to the Internet by the end of the 2017
year, according to the Gartner's report [185]. They all need to be uniquely addressed!

5. Introduction to the IoT Communication and Networking

280

IPv6

IPv6 is the next generation of the IPv4 protocol. It is supposed to replace IPv4, but
this process is somehow not so quick as there are many solutions still present on
the Internet and Intranets that implement IPv4 only and would become inoperable
if IPv4 would not be available anymore. IPv6 brings addressing space large enough
to cover all existing and future needs. The number of possible addresses is 2^128.
Addresses are presented by 8 groups of 4 hexadecimal values, e.g.
2001:0db8:0000:0042:0000:8a2e:0370:7334.

This brings the capability to uniquely identify any device connected to the Internet using
its IPv6 address. Regarding IoT, implementations have many drawbacks (IPv4 also has
them). IPv6 network is star-like, whereas IoT networks can benefit from the mesh model.
IPv6 network requires a controller providing free addresses (a DHCP server) – devices
need to contact it to obtain the address. Every single IoT device needs to keep a list of
devices it corresponds with (ARP) to resolve their physical address. Moreover, full IPv6
stack implementation requires large RAM, when used.

6LoWPAN

The name is the abbreviation of “IPv6 over Low-Power Wireless Personal Area Networks”
[186] and as it says is the IP based network. This protocol was introduced as a lightweight
version of full IPv6, IoT-oriented. This feature allows connecting 6LoWPAN networks
with other networks using so-called Edge Router. Thus every node can be visible on the
Internet as states in IoT idea. This standard has been developed to operate on the radio
channel defined in 802.15.4 (as ZigBee, Z-Wave). It creates the adaptation layer that
allows using IPv6 over 802.15.4 link. 6LoWPAN has been adopted in Bluetooth Smart 4.2
standard as well.

6LoWPAN supports two addressing models: 64 bit and 16 bit (that, of course, limits the
number of devices connected to one network to 64 000 nodes). The primary frame size is
just 127 bytes (comparing to full IPv6 where it is 1280 bytes at least). 6LoWPAN supports
unicast and broadcast. It also supports IP routing and link-layer mesh (802.15.5) that
enables the introduction of the fail-safe redundant, self-organising networks, because the
link-layer mesh can have more than one Edge Router. 6LoWPAN uses autoconfiguration
for neighbour devices discovery so does not require a DHCP server. It also supports
ciphered transportation using AES 128 (and AES 64 for constrained devices).

5.4. Media Layers – Wireless Protocols

281

Figure 267: Sample 6LoWPAN and Internet

6LoWPAN devices can be just nodes (Hosts) or nodes with routing capability (Routers)
as presented in Figure 267.

A gateway between 6LoWPAN and regular IPv6 (IPv4) network is implemented by
the Edge Router. Its purpose is to translate “compressed” IPv6 addresses to ensure
bi-directional communication between the Internet and 6LoWPAN nodes. Note – the
network structure of the 6LoWPAN is logically flat (star/mesh with single addressing
space), and devices have unique MAC addresses to be recognisable by the Edge Router
device.

When the 6LoWPAN network starts, there are three operations done, repeated
consequently.

1. Commissioning – establishes connectivity on the Data Link Layer level between
nodes.

2. Bootstrapping – performs address configuration, discovery and registration.

3. Route Initiation – executing routing algorithms to set up paths.

Typical IPv6 networking discovery won't work here because multicast/broadcast
messages are not passable through 6LoWPAN routing nodes (routes as on in Figure 268.

An interesting procedure is performed when an IoT node (device) wants to connect to the
existing 6LoWPAN network. As there is no central DHCP server broadcasting information,
the device needs to discover the configuration and create 6LoWPAN address itself. It
issues the network discovery process.

Network discovery (discovery of neighbour nodes) in 6LoWPAN uses four principals:

5. Introduction to the IoT Communication and Networking

282

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/6lowpan2.png?id=en%3Abook

▪ NR – node registration,

▪ NC – node confirmation,

▪ DAD – duplicate address detection,

▪ support for Edge Routers.

Figure 268: 6LoWPAN Network Automated Discovery demystified.

Network Automated Discovery is composed of two main sections.

1. Part one (dark blue) – Neighbor Discovery (ND):

▪ new node sends RS multicast (SLLAO);

▪ all routers respond unicast RA (PIO + 6CO + ABRO + SLLAO);

▪ node selects one router as default (usually first RA obtained) and derives global
Ipv6 address based on prefix delivered (PIO);

▪ node sends ARO (ARO + SLLAO) unicast to the selected router;

▪ router returns ARO with a status:

▪ status is: OK, Duplicate Address, Cache Full, other (see RFC5226);

▪ assuming status OK, the router adds new neighbour node address into the
cache;

5.4. Media Layers – Wireless Protocols

283

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/6lowpan_connecting.png?id=en%3Abook

▪ Node sends periodically NS to inform that “it is alive” the router (so-called NUD
(Neighbor Unreachability Detection));

▪ Process above may involve DAD (Duplicate Address Detection) mechanism to be
triggered.

▪ on registration, router “asks” all Edge Routers if address offered by the node is
unique (DAR/DAC messages).

▪ DAD message is expected to “wake up” IoT device from standby mode!

1. Part two (red) – Network Registration (NR):

▪ node sends DODAG Solicitation (DIS) unicast to the router.

▪ router responds with DODAG Information Object (DIO) and keeps broadcasting it
periodically. DIO contains router rank (i.e. it presents, how far the router is from
the Edge Router);

▪ if node obtains DIO with better rank, it should re-register with other “better”
router as a new default router;

▪ finally node sends Destination Advertising Object (DAO) to its default router that
is forwarded to edge router;

▪ edge router responds with DAO ACK.

This way, the new 6LoWPAN node can join the new network seamlessly. Moreover, this
mechanism enables 6LoWPAN mesh network to self-organise itself if needed, e.g. in case
of a failure of the router.

5.5. Host Layer Protocols
The host layers protocols include session (SES), presentation (PRES) and application
(APP) level, particularly APP (application) layer in the regular Internet communication
is dominated by the HTTP protocol and XML-related derivatives, e.g. SoAP. Also, FTP
protocol for file transfer is ubiquitous; it exists since the beginnings of the Internet.
Most of them are somehow related to the text. They're referenced as “WEB” protocols.
Although these protocols are frequently used by advanced and more powerful IoT
devices, this is problematic to be implemented in the constrained IoT devices world.
Event simplest HTTP header occupies at least 24 + 8 + 8 + 31 bytes without any payload!
There is also a problem to cross firewall boundaries when communication between
subnetworks of the IoT devices is expected to occur. Some IoT designed protocols are
reviewed below.

5.5.1. MQTT

MQTT protocol [187] was invented especially for the constrained IoT devices and low
bandwidth networks. It is located in APP layer 7 of the ISO/OSI stack, but in fact, it
covers all layers 5–7. It is text-based protocol yet very compact end efficient. Protocol
stack implementation requires about 10 kB of RAM/flash only.

MQTT uses TCP connection so requires open connection channel (this is in opposite
to UDP connections, where communications work in a way: “send and forget”). It is
considered a drawback of the original MQTT protocol, but there do exist MQTT variations
for non-TCP networks, e.g. MQTT-SN. Protocol definition provides reliability and delivery
ensure mechanisms.

5. Introduction to the IoT Communication and Networking

284

The standard MQTT Message header is composed of just two bytes only (Table 25)! There
are 16 MQTT messages types. Some messages types require variable length header.

Table 25: MQTT Standard Message Header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag Qos level RETAIN

byte 2 Remaining length

MQTT requires for its operation a centralized MQTT broker that is located outside of
firewalls and NATs, where all clients connect, send and receive messages via publish/
subscribe model. The client can act as publisher and subscriber simultaneously. The
image 269 presents publish-subscribe model idea.

Figure 269: MQTT broker, publishers and subscribers.

MQTT Message

MQTT is a text-based protocol and is data-agnostic. A message is composed of a Topic
(text) and a Payload (data). The topic is a directory-like string with slash (”/“) delimiter.
Thus all Topics constitute (or actually may represent) a kind of tree-like folders, similar
to those on the file system. The subscriber can subscribe to specific, single Topic, or to a
variety of Topics using wildcards, where:

▪ # stands for the entire branch,

▪ + stands for the single level.

Example Scenario

Publishers deliver some air quality information data in separate MQTT messages and for
various rooms at the department Inf of the Universities (SUT, RTU, ITMO) to the Broker:

Topic (publishers):

SUT/Inf/Room1/Sensor/Temperature

SUT/Inf/Corridor/Sensor/Temperature

5.5. Host Layer Protocols

285

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/mqtt_broker.png?id=en%3Abook

Topic (publishers):

SUT/Inf/Auditorium1/Sensor/Temperature

RTU/Inf/Room1/Sensor/Temperature

ITMO/Inf/Room1/Sensor/Temperature

RTU/Inf/Room1/Sensor/Humidity

SUT/Inf/Room3/Sensor/Temperature

RTU/Inf/Room1/Window/NorthSide/State

The subscriber 1 wills to get all sensor data for SUT university, Inf (informatics)
department only, for any space:

Topic (subscription):

SUT/Inf/+/Sensor/#

The subscriber 2 wills to get only Temperature data virtually from any sensor and in any
location in ITMO:

Topic (subscription):

ITMO/#/Temperature

The subscriber 3 wills to get any information from the sensors, but only for the RTU

Topic (subscription):

RTU/#

The payload (data) of the message is text as well, so in case one need to send binary
data, it is necessary to encode it (e.g. Base64).

MQTT Broker

MQTT Broker is a server for both publishers and subscribers. The connection is initiated
from the client to the Broker, so assuming it is located outside of a firewall, it breaks
firewall its boundaries. The Broker provides QoS (Quality of Service), and it can retain
message payload. There are three levels of MQTT Broker QoS (supplied in the message
level).

▪ Unacknowledged service: Ensures that MQTT message is delivered at most once to
each subscriber.

▪ Acknowledged service: Ensures delivery of the message at least once to every
subscriber. The broker expects acknowledgement to be sent from the subscriber.
Otherwise, it retransmits data.

▪ Assured service: This is two-step delivery of the message, and ensures the message
is delivered exactly once to every subscriber.

For Acknowledged and Assured services it is vital to provide unique packet IDs in MQTT

5. Introduction to the IoT Communication and Networking

286

frame.

The DUP flag (byte 1, bit 3) represents information sent by the publisher if the message
is a “first try” (0) or a retransmitted one (1). It is mostly for internal purposes, and this
flag is never propagated to the subscribers.

MQTT offers some limited set of features (options):

▪ clean session flag for durable connections:

▪ if set TRUE, Broker removes all of the client subscriptions on client disconnect;

▪ otherwise Broker collects messages (QoS depending) and delivers them on client
reconnecting; thus, connections remain idle;

▪ MQTT “will”: on connection lost, Broker will automatically “simulate” publishing of the
pre-defined MQTT message (topic and payload). All clients subscribing this message
(whether directly or via a wildcard) will be notified immediately. It is a great feature
for failure/disaster discovery;

▪ message retaining: it is a feature for regular messages. Any message can be set
as retaining and in such case Broker will keep the last one. Once a new client
subscribes topic, it will receive a retained message immediately even if the publisher
is not publishing any message at the moment. This feature is last known good
value. It is good to present publishers state (e.g. publisher sends retained message
meaning “I'm going offline” and then disconnects. Any client connecting will be
notified immediately about the device (client) state.

Interestingly MQTT is a protocol used by Facebook Messenger [188].

MQTT security is rather weak. MQTT Broker can offer user and password verification
yet it is sent plain text. However, all communication between client and Broker may be
encapsulated in SSL, encrypted stream.

A short comparison of MQTT and HTTP protocols are presented in the Table 26.

Table 26: MQTT vs HTTP

MQTT HTTP

Design Data centric Document centric

Pattern Publish/Subscribe Request/response

Complexity Simple Complex

Message size Small, with 2 byte binary
header Larger with text based status

Service levels 3 QoS None

Implementation C/C++: 10–30 kB
Java ~100 kB

Depends on application but hits
> MB

Data distribution
models

1-to-1
1-to-N 1-to-1

5.5. Host Layer Protocols

287

5.5.2. CoAP

CoAP protocol (RFC7252) originates from the REST (Representational State Transfer).
CoAP does not use a centralised server as MQTT does, but every single device “hosts”
a server on its own to provide available resources to the clients asking for service
offering distributed resources. CoAP uses UDP (comparing to MQTT that uses TCP) and is
stateless thus does not require memory for tracking the state. The CoAP implementation
assumes every single IoT device has a unique ID, and things can have multiple various
representations. It is intended to link “things” together using existing standard methods.
It is rather a resource-oriented (not document-oriented like HTTP/HTML), designed
for slow IoT networks with a high degree of packet loss, also support devices to be
periodically offline. CoAP uses URIs :

▪ "coap:" "//" host[":"port] path ["?" query] to access a service/resource,

▪ a secure, encrypted version uses “coaps” instead of “coap”.

It supports various content types, can work with proxy and can be cached.
The protocol is designed to be compact and simple to implement. The stack
implementation takes only about 10 kB of RAM and 100 kB of storage. The header is only
4 bytes.

CoAP protocol has a binary header to decrease overhead but payload depends on the
content type. Initial, non-exclusive list of the payload types include:

▪ text/plain (charset=utf-8) (ID=0, RFC2046, RFC3676, RFC5147),

▪ application/link-format (ID=40, RFC6690),

▪ application/xml (ID=41 RFC3023),

▪ application/octet-stream (ID=42, RFC2045, RFC2046),

▪ application/json (ID=50, RFC7159).

CoAP endpoint services are identified by unique IP and port number. However, they
operate on the UDP instead of TCP (like, e.g. HTML does). The transfer in CoAP
is made using non-reliable UDP network so that a message can appear duplicated,
disappear or it can be delivered in other order than initially sent. Because of the
nature of datagram communication, messages are exchanged asynchronously between
two endpoints, transporting Requests and Responses. CoAP messages can be (non-
exhaustive list):

▪ CON (Confirmable, those requiring ACK Acknowledge),

▪ NON (Non-Confirmable, those that do not need ACK),

▪ ACK (an acknowledgement message),

▪ RESET (sent if CON or NON was received, but the receiver cannot understand
the context, e.g. part of the communication is missing because of device restart,
messages memory loss, etc.). Empty RESET messages can be used to “ping” the
device.

Because of the UDP network characteristics, CoAP provides an efficient yet
straightforward reliability mechanism to ensure successful delivery of messages:

▪ stop and wait for retransmission with exponential back-off for CON messages,

5. Introduction to the IoT Communication and Networking

288

▪ duplicate message detection for CON and NON-messages.

Request-reponse pair is identified by a unique “Token”. Sample request-response
scenarios are presented in images below. Sample CoAP message exchange scenarios
between client and server are presented (two per image) in Figure 270 and Figure 271.

Figure 270: CoAP scenario 1: confirmable with time delay payload answer (0 × 70) and
immediate payload answer (0 × 71).

Figure 271: CoAP scenario 2: urecognized request (0 × 72) and non-confirmable
request (0 × 73).

The scenario in the Figure 270 (left, with token 0 × 70) is executed in situation when
a CoAP server device (a node) need some time to prepare data and cannot deliver
information right away. The scenario in Figure 270 (right, with token 0 × 71) is used,
when a CoAP server can provide information to the client immediately. The scenario in
Figure 271 (left, with token 0 × 72) appears when a CoAP server cannot understand
the request. The scenario in Figure 271 (right, with token 0 × 73) presents the situation
where the request to the CoAP server was made with a non-confirmable request.

5.5. Host Layer Protocols

289

https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika8.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/communications_and_communicating_sut/grafika7.png?id=en%3Abook

6. Data and Information Management in the
Internet of Things
At the centre of the IoT ecosystem consisting of billions of connected devices is the
wealth of information that can be made available through the fusion of data that is
produced in real-time, as well as data stored in permanent repositories. This information
can make the realisation of innovative and unconventional applications and value-
added services possible and will act as an immense source for trend analysis and
strategic business opportunities. A comprehensive management framework of data and
information that is generated and stored by the objects within the IoT is thus required to
achieve this goal [189] [190] [191] [192] [193] [194] [195] [196] [197].

Data management is a broad concept referring to the architectures, practices, and
procedures for proper management of the data lifecycle requirements of a particular IT
system. As far as the IoT is concerned, data management should act as a layer between
the physical sensing objects and devices generating the data – on the one hand, and the
applications accessing the data for analysis purposes and services – on the other.

The IoT data has distinctive characteristics that make traditional relational-based
database management an obsolete solution. A massive volume of heterogeneous,
streaming and geographically-dispersed real-time data will be created by millions of
diverse devices periodically sending observations about certain monitored phenomena or
reporting the occurrence of certain or abnormal events of interest. Periodic observations
are most demanding regarding communication overhead and storage due to their
streaming and continuous nature, while events present time-strain with end-to-end
response times depending on the urgency of the response required for the event.
Furthermore, in addition to the data that is generated by IoT entities, there is also
metadata that describes these entities (i.e. “things”), such as object identification,
location, processes and services provided. The IoT data will statically reside in fixed-
or flexible-schema databases and roam the network from dynamic and mobile objects
to concentration storage points. It will continue until it reaches centralised data stores.
Communication, storage and process will thus be defining factors in the design of data
management solutions for the IoT.

Traditional data management systems handle the storage, retrieval, and update of
elementary data items, records and files. In the context of the IoT, data management
systems must summarise data online while providing storage, logging, and auditing
facilities for offline analysis. It expands the concept of data management from offline
storage, query processing, and transaction management operations into online-offline
communication/storage dual operations. We first define the data lifecycle within the
context of the IoT and then discuss some of the phases to have a better understanding
of the IoT data management.

▪ “6.1. IoT Data Lifecycle”;

▪ “6.2. IoT Data Management Versus Traditional Database Management Systems”;

▪ “6.3. IoT Data Sources”;

▪ “6.4. Main IoT Domains Generating Data”;

▪ “6.5. Infrastructure and Architectures for Iot Data Processing: Cloud, Fog, and Edge
Computing”;

6. Data and Information Management in the Internet of Things

290

https://home.roboticlab.eu/en/iot-open/data/data_lifecycle
https://home.roboticlab.eu/en/iot-open/data/iotdatavsdb
https://home.roboticlab.eu/en/iot-open/data/data_sources
https://home.roboticlab.eu/en/iot-open/data/data_gen_domain
https://home.roboticlab.eu/en/iot-open/data/cfe
https://home.roboticlab.eu/en/iot-open/data/cfe

▪ “6.6. IoT Data Storage Models and Frameworks”;

▪ “6.7. IoT Data Processing Models and Frameworks”;

▪ “6.8. IoT Data Semantics”;

▪ “6.9. IoT Data Visualisation”.

6.1. IoT Data Lifecycle
Data processing is simply the conversion of raw data to meaningful information through
a process. Data is manipulated to produce results that lead to a resolution of a problem
or improvement of an existing situation. Similar to a production process, it follows
a cycle where inputs (raw data) are fed to a process (computer systems, software,
etc.) to produce output (information and insights). Generally, organisations employ
computer systems to carry out a series of operations on the data to present, interpret, or
obtain information. The process includes activities like data entry, summary, calculation,
storage, etc. A useful and informative output is presented in various appropriate forms,
such as diagrams, reports, graphics, etc.

The lifecycle of data within an IoT system proceeds from data production to aggregation,
transfer, optional filtering and preprocessing, and finally to storage and archiving.
Querying and analysis are the endpoints that initiate (request) and consume data
production, but data products can be set to be “pushed” to the IoT consuming services.
Production, collection, aggregation, filtering, and some basic querying and preliminary
processing functionalities are considered online, communication-intensive operations.
Intensive preprocessing, long-term storage and archival and in-depth processing/
analysis are considered offline storage-intensive operations.

Storage operations aim at making data available on the long-term for constant access/
updates, while archival is concerned with read-only data. Since some IoT systems may
generate, process, and store data in-network for real-time and localised services, with
no need to propagate this data further up to concentration points in the system, edge
devices that combine both processing and storage elements may exist as autonomous
units in the cycle. In the following paragraphs, each of the elements in the IoT data
lifecycle is explained.

1. Querying: data-intensive systems rely on querying as the core process to access
and retrieve data. In the context of the IoT, a query can be issued either to request
real-time data to be collected for temporal monitoring purposes or to retrieve a
certain view of the data stored within the system. The first case is typical when a
(mostly localised) real-time request for data is required. The second case represents
more globalised views of data and in-depth analysis of trends and patterns.

2. Production: data production involves sensing and transfer of data by the edge
devices within the IoT framework and reporting this data to interested parties
periodically (as in a subscribe/notify model), pushing it up the network to
aggregation points and subsequently to database servers, or sending it as a response
triggered by queries that request the data from sensors and smart objects. Data is
usually time-stamped and possibly geo-stamped and can be in the form of simple
key-value pairs, or it may contain rich (unstructured) audio/image/video content,
with varying degrees of complexity in-between.

3. Collection: the sensors and smart objects within the IoT may store the data for a
certain time interval or report it to govern components. Data may be collected at
concentration points or gateways within the network, where it is further filtered and

6.1. IoT Data Lifecycle

291

https://home.roboticlab.eu/en/iot-open/data/data_storage_models_frameworks
https://home.roboticlab.eu/en/iot-open/data/data_processing_models_frameworks
https://home.roboticlab.eu/en/iot-open/data/data_semantics
https://home.roboticlab.eu/en/iot-open/data/prova

processed, and possibly fused into compact forms for efficient transmission. Wireless
communication technologies such as Zigbee, Wi-Fi and mobile networks are used by
objects to send data to collection points. A collection is the first stage of the cycle and
is very crucial since the quality of data collected will impact heavily on the output.
The collection process needs to ensure that the data gathered are both defined and
accurate so that subsequent decisions based on the findings are valid. This stage
provides both the baseline from which to measure and a target on what to improve.
Some types of data collection include census (data collection about everything in
a group or statistical population), sample survey (collection method that includes
only part of the total population), and administrative by-product (data collection is a
byproduct of an organisation’s day-to-day operations).

4. Aggregation/fusion: transmitting all the raw data out of the network in real-time
is often prohibitively expensive, given the increasing data streaming rates and the
limited bandwidth. Aggregation and fusion techniques deploy summarisation and
merging operations in real-time to compress the volume of data to be stored and
transmitted.

5. Delivery: as data is filtered, aggregated, and possibly processed either at the
concentration points or at the autonomous virtual units within the IoT, the results of
these processes may need to be sent further up the system, either as final responses
or for storage and in-depth analysis. Wired or wireless broadband communications
may be used there to transfer data to permanent data stores.

6. Preprocessing: the IoT data will come from different sources with varying formats
and structures. Data may need to be preprocessed to handle missing data, remove
redundancies and integrate data from different sources into a unified schema before
being committed to storage. Preparation is the manipulation of data into a form
suitable for further analysis and processing. Raw data cannot be processed and
must be checked for accuracy. Preparation is about constructing a dataset from
one or more data sources to be used for further exploration and processing.
Analysing data that has not been carefully screened for problems can produce highly
misleading results that are heavily dependent on the quality of data prepared. This
preprocessing is a known procedure in data mining called data cleaning. Schema
integration does not imply brute-force fitting of all the data into a fixed relational
(tables) schema, but rather a more abstract definition of a consistent way to access
the data without having to customise access for each source's data format(s).
Probabilities at different levels in the schema may be added at this phase to the IoT
data items in order to handle the uncertainty that may be present in data or to deal
with the lack of trust that may exist in data sources.

7. Storage/update and archiving: This phase handles the efficient storage and
organisation of data, as well as the continuous update of data with new information
as it becomes available. Archiving refers to the offline long-term storage of data that
is not immediately needed for the system's ongoing operations. The importance of
this step is that it allows quick access and retrieval of the processed information,
allowing it to be passed on to the next stage directly when needed. The core of
centralised storage is the deployment of storage structures that adapt to the various
data types and the frequency of data capture. Relational database management
systems are a popular choice that involves the organisation of data into a table
schema with predefined interrelationships and metadata for efficient retrieval at later
stages. NoSQL key-value stores are gaining popularity as storage technologies for
their support of big data storage with no reliance on a relational schema or strong
consistency requirements typical of relational database systems. Storage can also be

6. Data and Information Management in the Internet of Things

292

decentralised for autonomous IoT systems, where data is kept at the objects that
generate it and is not sent up the system. However, due to the limited capabilities
of such objects, storage capacity remains limited in comparison to the centralised
storage model.

8. Processing/analysis: This phase involves the ongoing retrieval and analysis
operations performed and stored and archived data in order to gain insights into
historical data and predict future trends, or to detect abnormalities in the data
that may trigger further investigation or action. Task-specific preprocessing may be
required to filter and clean data before meaningful operations can take place. When
an IoT subsystem is autonomous and does not require permanent storage of its
data, but rather keeps the processing and storage in the network, then in-network
processing may be performed in response to real-time or localised queries.

9. Output and interpretation: This is the stage where processed information is now
transmitted to the user. An output is presented to users in various visual formats
like diagrams, infographics, printed report, audio, video, etc. The output needs to
be interpreted so that it can provide meaningful information that will guide future
decisions of the company.

Depending on the architecture of an IoT system and actual data management
requirements in place, some of the steps described above can be omitted. Nevertheless,
it is possible to distinguish three main patterns for the IoT data flow.

▪ In relatively autonomous IoT systems, data proceeds from query to production to in-
network processing and then delivery.

▪ In more centralised systems, the data flow that starts from production and proceeds
to collection and filtering/aggregation/fusion and ends with data delivery to initiating
(possibly global or near real-time) queries.

▪ In fully centralised systems, the data flow extends the production to aggregation
further and includes preprocessing, permanent data storage and archival, and in-
depth processing and analysis.

6.2. IoT Data Management Versus Traditional Database
Management Systems
Based on the IoT data lifecycle discussed earlier, we divide an IoT data management
system into i) an online (i.e. real-time) front-end that interacts directly with the
interconnected IoT objects and sensors, and ii) an offline back-end that handles the
mass storage and in-depth analysis of the IoT data. The data management frontend is
communication-intensive, as it involves the propagation of query requests and result to
and from sensors and smart objects. The backend is storage-intensive, as it involves
the mass storage of produced data for later processing and analysis and more in-depth
queries. Although the storage elements reside on the back-end, they interact with the
front-end on a frequent basis via continuous updates and are thus referred to as online.
The autonomous edges in the IoT data lifecycle can be considered more communication-
intensive than storage-intensive, as they provide real-time data to certain queries.

This envisioned data management architecture differs considerably from the existing
database management systems (DBMSs), which are mainly storage-centric. In
traditional databases, the bulk of data is collected from predefined and finite sources,
and stored in scalar form according to strict normalisation rules in relations. Queries
are used to retrieve specific “summary” views of the system or update specific items in

6.2. IoT Data Management Versus Traditional Database Management
Systems

293

the database. New data is inserted into the database when needed, also via insertion
queries. Query operations are usually local, with execution costs bound to processing
and intermediate storage. Transaction management mechanisms guarantee the ACID
properties in order to enforce overall data integrity. Even if the database is distributed
over multiple sites, query processing and distributed transaction management are
enforced. The execution of distributed queries is based on the transparency principle,
which dictates that the database is still viewed logically as one centralised unit, and the
ACID properties are guaranteed via the two-phase commit protocol.

In the IoT systems, the picture is dramatically different, with a massive and ever-growing
number of data sources that include sensors, RFIDs, embedded systems, and mobile
devices. Contrary to the occasional updates and queries submitted to traditional DBMSs,
data is constantly streaming from a multitude of edge devices to the IoT data stores,
and queries are more frequent and with more versatile needs. Hierarchical data reporting
and aggregation may be required for scalability guarantees as well as to enable more
prompt processing functionality. The strict relational database schema and the relational
normalisation practice may be relaxed in favour of more unstructured and flexible forms
that adapt to the diverse data types and sophisticated queries. Although distributed
DBMSs optimise queries based on communication considerations, optimisers base their
decisions on fixed and well-defined schemas. This may not be the case in the IoT, where
new data sources and streaming, localised data create a highly dynamic environment
for query optimisers. Striving to guarantee the transparency requirements imposed in
distributed DBMSs on IoT data management systems is challenging, if not impossible.
Furthermore, transparency may not even be required in the IoT because innovative
applications and services may require location and context awareness. Maintaining ACID
properties in bounded IoT spaces (subsystems), while executing transactions can be
managed, but is challenging for the more globalised space. However, the element of
mobile data sources and how their generated data can be incorporated into the already
established data space is a novel challenge that is yet to be addressed by the IoT data
management systems.

6.3. IoT Data Sources
As the IoT gets more involved in various domains and types of operations, a countless
number of its data sources generate immense volumes of data. All the sources can be
roughly divided into three groups.

Passive Sources

They are sensors that do not communicate actively and send the required information to
the centralised management system only on demand. For instance, sensors that make
atmospheric measurements produce data when API is activated. That does not mean that
an application is also passive; on the contrary, the data from passive sensors requires
proper management and processing, and it is what an application is purposed for.

Active Sources

The main difference between passive and active sensors is that the latter transmit data
continuously, not only by request. An example is jet engine sensors. Information comes
in a real-time manner, which demands an application to provide its ongoing processing.
As the data must be safe, the application must parse it from the stream and then place
into a proper format for storage and processing.

6. Data and Information Management in the Internet of Things

294

Dynamic Sources

These sources are most sophisticated, and also the most useful ones. Devices with
dynamic sensors interact with respective applications bidirectionally and perform a wide
range of capabilities, such as data format and frequency change, security issue fixing,
update automation and more. Also, they are auto- and self-tuned. Dynamic sensors do
not just produce rough information to an application that processes it but can also send
ready data that meets the application’s requirements.

6.4. Main IoT Domains Generating Data
The emergence of new information sources indispensably affects the data centre market,
and it has experienced structural changes in recent years. Indeed, information
technology tends to go beyond processing data in traditional data centres and opt for
cloud-centric ones. In just a few years, only 8 % of overall workloads will be handled by
old-school data centres.

The IoT is predicted to generate 403 ZBs of data a year by 2018, up from 113.4 ZBs
in 2013. But according to Cisco, not all generated data will be sent to data centres.
In three years times, colo sites should be hosting 8.6 ZBs, up from 3.1 ZB in 2013.
IDC has predicted that by 2020 one-tenth of the world’s data will be produced by
machines. The organisation forecast that in five years time the number of connected
devices communicating over the internet will reach 32 billion and generate 10 % of the
world’s data. CBR compiles a list of the top 10 critical areas set to foster data growth
resulting from IoT connected solutions.

1. Air travel: arming planes with smart sensors to prevent failures is already a reality.
These sensors produce several terabytes of data per flight. For example, Cisco said
that a Boeing 787 aircraft could generate 40 TBs per hour of flight. These IoT
solutions in the air industry have several applications beyond preventing failure.
They can also reduce fuel consumption, adjust speeds and reduce travel times.

2. Mining: for the mining industry, the main benefit of using the IoT is safety. By
automating machines (M2M), humans are not required to stay close to the vehicles
and risk their lives. Cisco predicts that mining operations can generate up to 2.4 TBs
of data every minute.

3. Cars: a smart IoT connected vehicle is a fountain of data. It is continuously
transmitting data to manufacturers, to road operators, to its driver, to the
authorities, etc. Data generated by smart cars could crash mobile networks with
data surges by 2024. The company said connected vehicles are expected to total 2.3
billion by then, which will increase data traffic up to 97 % during rush hour traffic at
some cell points.

4. Utilities: the worldwide revenue opportunity presented by the IoT for the utility
industry by 2018 is estimated to reach $201 billion. Smart meters are just an
example. According to the UK Department of Energy & Climate Change, by the end
of 2014, there were a total of 20.8 million gas meters and 25.3 million electricity
meters operated by the larger energy suppliers in British domestic properties. Smart
meters collect data on how much energy is being used every 30 minutes, 24/7, 365.
It sends to the cloud several TBs of information every year.

5. Cities: smart cities will be made of everything out there. Street lamps talking to the
grid, urban parks connecting to services and rivers, sending out alerts on pollution
levels. All this data is generated on a daily basis, and it’s stored in the cloud.

6.4. Main IoT Domains Generating Data

295

Millions of sensors, deployed in every city will continuously produce vast amounts of
information.

6. Wearables: it is estimated that by 2019 more than 578 million wearables will be
in use around the world. These solutions are continually collecting data on health,
fitness and wellness. The amount of data produced by wearables varies according to
the device being worn and the type of sensors it has included.

7. Sports: as sports adopt more wearables and smart clothing to improve
performances, clubs are also looking at new ways to read the field and polish tactics
using predictive analysis. For example, the NBA took on SAP to make its statistics
accessible to fans, opening the clubs data to the world. SAP deployed its analytical
software, primarily used in business environments, to create a database that records
every single move players execute, players’ stats, and much more.

8. Logistics: until today, transportation of goods would be over once the supply chain
shipped the products. But with the IoT, the service will be extended further beyond
this, and smart goods will constantly produce more data. Some logistic companies
are already collecting data from their suppliers, and also from their suppliers’
suppliers. Most of this data will be RFID, giving logistic companies the ability to
analyse it in real time and tackle any future problems that might happen in the chain.

9. Healthcare: smart healthcare is already being adopted in several countries. Huge
virtual platforms store patient data that can be accessed by health services anywhere
else. The health sector will see tremendous benefits from the IoT, with sensors being
deployed across all areas in a medical unit. Medical companies are using connectivity
to prevent power surges in medical devices, including critical instruments used in
surgeries. All this information is stored for future analysis.

10. Smart homes: smart homes are already a reality, and by 2020, consumers expect
this ecosystem to be widely available. It is predicted that one smart connected home
today can produce as much as 1 GB of information a week.

6.5. Infrastructure and Architectures for Iot Data Processing:
Cloud, Fog, and Edge Computing

Figure 272: Cloud edge fog computing.

The IoT generates a vast amount of big data, and this, in turn, puts a huge strain on
Internet Infrastructure. As a result, this forces companies to find solutions to minimise
the pressure and solve their problem of transferring large amounts of data. Cloud
computing has entered the mainstream of information technology, providing scalability
in the delivery of enterprise applications and Software as a Service (SaaS). Companies

6. Data and Information Management in the Internet of Things

296

are now migrating their information operations to the cloud. Many cloud providers can
allow for your data to be either transferred via your traditional internet connection or a
dedicated direct link. The benefit of a direct link into the cloud will ensure that your data
is uncontended and that the traffic is not crossing the internet and the Quality of Service
can be controlled. As the IoT proliferates, businesses face a growing need to analyse
data from sources at the edge of a network, whether they are mobile phones, gateways
or IoT sensors. Cloud computing has a disadvantage here: It can’t process data quickly
enough for modern business applications.

Cloud computing and the IoT both serve to increase efficiency in everyday tasks, and
both have a complementary relationship. The IoT generates massive amounts of data,
and cloud computing provides a pathway for this data to travel. Many cloud providers
charge on a pay per use model, which means that you only pay for the computer
resources that you use and not more. Economies of scale is another way in which cloud
providers can benefit smaller IoT start-ups and reduce overall costs to IoT companies.
Another benefit of cloud computing for the IoT is that cloud Computing enables better
collaboration, which is essential for developers today. By allowing developers to store
and access data remotely, developers can access data immediately and work on projects
without delay. Finally, by storing data in the cloud, this enables IoT companies to change
direction quickly and allocate resources in different areas. Big data has emerged in the
past couple of years, and with such emergence, the cloud has become the architecture
of choice. Most companies find it feasible to access the massive quantities of IoT big data
via the cloud.

The IoT owes its explosive growth to the connection of physical things and operational
technologies to analytics and machine learning applications, which can help glean
insights from device-generated data and enable devices to make “smart” decisions
without human intervention. Currently, such resources are mostly being provided by
cloud service providers, where the computation and storage capacity exists. However,
despite its power, the cloud model is not applicable to environments where operations
are time-critical, or internet connectivity is poor. It is especially true in scenarios such
as telemedicine and patient care, where milliseconds can have fatal consequences. The
same can be said about vehicle-to-vehicle communications, where the prevention of
collisions and accidents can’t afford the latency caused by the round-trip to the cloud
server.

Moreover, having every device connected to the cloud and sending raw data over the
internet can have privacy, security and legal implications, especially when dealing with
sensitive data that is subject to separate regulations in different countries. IoT nodes are
closer to the action, but for the moment, they do not have the computing and storage
resources to perform analytics and machine learning tasks. Cloud servers, on the other
hand, have the horsepower, but are too far away to process data and respond in time.

The fog/edge layer is the perfect junction where there are enough compute, storage
and networking resources to mimic cloud capabilities at the edge and support the
local ingestion of data and the quick turnaround of results. Main benefits of fog/edge
computing are the following:

▪ increased network capacity: fog computing uses much less bandwidth, which
means it doesn’t cause bottlenecks and other similar occupancies. Less data
movement on the network frees up network capacity, which then can be used for
other things.

6.5. Infrastructure and Architectures for Iot Data Processing: Cloud,
Fog, and Edge Computing

297

▪ real-time operation: fog computing has much higher experience than any different
cloud computing architecture we know today. Since all data analysis is being done at
the spot, it represents a true real-time concept, which means it is a perfect match for
the needs of IoT concepts.

▪ data security: collected data is more secure when it doesn’t travel. It also makes
information storing much more straightforward because it stays in its country of
origin. Sending data abroad might violate specific laws.

Figure 272 pictorially depicts the cloud edge fog computing scenario. The current
trend shows that fog computing will continue to grow in usage and importance as the
IoT expands and conquers new grounds. With inexpensive, low-power processing and
storage becoming more available, we can expect computation to move even closer to the
edge and become ingrained in the same devices that are generating the data, creating
even greater possibilities for inter-device intelligence and interactions. Sensors that only
log data might one day become a thing of the past.

Fog/edge computing has the potential to revolutionise the IoT in the next several years.
It seems evident that while cloud is a perfect match for the IoT, we have other scenarios
and IoT technologies that demand low-latency ingestion and immediate processing of
data where fog computing is the answer. Fog/edge computing improves efficiency and
reduces the amount of data that needs to be sent to the cloud for processing. But it’s
here to complement the cloud, not replace it. The cloud will continue to have a pertinent
role in the IoT cycle. In fact, with fog computing shouldering the burden of short-term
analytics at the edge, cloud resources will be freed to take on the more cumbersome
tasks, especially where the analysis of historical data and large datasets is concerned.
Insights obtained by the cloud can help update and tweak policies and functionality at the
fog layer. To sum up, it is the combination of fog and cloud computing that will accelerate
the adoption of the IoT, especially for the enterprise.

6.6. IoT Data Storage Models and Frameworks
The increasing volumes of heterogeneous unstructured IoT data have also led to the
emergence of several solutions to store these overwhelming datasets and support
appropriate data management.

▪ NoSQL databases are often used for storing IoT big data. It is a new type of database
which is becoming more and more popular among web companies today. Proponents
of NoSQL solutions state that they provide more straightforward scalability and
improved performance relative to traditional relational databases. These products
excel at storing “unstructured data,” and the category includes open source products
such as Cassandra, MongoDB, and Redis.

▪ In-memory databases assume that data is stored in computer memory to make
access to it faster. Representative examples are Redis and Memcached, both NoSQL
databases, entirely served from memory. These products excel at storing
“unstructured data,” and the category includes open source products such as
Cassandra, MongoDB, and Redis.

6.7. IoT Data Processing Models and Frameworks
Processing frameworks and processing engines are responsible for computing over data
in a data system. While there is no authoritative definition setting apart “engines” from
“frameworks”, it is sometimes useful to define the former as the actual component
responsible for operating on data and the latter as a set of elements designed to do

6. Data and Information Management in the Internet of Things

298

the same. For instance, Apache Hadoop can be considered a processing framework
with MapReduce as its default processing engine. Engines and frameworks can often be
swapped out or used in tandem. For instance, Apache Spark, another framework, can
hook into Hadoop to replace MapReduce. This interoperability between components is
one reason that big data systems have great flexibility.

While the systems which handle this stage of the data lifecycle can be complex, the goals
on a broad level are very similar: operate over data to increase understanding, surface
patterns, and gain insight into complex interactions. To simplify the discussion of these
components, we will group these processing frameworks by the state of the data they
are designed to handle. Some systems handle data in batches, while others process data
in a continuous stream as it flows into the system. Still, others can manage data in either
of these ways.

Batch Processing Systems

Batch processing has a long history within the big data world. Batch processing involves
operating over a large, static dataset and returning the result at a later time when
the computation is complete. The datasets in batch processing are typically bounded:
batch datasets represent a limited collection of data persistent: data is almost always
backed by some permanent storage large: batch operations are often the only option
for processing extensive sets of data Batch processing is well-suited for calculations
where access to a complete set of records is required. For instance, when calculating
totals and averages, datasets must be treated holistically instead of as a collection of
individual records. These operations require that state is maintained for the duration of
the calculations. Tasks that need vast volumes of data are often best handled by batch
operations. Whether the datasets are processed directly from permanent storage or
loaded into memory, batch systems are built with large quantities in mind and have the
resources to handle them. Because batch processing excels at managing large volumes
of persistent data, it frequently is used with historical data.

The trade-off for handling large quantities of data is a longer computation time. Because
of this, batch processing is not appropriate in situations where processing time is
especially significant. Because this methodology heavily depends on permanent storage,
reading and writing multiple times per task, it tends to be somewhat slow. On the other
hand, since disk space is typically one of the most abundant server resources, it means
that MapReduce can handle enormous datasets. MapReduce has incredible scalability
potential and has been used in production on tens of thousands of nodes.

Apache Hadoop: Apache Hadoop is a processing framework that exclusively provides
batch processing. Hadoop was the first big data framework to gain significant traction
in the open-source community. Based on several papers and presentations by Google
about how they were dealing with tremendous amounts of data at the time, Hadoop
reimplemented the algorithms and component stack to make large-scale batch
processing more accessible. Apache Hadoop and its MapReduce processing engine offer
a well-tested batch processing model that is best suited for handling extensive datasets
where time is not a significant factor. The low cost of components necessary for a
well-functioning Hadoop cluster makes this processing inexpensive and useful for many
use cases. Compatibility and integration with other frameworks and engines mean that
Hadoop can often serve as the foundation for multiple processing workloads using
diverse technology.

6.7. IoT Data Processing Models and Frameworks

299

Stream Processing Systems

Stream processing systems compute over data as it enters the system. It requires a
different processing model than the batch paradigm. Instead of defining operations to
apply to an entire dataset, stream processors determine processes that will be used
to each individual data item as it passes through the system. The datasets in stream
processing are considered “unbounded”. It has a few important implications:

▪ the total dataset is only defined as the amount of data that has entered the system
so far;

▪ the working dataset is perhaps more relevant and is limited to a single item at a time;

▪ processing is event-based and does not “end” until explicitly stopped. Results are
immediately available and will be continually updated as new data arrives.

Stream processing systems can handle a nearly unlimited amount of data, but they only
process one (true stream processing) or very few (micro-batch processing) items at a
time, with a minimal state being maintained in between records. While most systems
provide methods of maintaining some state, stream processing is highly optimised for
more functional processing with few side effects.

Functional operations focus on discrete steps that have limited state or side-effects.
Performing the same operation on the same piece of data will produce the same output
independent of other factors. This kind of processing fits well with streams because
state between items is usually some combination of challenging, limited, and sometimes
undesirable. So while some type of state management is generally possible, these
frameworks are much simpler and more efficient in their absence.

This type of processing lends itself to certain kinds of workloads. Processing with near
real-time requirements is well served by the streaming model. Analytics, server or
application error logging, and other time-based metrics are a natural fit because reacting
to changes in these areas can be critical to business functions. Stream processing is
a good fit for data where you must respond to changes or spikes and where you're
interested in trends over time.

▪ Apache Storm.

▪ Apache Samza.

6. Data and Information Management in the Internet of Things

300

Hybrid Processing Systems

Some processing frameworks can handle both batch and stream workloads. These
frameworks simplify diverse processing requirements by allowing the same or related
components and APIs to be used for both types of data. The way that this is achieved
varies significantly between Spark and Flink, the two frameworks we will discuss. It is
mainly a function of how the two processing paradigms are brought together and what
assumptions are made about the relationship between fixed and unfixed datasets. While
projects focused on one processing type may be a close fit for specific use-cases, the
hybrid frameworks attempt to offer a general solution for data processing. They not only
provide methods for processing over data, but they also have their integrations, libraries,
and tools for doing things like graph analysis, machine learning, and interactive querying.

▪ Apache Spark.

▪ Apache Flink.

6.8. IoT Data Semantics
With some 25 billion devices expected to be connected to the Internet by 2015 and 50
billion by 2020, providing interoperability among the things on the IoT is one of the most
fundamental requirements to support object addressing, tracking, and discovery as well
as information representation, storage, and exchange.

The lack of explicit and formal representation of the IoT knowledge could cause
ambiguity in terminology, hinder interoperability and mostly semantic interoperability
of entities in the IoT world. Furthermore, lack of shared and agreed semantics for this
domain (and for any domain) may easily result to semantic heterogeneity – i.e. to the
need to align and merge a vast number of different modelling efforts to semantically
describe IoT entities, efforts conducted by many different ontology engineers and IoT
vendors (domain experts). Although there are tools nowadays to overcome such a
problem, it is not a fully automated and precise process, and it would be much easier to
do so if there is at least a partial agreement between the related stakeholders – i.e. a
commonly agreed IoT ontology.

In these circumstances, an ontology can be used as a semantic registry for the facilitation
of the automated deployment of generic and legacy IoT solutions in environments where
heterogeneous devices also have been deployed. Such a service can be delivered by
IoT solution providers, supporting the interoperability problems of their clients/buyers
remotely when buying third-party devices or applications. Practically, this will require the
existence of a central point – e.g. a web service/portal for both end users (buyers of
the devices) and the IoT solution providers (sellers of the applications) to register their
resources, i.e. both the devices and the IoT solutions, in an ontology-based registry.

Sensor Web Enablement and Semantic Sensor Networks

The Sensor Web Enablement (SWE) standards enable developers to make all types of
sensors, transducers and sensor data repositories discoverable, accessible and usable
via the Web. Sensor technology, computer technology and network technology are
advancing together while demand grows for ways to connect information systems
with the real world. Linking diverse technologies in this fertile market environment,
integrators are offering new solutions for plant security, industrial controls, meteorology,
geophysical survey, flood monitoring, risk assessment, tracking, environmental

6.8. IoT Data Semantics

301

monitoring, defence, logistics and many other applications. The SWE effort develops the
global framework of standards and best practices that make linking of diverse sensor-
related technologies fast and practical. Standards make it possible to put the pieces
together in an efficient way that protects earlier investments, prevents lock-in to specific
products and approaches, and allows for future expansion. Standards also influence the
design of new component products. Business needs to drive the process. Technology
providers and solutions providers need to stay abreast of these evolving standards if they
are to stay competitive.

Semantic Web technologies have been proposed as a means to enable interoperability
for sensors and sensing systems in the context of SWE. Semantic Web technologies could
be used in isolation or in augmenting SWE standards in the form of the Semantic Sensor
Web (SSW). Semantic technologies can assist in managing, querying, and combining
sensors and observation data, thus allowing users to operate at abstraction levels above
the technical details of format and integration, instead of working with domain concepts
and restrictions on quality. Machine-interpretable semantics allows autonomous or semi-
autonomous agents to assist in collecting, processing, reasoning about, and acting on
sensors and their observations. Linked Sensor Data may serve as a means to interlink
sensor data with external sources on the Web.

One of the primary outcomes of the SSW research is the Semantic Sensor Network
(SSN) ontology (by W3C Semantic Sensor Network Incubator Group). This IoT ontology
provides all the necessary semantics for the specification of IoT devices as well as the
specifications of the IoT solution (input, output, control logic) that is deployed using
these devices. These semantics include terminology related to sensors and observations,
reusing the one already provided by the SSN ontology, and extended to capture also the
semantics of devices beyond sensors – i.e. actuators, identity devices (tags), embedded
devices, and of course the semantics of the devices and things that are observed by
sensors, that change their status by actuators, that are attached to identity tags, etc.
Furthermore, the ontology includes semantics for the description of the registered IoT
solutions - i.e. input, output, control logic – regarding aligning and matching their
requirements with the specifications and services of the registered devices.

6.9. IoT Data Visualisation
One of the challenges for the IoT industry is data analysis and interpretation. Big data
generated by the IoT devices is impractical if it cannot be translated into a language that
is easy to understand, process and present a visual language. For this reason, IoT data
visualisation is becoming an integral part of the IoT. Data visualisation provides a way to
display this avalanche of collected data in meaningful ways that clearly present insights
are hidden within this mass amount of information. This can assist us in making fast,
informed decisions with more certainty and accuracy than ever before. It is thus vital for
business professionals, developers, designers, entrepreneurs and consumers alike to be
aware of the role that Visualization will and can play shortly. It is crucial to know how it
can affect the experience and effectiveness of IoT products and services.

6. Data and Information Management in the Internet of Things

302

7. IoT Security and Privacy
Concept of information security and its importance.

There are two approaches to the determination of the concept of “information security”:

1. Information security – the status of the safety of information resources and the
protection of the legitimate rights of the personality and society in the information
sphere.

2. Information security – is a process of support for confidentiality, integrity and
accessibility of information.

Confidentiality – ensuring access to information only to authorised users.

Integrity – support of reliability and completeness of information and processing
methods.

Accessibility – ensuring access to information and related assets of authorised users as
required.

The properties given above are fundamental bases in the sphere of protection and safety
of information.

Safety of information – a status of the security of data in the case of which their
confidentiality, accessibility and integrity are provided.

Safety of information is defined by the absence of the unacceptable risk connected to
information leakage on technical channels, unauthorised and inadvertent impacts on data
and (or) on other resources of an automated information system used in the automated
system [198].

To understand what activities for the support of information security consist of, it is
necessary to understand the value of three major concepts clearly: risk, threat and
vulnerability.

The risk of information security – a possibility that this threat will be able to use
the vulnerability of an asset or group of assets and by that will cause damage to the
organisation.

The threat – a potential or real-life danger of making of any act (actions or inactivities)
directed against the subject to protection (information resources) causing damage to the
owner or user, which is shown it is in danger of distortion and losses of information.

Vulnerability – a shortcoming, the error in implementation which does possibly the
unforeseen impact on system attracting failures in system operation is more often.
Vulnerabilities are classified by a set of signs. One of the most important signs – harm
which can be caused by the system, using vulnerability. Most often understand the
specific mistake made in case of design or coding of the system as a vulnerability.

In case of the appearance of new information technologies and furthermore the whole
information branches, there is a vast number of potential threats and vulnerabilities
which shall be probed correctly. Indeed, the Internet of Things did not become an

7. IoT Security and Privacy

303

exception [199].

The recent report of Gartner predicts that by 2020, 20.4 billion devices will be connected
to IoT, and at the same time will be joined every day by 5,5 million new devices. Besides,
by 2020, more than half of sizeable new business processes and systems will include the
IoT component.

These digits are surprising and assume that standard protection the PC and anti-virus
solutions will not be able to resist future threats of cybersecurity on the attached devices
IoT.

For the last few years, many widespread cyber attacks showed risks of the inadequate
safety of IoT. Perhaps, the attack of “Stuxnet” aimed at the industrial programmable
logic controllers (PLC) at the Iranian uranium enrichment plant became the most
known. Experts read that Stuxnet destroyed up to 1000 centrifuges connected through
broadband networks to the PLCs devices working under control of the Windows operating
system at the PCs standard platforms.

In 2016 was many serious attacks directed to IoT devices. Mirai botnet became one
of such attacks. This specific a bot network infected numerous IoT devices (first of
all old routers and IP cameras) and then used them for superimposing of Dyn DNS
provider utilising the DDoS-attack. The botnet of Mirai destroyed Etsy, GitHub, Netflix,
Shopify, SoundCloud, Spotify, Twitter and some other the large websites. This piece of
the malicious code used the devices using outdated versions of a kernel of Linux and
relied on the fact that most users do not change names users/passwords by default on
the devices.

Many companies reduce the costs of production, not including sufficient space for storage
on the devices to provide updating of a kernel Linux. Because of it, kernels which include
vulnerabilities work on many IoT devices. Vendors need to learn this lesson and to allow
each device to update regularly kernels. Until this problem is solved, IoT devices will still
suffer from the weight of exploits.

In November 2016 [200] cybercriminals closed heating of two buildings in the city
of Lappeenranta, Finland. It was the DDoS-attack; in this case, the attack allowed
heating controllers to reboot the system permanently, so heating was not made. As the
temperature in Finland fell below zero at this time, this attack caused very unpleasant
consequences.

Even if you take reasonable measures of the safety of IoT, your connected gadgets can
be compromised by criminals. Last fall the DSN Dyn-Internet service provider got under
the attack which broke access to favourite websites. Attackers could take under control a
large number of devices connected to the Internet, such as video recorders and cameras.
These devices that were used for carrying out the attack [201].

IoT gives the almost infinite opportunities for connection of our devices and the
equipment. From the point of view of creativity, this field is widely opened, with the
endless set of methods “to connect devices”. It can become an ample platform for people
with innovative ideas, but also it concerns also malefactors. Therefore, IoT offers new
opportunities for development and potential security concerns.

7.1. Types of Vulnerabilities of IoT

7. IoT Security and Privacy

304

As it was already told in the previous point, IoT is the problematic platform giving
very ample opportunities not only for direct users but also and for violators. As well
as by operation with any other information technologies, IoT includes the range of
utterly different vulnerabilities, beginning from a human factor (inadvertent errors of
maintenance), finishing with shortcomings of the firmware of devices. Indeed, to provide
the due protection level, it is necessary to define and whenever possible to eliminate the
highest possible number of such vulnerabilities [202].

The first question concerns the problems connected to the safety of the web interfaces
which are built in IoT devices which allow the user to interact with the device, but at
the same time can allow the malefactor to get illegal access to the device. Specific
vulnerabilities of safety, which can lead to this problem include:

▪ feeble registration data by default – logins and passwords,

▪ the registration data displayed in network traffic,

▪ cross-site scripting (XSS),

▪ SQL injection,

▪ careless control of a session,

▪ feeble settings of lock and deleting accounting entry.

It is also possible to select the specific area of vulnerabilities considering the ineffective
mechanisms authenticating users of IoT or bad mechanisms of authorisation. Specific
vulnerabilities of safety, which can lead to these problems include:

▪ the absence of an optimum password policy,

▪ the absence of two-factor authentication,

▪ an unprotected recovery of the password,

▪ the absence of monitoring of access by roles.

Vulnerabilities in network services which are used for access to the IoT device allowing
the malefactor to get illegal access to the device or the related data should not be
underestimated. Specific vulnerabilities of safety, which can lead to this problem include:

▪ vulnerable services,

▪ buffer overflow,

▪ open ports through UPnP,

▪ operational services of UDP,

▪ DoS and DDoS of the attack.

The insufficient configuration of safety is relevant when users of the device have limited
opportunities or cannot change the safety of the control. The poor shape of security
is apparent when the web interface of the device has no possibility of the creation of
detailed user permissions or, for example, for forced use of reliable passwords. The risk
with it is that the IoT device could be attacked easier, allowing illegal access to the device
or data. Specific vulnerabilities of safety, which can lead to this problem include:

▪ the absence of the granular model of permission,

▪ the absence of monitoring of safety,

▪ the absence of journalizing of events of safety.

7.1. Types of Vulnerabilities of IoT

305

There is also a set of the vulnerabilities using shortcomings of mobile and cloudy
interfaces. The range of these vulnerabilities is truly wide because it includes all types
of vulnerabilities: the human factor expressing in carelessness and inadvertent errors,
negligent attitude to a configuration of IoT devices, etc. [203].

Weaknesses of physical security are relevant when the malefactor can get physical
access to the data media and any data which are stored on this carrier. Deficiencies are
also present when USB ports or other external ports can be used for access to the device
with use of the functions intended for setup or service. It can lead to illegal access to the
device or data.

7.2. Monitoring of Vulnerabilities
Monitoring of information security became a more and more comprehensive task. Thanks
to trust relationships policies, administrators shall track a considerably large number of
devices and platforms. And certainly, also face the growing flow of the devices coming
to a network through IoT. Temperature sensors and the connected engines, refrigerating
aggregates and modules of energy management – all this as already more than once
it was mentioned above, is a source of new and also well-known threats of information
security and a receptacle of various vulnerabilities.

The more becomes potential vulnerabilities with IoT distribution, the more function of
monitoring and detection of threats becomes essential. One of the most severe areas
in this sphere is the growing use of cloud resources, at the same time the enterprises
sometimes maintain several varieties of the public and private environment which
generate own datasets of monitoring of safety. The growing number of ending points
connected to IoT ecosystems also has an adverse effect on safety.

The data volume of safety, added to the system, is only one side of a coin. The same
level of readiness for safety, as the normal ending points controlled by the user does not
always have those devices which make IoT. It can lead to the fact that IoT devices will
cause suspicious traffic, having caused still a big need for monitoring of vulnerabilities.
These data arrays mean the bigger number of the logs of safety necessary for scanning
and activation of different security protections and also sources of assessment and
processing [204].

Today the zone of monitoring of network safety looks different than what it was only a
few years ago. Administrators once knew where their territories begin and come to an
end. There was a firewall, and there were accurately specific ending points. “Now the
technology promoted to such an extent that you have a mobile phone, you have the
virtual applications, you have the virtual machines, and you have cloud applications”,
- Chris Thomas, the strategist of Tenable Network Security told. “You have no set of
certain networks any more with accurately certain boundaries for the administrator of
safety. These problems, he added, “over time will only worsen because we have an
Internet of things”. Whenever network edges extend to envelop new locations, the new
environments and new machines, the volume of the log of safety this, requiring revising,
also grow.

When several separate networks suddenly get into one big interdependent group,
administrators and specialists in information security should understand how safety is
ensured and as the standard template of traffic looks. It also often means that monitoring
of safety and vulnerabilities shall be quickly applied to places which were not under
attention earlier [205].

7. IoT Security and Privacy

306

In the previous subject of lectures types of the vulnerabilities widespread in IoT were
considered, in same it is necessary to list the primary methods of preventing threats of
information security considering relevant vulnerabilities.

For neutralisation of the vulnerabilities connected to problem aspects of network
interfaces exist the following methods:

▪ the initial setup, including the mandatory change of the password by default,

▪ support of reliable mechanisms of recovery of the password and information security
about the valid accounting entries,

▪ support of the web interface is insensitive to XSS, SQLi or CSRF,

▪ the password policy, regulating the complexity of passwords,

▪ support of lock of the accounting entry after a certain number of abortive attempts
to log in.

To provide the necessary reliability of authentication and authorisation, used on IoT
devices, the following methods will help:

* configuring of reliable password policies,
* support for granular monitoring of access if necessary,
* support for appropriate protection of registration data,
* implementation of two-factor authentication,
* safety of mechanisms of recovery of the password,
* the organisation repeated authentication for sensitive functions of devices.

Methods of the safety of network services:

▪ organisation of access to necessary ports,

▪ a configuration and use of services, not vulnerable to buffer overflow and similar
attacks,

▪ a configuration and use of services, not vulnerable to DoS and DDoS – the attacks
which can affect the device or other devices and users on the local area network or
other networks,

▪ use of UPnP and similar technologies for ensuring access to network ports or services.

The following measures are applied to the elimination of the vulnerabilities connected to
the use of cloud computing:

* the organisation of the system of change of the password by default for new users of standard services,
* support of lock of accounting entries after a certain number of abortive attempts to log in,
* use of the cloudy web interfaces steady against XSS, SQLi or CSRF,
* the organisation of the absence of leakage of registration data through cloud services,
* use of two-factor authentication if necessary.

For the elimination of threats from physical vulnerabilities, the following methods are
recommended:

▪ support of impossibility of easy deleting data media,

▪ support for the encoding of the saved data,

▪ support of protection of USB ports or others of external ports,

7.2. Monitoring of Vulnerabilities

307

▪ minimising the number of external ports, such as USB, for the operation of a product.

7.3. Malware Detection in IoT
In 2016 there was a row of incidents which attracted keen interest in the safety of IoT.
Among them, there were record DDoS-attacks against the French hosting provider OVH
and Dyn DNS provider of the USA. It is known that these attacks are launched using the
massive botnet consisting of routers, IP cameras, printers and other devices.

Last year the world also learned about enormous a botnet, consisting of nearly five
million routers. The German telecommunication giant Deutsche Telekom also faced
hacking of the router after the devices used by clients of the operator were infected
Mirai. Cracking did not stop on a piece of network equipment: security concerns were
also found in intelligent dishwashers of Miele and AGA furnaces. “Frosting on the cake” is
the BrickerBot worm who not just infected vulnerable devices as most of his “peers”, but
actually rendered them completely unserviceable [206].

As representatives of the Kaspersky company told, they fixed not only the attacks
arriving from the network equipment classified as home devices but also the hardware of
an enterprise-grade without the knowledge of corporate owners.

“Even more disturbing is the fact that among all IP addresses from which there were
attacks there were some which placed monitoring systems and/or device management
with corporate and protective affairs”, – researchers say [207].

Figure 273: Timeline of the most famous malware for IoT.

Devices for sale in outlets, restaurants and gas stations belong to analysable; systems
of digital TV broadcasting; systems of physical security and monitoring of access; and
devices of monitoring of the environment.

Researchers also found malicious software infecting a monitoring system at the seismic
station in Bangkok and also industrial programmable microcontrollers and management
systems a supply in other places.

In baits, the attacks from China, Vietnam, Russia, Brazil and Turkey are found.

“The increasing number of the malicious applications intended for IoT devices and the
related incidents of safety shows serious security of smart devices. 2016 showed that
these threats not only are conceptual but also are very real”, – researchers say. “The

7. IoT Security and Privacy

308

https://home.roboticlab.eu/_detail/en/iot-open/security_and_privacy_in_iot_ume/iot_security/time.png?id=en%3Abook

existing competition in the market of DDoS induces cybercriminals to look for new
resources for start of more and more powerful attacks”.

Kaspersky recommends that devices did not allow access because of the limits of their
local area network if it especially is not required for the use of the device. All network
services which are not necessary also shall be disconnected. Passwords shall be by
default changed and if they cannot be, then network services shall be disconnected if
these passwords are used, or access to devices out of a local area network shall be
turned off.

For detection of the aberrant behaviour happening in the existing mobile environment
(malicious software, a virus, a worm, etc.) were executed detection based on signatures,
detection based on behaviour and detection based on the analysis. Tendencies of
researches are generalised in the table below based on their methods of detection and
collected data:

Table 27: Malware Detection Techniques.

Detection
technique

Collected
data Description

Signature-
based
technique

Executable
file analysis

Uses the readelf command to carry out static analysis on
executable files using system calls

Source code
analysis

Uses the Android sandbox to carry out static/dynamic
analysis on applications

Packet
analysis

Uses functions such as packet-preprocessing and pattern-
matching to detect malware

API call
history

Collects system events of upper layers and monitors their
API calls to detect malware

Behavior-
based
technique

System log
data

Detects anomalies in terms of Linux kernels and monitors
traffic, kernel system calls, and file system log data by users

SMS,
Bluetooth

Lightweight agents operating in smartphones record service
activities such as usage of SMS or Bluetooth, comparing
the recorded results with users average values to analyze
whether there is intrussion or not

Battery
consumption

Monitors abnormal battery consumption of smartphones to
detect intrussion by newly created or currently known
attacks

System call Monitors system calls of smartphone kernel to detect
external attacks through outsourcing

Process
information

Continuously monitors logs and events and classifies them
into normal and abnormal information

Dynamic
analysis
technique

Data
marking

Analyzes malware by carrying out static taint analysis for
Java source code

Data
marking

Modifies stack frames to add taint tags into local variables
and method arguments and traces the propagation process
through tags to analyze malware

7.3. Malware Detection in IoT

309

Detection based on signatures is the traditional method used for detection of malicious
software in the environment of the PC. For determination of the signature static and
dynamic methods are at the same time used. Static analysis is aimed at a code of a
source and an object and analyses codes without the actual start of the program. It
decompiles the source code of malicious software for detection of the vulnerabilities
arising in commands, instructions, etc. Dynamic analysis is a method of search of certain
templates in a memory leak, traffic flow and a data stream in case of the actual start of
the program. However, the application of this method to the mobile environment requires
the large volume of memory, and service data of productivity are high for compliance of
templates.

Signatures based on technologies monitor the known threats. In the case of computation,
all objects have attributes which can be used for the creation of the unique signature.
Algorithms can quickly and effectively scan an object to define its sign-code signature
[208]. When the solution provider for protection against malicious applications identifies
an object as harmful, its signature is added to the database of the known malicious
applications. These records may contain hundreds of millions of signatures which identify
harmful objects. This method of identification of harmful objects was the main method
used by harmful products and remains the basic approach used by the latest firewalls,
mail and network gateways.

The technology of detection of malicious applications on the basis of signatures has a
row of advantages from which the main thing is that it is well-known and clear - the very
first anti-virus programs used this approach. It is also fast, simple in control and widely
available. First of all, it provides proper protection against many millions old, but active
threats.

Check that the new file is harmful can be difficult and labour-consuming, and often, the
malicious application already develops by then. In the Annual report on the cybersecurity
of Cisco 2017, it was set that 95 % of files of malicious applications which they analysed
were not even 24-hour that specifies fast “time for development”. The time delay in
the detection of new forms of malicious software does corporations vulnerable to severe
losses.

The modern malicious software often strikes directly, being reduced for a short period.
For example, “Puzzle” begins deleting files within 24 hours. HDDcryptor infected 2000
systems in San Francisco of the municipal transport agency before it was found.
Therefore vulnerable to infection waiting for the signature to be very risky.

The other problem is that the modern malicious software can change the signature to
avoid detection; signatures are created by a study of internal components of an object,
and authors of malicious applications change these components, saving at the same time
functionality and behaviour of an object.

There is a set of methods of conversion, including a swap of a code, renaming of
registers, extension and abbreviation of code and also insertion of a code of garbage or
other constructions.

Detection based on behaviour is a method of detection of the status of invasion by
the comparative analysis of the predetermined templates of the attack and behaviour
of the process which occur in the system. It is one of the researches which receives
the greatest attention because of limited detection of harmful behaviour on the basis
of signature detection recently. To find the abnormal templates, it generally monitors

7. IoT Security and Privacy

310

information on events which arises in such functions of the smartphone as memory use,
contents of the SMS and consuming of the battery. Are often used detection based on
a host (for direct monitoring of information in the device) and detection on a network
(for information collection on a network). As detection on the basis of a host increases
uses of the battery and memory of the smartphone, the method of detection of data
collection in the device and data transfer on the external analytical server is generally
used. Besides, for fall forward of the analysis of dynamic data, the method of machine
learning is used. Therefore it is crucial to select suitable functions for collection and to
select an appropriate algorithm of machine learning for accurate detection.

Assessment of the malicious code and its behaviour in the process of execution is called
dynamic analysis. The threat or malicious intention can also be estimated by the static
analysis, which looks for dangerous opportunities in the code and structure of an object.

Although the decision is not entirely reliable, behavioural detection still allows
technologies to reveal new and unknown threats in real time. Some examples of when
the technology based on behaviour succeeds when the systems of the signature do not
work:

▪ protection against new and unimaginable types of harmful attacks,

▪ detection of a separate copy of the malicious software aimed at the person or the
organisation,

▪ determination of malicious software in a specific environment when opening files,

▪ obtaining exhaustive information on malicious software.

There are several essential restrictions about which it is necessary to know. If the
malicious application defines that it is launched in an isolated software environment, it
will try to avoid detection, having reduced harmful actions. It is critical that “sandbox”
remained undetectable, and most of them such is not.

It also requires time for the analysis of the behaviour of an object; while static analysis
can be made in real time, dynamic analysis can enter latency while an object is
implemented. Besides, many behavioural decisions are exclusively cloudy, that can be
a problem for some organisations. Ordinary technologies of “sandbox” have limited
visibility and can estimate only interaction between an object and an operating system.
Watching for 100 % of actions which a harmful object can make, even when it delegates
these actions to an operating system or other programs, OHO can estimate not only
communication of malicious software with an operating system but also each command
processed by the processor.

Expanded solutions for the detection of malicious applications watch and evaluate each
code line executed by malicious software in a context. They analyse all requests for
access to specific files, processes, connections or services. It includes each command
executed at the level of an operating system or other programs which were caused,
including the low-level code hidden by rootkits.

The technology identifies all harmful or, at least, suspicious actions which when
combining do very clear that the file is harmful before it is released in a network actually
to execute any potentially dangerous behaviour [209].

As well as the detection of malicious applications according to the signature, and the
behavioural method is important and has advantages. The best safety will be ensured

7.3. Malware Detection in IoT

311

due to the use of both technologies. Too many security service specialists are misled
by the sellers advertising firewalls of the next generation and other “modern” security
protections. They do not understand that these “latest” products rely only on the ten
years' approach based on signatures to the detection of malicious applications which will
miss evasive malicious applications and the attacks with zero-day.

7.4. IoT Security Protocols
As it was already repeatedly marked, IoT grows before the eyes, and together with it
and the number of problems in the sphere of safety. For support of last, the complex of
protocols of security is always necessary for the support of due protection of IoT devices.

The IoT protocols will play a vital role in the complete finite implementation of
technology. They form a basis for a data stream between sensors and the outside
world. They are necessary also for effective system operation and practical use of the
MAC protocol and the appropriate routing protocol. For different domains several MAC
protocols with access patterns, available to the user, to TDMA (without the conflicts)
were offered, to CSMA (a low performance of traffic) and FDMA (without the conflicts, but
requires additional diagrams in nodes). Any of them is not accepted as the standard, and
with a large number of available devices search of a method of uniform functioning of all
devices will be more and more problematic that of course will demand further researches
[210].

The personal sensor can fall out of operation for several reasons; therefore, the network
shall be self-setting up and allow routing in several ways. Routing protocols with several
transitions are used on the mobile ad hoc networks and in terrestrial WSN. They are
generally subdivided into three categories: oriented on the data-oriented on location and
hierarchical and again based on different application domains. The electric power is a
pacing factor for the existing routing protocols. In the case of IoT, it is necessary to
mark that the trunk will be available, and the number of transitions to scenarios with
several transitions will be restricted. In such scenario, the existing routing protocols shall
be sufficient in implementation with little changes [211].

There are some obvious things which can be made for the integration of safety into IoT:
the most obvious is the support of the web interface of the device. Simple things, such
as check that names of users and passwords were by default changed during initial setup
very much help. And changes shall not allow uses of weak passwords. Perhaps, it is
necessary to consider such measures as the lock of the accounting entry after three-five
abortive attempts of login. Attention shall be paid to passwords outside original changes
of settings. Check of network traffic for support of the fact that codes of input do not go
to cleartext is a reasonable step, and it also belongs to any diagrams of recovery of the
password. Besides, for sensitive areas, such as accounting entries of the administrator,
two-factor authentication can be required.

The web interface study for protection against the general attacks, such as Cross-Site
Scripting, cross-website fake of requests and SQL injection also shall be carried out by
the development of reliable protocols. These attacks are harmful if they are successful,
but they are also relatively unaffected by the nature that does them preventable in case
of successful configuring of protocols [212].

Many protocols were developed at all levels of a stack of International Organization for
Standardization (ISO) to ensure the functioning of IoT devices. From exchange protocols
messages, such as protocol of restrictions (CoAP), to highly expanded routing protocols,

7. IoT Security and Privacy

312

such as routing protocol for low-power and Lossy Networks (RPL). The importance for
the understanding of these protocols is that they were developed taking into account
saving the electric power and also with low requirements to computation and memory
that, certainly, is extremely important by operation with IoT.

Solutions of Safety by IP

Internet exchange of keys (IKEv2)/IPsec and the protocol of identification of a host (HIP)
is at the level or higher than the level of a network in the OSI model. Both protocols
can execute the authenticated exchange of keys and set up the IPsec conversion for safe
delivery of payload capacity.

The expanded authentication protocol (EAP) represents the authentication framework
supporting several methods of authentication. EAP works directly on the level of the
transmission channel and, therefore, does not require IP deployment. It supports
repeated detection and repeated transmission but does not allow fragmentation of
packets. The protocol for the support of authentication for network access (PANA)
represents the transport layer of the network layer for EAP, which provides
authentication of network access between clients and network infrastructure. In the
terms, EAP PANA is the bottom level of EAP by UDP, which is executed between the peer-
to-peer EAP node and an authenticator of EAP.

On the Internet and, therefore, in IoT, safety at the network layer is ensured by a set of
IP safety (IPsec). IPsec in the transport mode provides open protection utilising services
of authentication and repeated protection in addition to confidentiality and integrity.
By operation at the network layer of IPsec, it can be used with any transport layer
protocol, including TCP, UDP, HTTP and CoAP. IPsec provides confidentiality and integrity
of payload capacity of IP with use of the Encapsulated Security Payload (ESP) protocol
and integrity of title of IP plus payload capacity with the use of the protocol of title of
authentication (AH). IPsec is mandatory in the IPv6 protocol that means that already
IPv6 devices by default have the support of IPsec which can be included at any time.
Being the solution of the network layer, security policies of IPsec are shared by all
applications started by the specific machine.

However, being mandatory in IPv6, IPsec is one of the most suitable options of the safety
of E2E in IoT [213]:

▪ the limited node uses 6LoWPAN for addressing and CoAP as the protocol application
layer;

▪ the easy node uses IPv6 for addressing and HTTP as the protocol of level of
application;

▪ the limited node is already authenticated through the gateway (GW);

▪ there is a trust relationships policy providing safe communication in the limited
network domain (and, in particular, between GW and CD);

▪ the gateway is an authorised representative.

It is possible that the finite node will set up a connection of a transmission mode of
IPsec-ESP with the IoT device, moving processes of generation of the main session
and authentication from the IoT node on the entrusted gateway. The ESP mode,
which provides data encryption and authentication, allows setting open safe connection
between two peer-to-peer nodes by the encoding of payload capacity, having left IPv6

7.4. IoT Security Protocols

313

titles untouched. Cryptographic keys are generated and exchange according to the IKE
protocol with the use of the diagram of exchange of keys of Elliptic Curve Diffie Hellman.
Employing these mechanisms of the logician of key generation and authentication moves
from the IoT node to the relevant GW, thereby exempting the IoT device from the
computing loading connected to the generation of cryptography data.

WirelessHART

WirelessHART is a rather safe protocol and provides several protection levels. All traffic
is protected, payload capacity is ciphered, and all messages undergo authentication,
as from single-hop-basis, and at the end. WirelessHART requires that all devices were
supplied with a secret key of Join and also the network identifier to join a network.

WirelessHART, though is limited by a resource, represents a bidirectional network of
rather powerful devices and the central manager of a network and the controller has.
WirelessHART, now the single WSN standard developed first of all for automation of
industrial production and control is well developed for other aspects, except safety. The
provided safety extends according to the specifications of WirelessHART.

For support of safe communication, the set of different security keys is used. The new
device is supplied with Join key before he tries to join a wireless network. The key of
combining is used for authentication of the device for the specific WirelessHART network.
After the program successfully joined a network, the manager of a network will provide
it with the correct keys of a session and a network for further communication. The actual
creation and key management are processed by the manager of the safety of “Plant
wide” who is not specified to WirelessHART, but keys are distributed to network devices
by means of the manager of a network. The key of a session is used by the network
layer for authentication of open communication between two devices (for example, the
field device and the gateway). Different keys of a session are used for each conjugate
communication (for example, the Field device for the gateway, the Field device for the
manager of a network, etc.). At the level of the transmission channel, the network key
for authentication of messages on the basis of one transition is used. The known network
key is used when the device tries to be connected to a network that is before it received
the correct network key. Keys are turned on the basis of procedures of the safety of
installation of automation of the process.

Three types of keys are used: Master key, a key of Link and Network key. We will
compare a Master key with a connection key in WirelessHART, and it is necessary for
the association to a network [214] or by air, or through the physical interface. For
commercial application, the confidential centre can control the association of new devices
and periodically update a network key.

6LoWPAN

6LoWPAN (IPv6 over Low-Power Wireless Personal Area Networks) is the name of
a concluded working group in the Internet area of the IETF. The 6LoWPAN concept
originated from the idea that “the Internet Protocol could and should be applied even
to the smallest devices, and that low-power devices with limited processing capabilities
should be able to participate in the Internet of Things.

The 6LoWPAN group has defined encapsulation and header compression mechanisms
that allow IPv6 packets to be sent and received over IEEE 802.15.4 based networks. IPv4
and IPv6 are the workhorses for data delivery for local-area networks, metropolitan area

7. IoT Security and Privacy

314

networks, and wide-area networks such as the Internet. Likewise, IEEE 802.15.4 devices
provide sensing communication-ability in the wireless domain. The inherent natures of
the two networks, though, are different. Requirements to safety 6LoWPAN RFC4919
defines the requirements list of safety for 6LoWPAN which are generally directed to the
protection of messages against ultimate users to a network of sensors. Requirements
list:

▪ confidentiality: only authorised users can get information access;

▪ authentication: data undertake only from the untrusted sources;

▪ integrity: data retrieved remain invariable in transmission time;

▪ freshness: consider like this, and a key not to reproduce old messages;

▪ accessibility: guarantees that data can be available by transmission;

▪ reliability: operation support, despite abnormal conditions;

▪ fail safety: provides the acceptable security level even in case some nodes;

▪ energy efficiency: reduce control expenses to increase network service life;

▪ support: possibility of dissemination of different information.

These requirements require a combination of different systems of protection.

Cryptography Methods

Ciphering messages before transmission, cryptographic solutions are aimed at three-fold
protection: only of the authenticated user who has the correct key can decrypt and read
messages; contents of integrity shall not change in transmission time and confidentiality.
Nobody can understand the message without the key.

Cryptography techniques for 6LoWPAN shall be developed more for adaptation to the
prevailing restrictions in devices 6LoWPAN, such as low power and low calculation
capacity. It is connected to the fact that not optimised mechanisms of cryptography will
consume more resources and, therefore, to reduce the lifetime of a network. The key
used in cryptography techniques also shall not be too short; otherwise, malefactors will
be able easily to break. As 6LoWPAN is a combination of WSN and the Internet, it is
natural to use these two network cryptography mechanisms to the safety of this network.
WSN uses AES (Advanced Encryption Standard) for support of level of communication
link with several operation modes, the majority of which do not provide integrity. For the
protection of open safety of the network layer of IPsec (Internet Protocol Security), it is
used with the transport and tunnel modes. Earlier the cryptography mechanism with a
public key was read too heavy for application in WSN. Nevertheless, the last researches
showed how to combine RSA (asymmetrical encoding of Rivest-Shamir-Adelman) and
ECC (an elliptic curve of cryptography) with several modes for adaptation to network
scenarios.

Exchange of a key – one more problem which shall be considered in case of
implementation of protocols. For exchange of keys on a network exchange of keys of
the Internet with IPsec (protection of the internet protocol) is offered. Nevertheless, the
exchange of keys of the Internet is not considered the acceptable decision because of
its large messages of signalling that is unsuitable for small packet size 802.15.4 and the
requirement for energy efficiency. WSN used several key methods of distribution, such as
redistribute and key pool; however, they lack scalable opportunities. It is also necessary
to analyse threat for a key at the time of bootstrap loading when the opponent is among

7.4. IoT Security Protocols

315

other nodes, without requiring authentication.

Though researches show considerable improvement in the use of cryptography for
6LoWPAN, the network still should overcome a set of problems. The cryptography is
also used only in case of protection 6LoWPAN from the external attacks but has no
opportunity to find and eliminate the internal attacks. It is connected to the fact that
the cryptography cannot find malefactors using legal keys but behaves with malice
aforethought. Thus, the network safety using only cryptography is feeble in case of the
attacks directed to network productivity, such as DoS or the battery, and the resource
attacks, such as jamming and switch-off.

Therefore the cryptography cannot ensure complete safety for 6LoWPAN. It is necessary
to implement IDS for monitoring of any harmful behaviour of a network to prevent the
early attacks of safety to reduce its consequences. IDS – an effective method of detection
of any malefactor which bypasses the line of protection of cryptography and ensures
normal network functioning.

The cryptography combination as a first line and IDS as protection of the second line can
protect a network from the majority of threats. The missions of IDS consist of tracing
and giving the alarm about any possible risks and transferring them to cryptography to
restart the process of manipulation for the elimination of malefactors. IDS can cope with
all threats.

Problems of Detection of Invasions of IPv6

IDS from IPv6 protects the boundary router from any threats sending packets from
IPv6 to WSN to begin WSN attack. It is easy to solve the majority of problems in parts
of WSN regarding IPv6 because the boundary router usually is implemented with the
strong by protection and not – resource restriction, and, besides, the threats proceeding
from the IPv6 network it is, much less, than threats in a sensor network, For Example,
the boundary router is the most suitable line item to define, there is a network where
exactly. The problem with extraction of functions is also not restricted, as regarding
WSN, because of the high throughput of the boundary router [215]. The single problem
on which it is necessary to concentrate is to select the suitable IDS methods for early
detection and detection of threats.

Again three types of methods can be applied: misuse, anomaly and specification. The
direction of misuse is still not favourable because attack signatures are not defined.
There are three methods: Anderson Darling algorithm, an algorithm of entropy and the
PAT calculator (the predetermined types of attacks) for detection of abnormal behaviour.
The selected function of data is cards with disks from overflowing preventing algorithms
when queues are filled. To reduce the speed of false alarm, they bring the found these
anomalies in the qualifier of templates which checks the predetermined attack type on
the saved buffer. The threshold is also selected for safety warning generation as soon
as it is found which will be transferred by the qualifier. This system requires many
computing loadings with three checking modules and another appropriate part to reduce
detection speed. The author did not explain why they decided to analyse only data which
are discarded from the buffer. Doing it, they probably assumed that data which were
transferred to the buffer are harmless while in fact there is no warranty. Nevertheless,
the main architecture of this system can be applied with the use of different methods of
detection to the best decision.

7. IoT Security and Privacy

316

7.5. IoT Privacy
Protecting consumer privacy becomes increasingly tricky as the IoT becomes more
prevalent. More devices are connected to different types of devices and this increase in
connectivity and data collection results in less control. Both controls of data and control
of the very devices that are connected are at stake.

Control can be lost if someone hacks into the smartphone or computer acting as a
remote for the other devices. In the case of computers and smartphones, this hacking
can be done remotely and often undetected. Smartphones, just like computers, carry an
enormous amount of personal information about their owners. They often link to bank
accounts, email accounts, and in some cases, household appliances. Stolen data can
result in serious problems. Vehicles contain many computers that control their function.
Initially, these computers could not be hacked into. With the increased connectivity of
the IoT, however, vehicles are now at risk due to being connected to the Internet.

In another sense, control can be lost as more and more companies collect data about
users. This data often paints a detailed picture of individual users through the collection
of activities online. Everything you search, all of your activities online, are being tracked
by companies that use that data [216]. These companies often use the data to improve
the user's experience, but they also use this data to sell users products or sell to other
companies who sell users products.

Innovation in this realm means that companies must alter the privacy policies that are
in place as well as how they interact with these devices. Companies will need to take
another look at the policies that they have in place to ensure that consumers are offered
opportunities to access and control their data. Consumers will become increasingly aware
of the privacy implications of this level of connectivity through interaction with the IoT
and exposure to the policies that companies provide to them.

Frank Pasquale, law professor and EPIC advisory board member [217] discusses privacy
concerns related to the IoT in a May 2014 Pew Research Report. Pasquale states that the
expansion of the IoT will result in a world that is more “prison-like” with a “small class of
'watchers' and a much broader class of the experimented upon, the watched.” In another
article, he reinforces the idea that the IoT “will be a tool for other people to keep tabs on
what the populace is doing.

EPIC President, Marc Rotenberg, explains in the Pew Research Report that the problem
with the IoT is that “users are just another category of things,” and states that this “is
worth thinking about more deeply about in the future.”

There are many real issues with IoT privacy, and all of them must be in detailed explored,
but here are general ways IoT developers can improve IoT privacy[218].

Minimize data acquisition: software architects should look at the frequency and type
of data collected in the context of the application and should not collect more data than
the task requires. The platform should control which data an application receives.

Minimize the number of data sources: aggregation of data from multiple sources
allows malicious parties to identify sensitive personal information of an individual that
could lead to privacy violations.

Minimize raw data intake: raw data could lead to secondary usage and privacy

7.5. IoT Privacy

317

violation. Therefore, IoT platforms should consider converting or transforming raw data
into secondary context data.

Minimize knowledge discovery: IoT applications should discover only the knowledge
necessary to achieve their primary objectives. For example, if the objective is to
recommend food plans, the app should not attempt to infer users’ health status without
their explicit permission.

Minimize data storage: raw data should be deleted once a secondary context is
derived.

Minimize the data retention period: more extended retention periods give malicious
parties more time to breach and exfiltrate data.

Support hidden data routing: to make it more difficult for internet activities to be
traced back to the users, this guideline suggests that IoT applications should support and
employ an unknown routing mechanism.

Anonymize data: remove personally identifiable information (PII) before the data gets
used by IoT applications so that the people described by the data remain anonymous.

Encrypt data communications: typically, device-to-device communications are
encrypted at the link layer using specialised electronic hardware included in the radio
modules. Gateway-to-cloud communication is generally secured through HTTPS using
Secure Sockets Layer (SSL) or Transport Layer Security (TLS).

Encrypt data during processing: sometimes the party processing the data should
not be able to read the data or the computational results. Process data while they are
in encrypted form. For example, homomorphic encryption is a form of encryption that
allows computations to be carried out on cypher-text, thus generating an encrypted
result that, when decrypted, matches the result of operations performed on the plain-
text.

Encrypt data in storage: encrypted data storage reduces any privacy violations due to
malicious attacks and unauthorised access.

Reduce data granularity: IoT applications should request the minimum level of
granularity that is required to perform their primary tasks. A higher level of granularity
could lead to secondary data usage and eventually, privacy violations. For example,
location can be coarse, based on cell tower location or fine, based on the address.

Query answering: raw data can lead to identification and privacy violations due to
secondary usage. Instead of providing a numeric response to a query a relative scale,
e.q. 1–5 should be used.

Block repeated queries: query responses should block multiple queries that
maliciously could discover knowledge that violates user privacy, such as analysing
intersections of multiple results.

Distribute data processing: distributed data processing avoids centralized large-scale
data gathering and exfiltration.

Distribute data storage: distributed data storage reduces any privacy violation due
to malicious attacks and unauthorised access. It also lowers privacy risks due to

7. IoT Security and Privacy

318

unconsented secondary knowledge discovery.

Knowledge discovery based on aggregated data: new knowledge, such as the
visitors to the park were young students during a time period, is sufficient for a gift
shop to perform time series sales analysis. But the exact timing of their movement is not
necessary.

Aggregate geography-based data: geographic data should be aggregated within
boundaries. For example, how many electric vehicles are in use in each city should not
store details about individual vehicles.

Aggregate data based on the time period: energy consumption of a given house
can be acquired and represented in aggregated form as 160 kWh per month instead of
gathering energy consumption daily or hourly.

Aggregate data based on category: aggregating based on a category that meets
the needs of the analysis rather than exact data prevents secondary use. For example,
categorising a household’s energy use in the range of 150–200 kWh instead of specific
usage.

Disclose information to users: data subjects should be adequately informed whenever
data they own is acquired, processed or disseminated.

Apply controls: it is the software architects’ responsibility to consider what kind of
controls are useful to data owners, especially when data owners are not knowledgeable.
Some of the considerations: 1) data granularity; 2) anonymisation technique; 3) data
retention period; 4) data dissemination.

Log events: logging of activities during all phases will allow both internal and external
parties to examine what happened in the past to make sure a given system performed
as promised.

Perform regularly audits: regular, independent audits and examination of the logs,
procedures, processes, hardware and software specifications should periodically be
performed. Non-disclosure agreements should bind outside parties.

Make apps open source: wherever possible IoT applications should be made available
under an open-source license so that outside parties can review the code and compliance
demonstrated.

Use data flow diagrams: data flow diagrams used by unified modelling language will
allow interested parties to understand the data streams of a given IoT application and
how data is treated for a demonstration of compliance.

Get IoT apps certified: certifications given by a neutral authority will add
trustworthiness to IoT applications.

Use industry standards: industry-wide standards such as AllJoyn and the All Seen
Alliance typically inherit security measures that would reduce some privacy risks.

Comply with policies and regulations: adherence to policies, laws, and regulations
such as ISO 29100, OECD privacy principles and the European Commission’s rules on the
protection of personal data will reduce privacy risks.

7.5. IoT Privacy

319

7.6. Privacy Preservation
Privacy Legislation

Today, primarily the principles of notice, consent, access and security are enforced,
e.g. in e-commerce and online advertising. Privacy legislation also touches some mature
technologies which are part of the IoT evolution: RFID and camera networks have
received much attention in the past. Recent legislation efforts have focussed on data
protection in cloud computing and adequate protection of web users against tracking
[219].

However, already today, the level of privacy protection offered by legislation is
insufficient, as day-to-day data spills and unpunished privacy breaches indicate. The
Internet of Things will undoubtedly create new grey areas with ample space to
circumvent legislative boundaries.

First, most pieces of legislation centre around the fuzzy notion of Personally Identifiable
Information (PII). However, efforts towards a concise definition of what constitutes PII
(e.g. by enumerating combinations of identifying attributes) are quickly deprecated as
new IoT technologies unlock and combine new sets of data that can enable identification
and make it increasingly challenging to distinguish PII from non-PII.

Second, timeliness of legislation is a constant issue, e.g. tracking of web-users has
been used for many years before the European Commission passed a law against it in
early 2011. With the IoT evolving fast, legislation is bound to fall even farther behind.
An example is Smart Meter readings, which already allow inferring comprehensive
information about people’s lifestyle.

Third, already today, many privacy breaches go unnoticed. In the IoT, awareness of
privacy breaches among users will be even lower, as data collection moves into everyday
things and happens more passively. The legislation, however, is often the only response
to public protests and outcries that require awareness of incidents in the first place.

Finally, the economics of privacy are still in favour of those in disregard of privacy
legislation. On the one side, development of PETs, enforcement and audits of privacy-
protection policies is expensive and can limit business models. On the other hand,
violations of privacy legislation either go unpunished or result only incomparably small
fines, while public awareness is still too low to induce excessive damage to public
reputation. Thus, disregard of privacy legislation, as, e.g. Google deliberately
circumventing Safari’s user tracking protection, seems profitable. Over this incident,
Google paid a record fine of $22.5 Million in a settlement with the Federal Trade
Commission (FTC), but it is conceivable that the earnings more than compensated.

It will be a significant challenge to design a unified enduring legislative framework for
privacy protection in the Internet of Things, instead of passing quickly outdated pieces of
legislation on singular technologies. Success will undoubtedly require a comprehensive
knowledge of the technologic basis of the IoT and its ongoing evolution. The key,
however, will be a deep understanding of existing and lingering new threats to privacy in
the IoT – these threats are what legislation needs to protect against, ultimately.

7.7. IoT Privacy Preservation Threats
Identification

7. IoT Security and Privacy

320

Identification denotes the threat of associating a (persistent) identifier, e.g. a name and
address or a pseudonym of any kind, with an individual and data about him. The threat
thus lies in associating an identity to specific privacy violating context, and it also enables
and aggravates other threats, e.g. profiling and tracking of individuals or a combination
of different data sources.

The threat of identification is currently most dominant in the information processing
phase at the backend services of our reference model, where vast amounts of
information are concentrated in a central place outside of the subject’s control.

First, surveillance camera technology is increasingly integrated and used in non-security
contexts, e.g. for analytics and marketing. As facial databases (e.g. from Facebook)
become available also to non-governmental parties like marketing platforms, automatic
identification of individuals from camera images is already a reality.

Second, the increasing (wireless) interconnection and vertical communication of
everyday things, opens up possibilities for identification of devices through fingerprinting.
It was recognised already for an RFID technology that the aura of their things can identify
individuals.

Third, speech recognition is widely used in mobile applications, and vast databases of
speech samples are already being built. Those could potentially be used to recognise
and identify individuals, e.g. by governments requesting access to that data. With
speech recognition evolving as a powerful way of interaction with IoT systems and the
proliferation of cloud computing for processing tasks, this will further amplify the attack
vector and privacy risks.

Identity protection and, complementary, protection against identification is a
predominant topic in RFID privacy but has also gained much attention in the areas of
data anonymisation, and privacy-enhancing identity management. Those approaches are
challenging to fit the IoT: Most data anonymisation techniques can be broken using
auxiliary data, that is likely to become available at some point during the IoT evolution.
Identity management solutions, besides relying heavily on expensive crypto-operations,
are mostly designed for very confined environments, like enterprise or home networks
and thus tricky to fit the distributed, diverse and heterogeneous environment of the IoT.
Approaches from RFID privacy due to similarities in resource constraints and numbers
of things are the most promising. However, those approaches do not account for the
diverse data sources available in the IoT as e.g. camera images and speech samples.

Localization and Tracking

Localisation and tracking is the threat of determining and recording a person’s location
through time and space. Monitoring requires identification of some kind to bind continuos
localisations to one individual. Already today, tracking is possible through different
means, e.g. GPS, internet traffic, or cell phone location. Many concrete privacy violations
have been identified related to this threat, e.g. GPS stalking, the disclosure of private
information such as an illness, or generally the uneasy feeling of being watched.
However, localisation and tracking of individuals is also an essential function in many
IoT systems [220]. These examples show that users perceive it as a violation when they
don’t have control over their location information, are unaware of its disclosure, or if the
information is used and combined in an inappropriate context.

In the immediate physical proximity, localisation and tracking usually do not lead to

7.7. IoT Privacy Preservation Threats

321

privacy violations, as, e.g. anyone in the immediate surrounding can directly observe
the subject’s location. Traditionally, localisation and monitoring thus appear as a threat
mainly in the phase of information processing, when locations traces are built at
backends outside the subject’s control. However, the IoT evolution will change and
aggravate this threat in three ways.

First, we observe an increasing use of location-based services (LBS). IoT technologies
will not only support the development of such LBS and improve their accuracy but also
expand those services to indoor environments, e.g. for smart retail.

Second, as data collection becomes more passive, more pervasive and less intrusive,
users become less aware of when they are being tracked and the associated risks. Third,
the increasing interaction with smart things and systems leaves data trails that not only
put the user at risk of identification but also allow to track his location and activity,
e.g. to swipe an NFC-enabled smartphone to get a bus ticket or using the cities’ smart
parking system. With these developments, the threat of localisation and tracking will
also appear in the interaction phase, making the subject trackable in situations where
he might falsely perceive physical separation from others, e.g. by walls or shelves, like
privacy.

Research on location privacy has proposed many approaches that can be categorised
by their architectural perspective into client-server, trusted third party, and distributed/
peer-to-peer. However, these approaches have been mostly tailored to outdoor scenarios
where the user actively uses an LBS through his smartphone. Thus, these approaches do
not fit without significant modifications to the changes brought about by IoT. The main
challenges we identify are awareness of tracking in the face of passive data collection,
control of shared location data in indoor environments, and privacy-preserving protocols
for interaction with IoT systems.

Profiling

Profiling denotes the threat of compiling information dossiers about individuals to infer
interests by correlation with other profiles and data. Profiling methods are mostly
used for personalisation in e-commerce (e.g. in recommender systems, newsletters and
advertisements) but also for internal optimisation based on customer demographics and
interests. Examples, where profiling leads to a violation of privacy violation, are price
discrimination, unsolicited advertisements, social engineering, or erroneous automatic
decisions, e.g. by Facebook automatic detection of sexual offenders. Also, collecting
and selling profiles about people as practised by several data marketplaces today is
commonly perceived as a privacy violation. The examples show that the profiling threat
appears mainly in the dissemination phase, towards third parties, but also towards the
subject itself in the form of erroneous or discriminating decisions.

Existing approaches to preserve privacy include client-side personalisation, data
perturbation, obfuscation and anonymisation, distribution, and working on encrypted
data. These approaches can be applied to IoT scenarios but must be adapted from the
usual model that assumes a central database and account for the many distributed data
sources which are expected in the IoT. It will require considerable efforts for recalibration
of metrics and redesign of algorithms, as, e.g. recent work in differential privacy for
distributed data sources shows. After all, data collection is one of the central promises of
the IoT and the primary driver for its realisation. We thus see the biggest challenge in
balancing the interests of businesses for profiling and data analysis with users’ privacy

7. IoT Security and Privacy

322

requirements.

Privacy-Violating Interaction and Presentation

This threat refers to conveying private information through a public medium and in the
process, disclosing it to an unwanted audience. It can be loosely sketched as shoulder-
surfing but in real-world environments.

Many IoT applications, e.g. smart retail, transportation, and healthcare, envision and
require substantial interaction with the user. In such systems, it is imaginable that
information will be provided to users using smart things in their environment, e.g.
through advanced lighting installations, speakers or video screens. Vice versa, users
will control systems in new intuitive ways using the elements surrounding them, e.g.
moving, touching and speaking to smart things. However, many of those interaction
and presentation mechanisms are inherently public, i.e. people in the vicinity can
observe them. It becomes a threat to privacy when private information is exchanged
between the system and its user. In smart cities, e.g. a person might ask for the way
to a specific health clinic. Such a query should not be answered, e.g. by displaying
the way on a public display nearby, visible to any passers-by. Another example is
recommendations in stores that reflect private interests, such as specific diet food
and medicine, movies or books on precarious topics. Due to its close connection to
interaction and presentation mechanisms, the threat of privacy-violating interactions and
presentation appears primarily in the homonymous phases of our reference model.

Since such advanced IoT services are still in the future, privacy-violating interactions
have not received much attention from researchers. Interaction mechanisms are,
however, crucial to usable IoT systems and privacy threats must consequently be
addressed. We identify two specific challenges that will have to be solved.

First, we need means for automatic detection of privacy-sensitive content. It is easily
imaginable that the provisioning of content and rendering it for the user are handled
in two steps by two different systems: E.g. company A generates recommendations for
customers of a store, which are then delivered to the customer by company B’s system:
either by special lighting and the use of speakers or through a push to his smartphone.

Second, with the previous point in mind, scoping will be necessary, i.e. how can we
scope public presentation medium to a specific subgroup of recipients or a particular
physical area? This approach would prove useful to support users, which have no
smartphone (or any other device providing a private channel for interactions and
presentations). However, it will be challenging to determine the captive audience of
a particular presentation medium accurately, separate the intended target group and
adjust the scope accordingly. E.g. what if the target user is in the midst of a group of
people?

Applications for privacy-preserving pervasive interaction mechanisms are, e.g. smart
stores and malls, smart cities and healthcare applications. Here, it would indeed be an
achievement to provide similar levels of privacy as people would expect in the contexts
of their everyday conversations, i.e. interactions with their peers.

Lifecycle Transitions

Privacy is threatened when smart things disclose private information during changes
of control spheres in their lifecycle. The problem has been observed directly about

7.7. IoT Privacy Preservation Threats

323

compromising photos and videos that are often found on used cameras or smartphones
– in some cases “disturbing” data has even been spotted on “new” devices. Since
privacy violations from lifecycle transitions are mainly due to the collected and stored
information, this threat relates to the information collection phase of our reference
model.

Two developments in the IoT will likely aggravate issues due to the lifecycle of things.
First, smart things will interact with some persons, other things, systems, or services
and amass this information in product history logs. In some applications, such data is
highly sensitive, e.g. health-data collected by medical devices for home-care. But also
the collection of simple usage- data (e.g. location, duration, frequency) could disclose
much about the lifestyle of people. Already today, detailed usage logs are maintained
for warranty cases in TV sets, notebooks or cars. Second, as exchangeable everyday
things such as light bulbs become smart, the sheer numbers of such items entering and
leaving the personal sphere will make it increasingly difficult to prevent disclosure of such
information.

Despite obvious problems with the lifecycle of today's smartphones, cameras, and other
storage devices this threat has not been adequately addressed. The lifecycle of most
consumer products is still modelled as buy-once-own- forever, and solutions have not
evolved beyond a complete memory wipe (e.g. before selling a phone) or physical
destruction (e.g. before disposal of a hard drive). Smart things could, however, feature
a much more dynamic lifecycle, with items being borrowed, exchanged, added and
disposed of freely.

We thus identify the requirement for flexible solutions that will undoubtedly pose some
challenges: Automatic detection of lifecycle transitions of a smart thing will be required
to implement suitable privacy lifecycle management mechanisms. E.g. a smart rubbish
bin could automatically cleanse all items in it from private information, such as medical
prescriptions on a smart pillbox. It will be difficult, though, to automatically distinguish
between different lifecycle transitions as, e.g. lending, selling or disposing of an item
and taking the appropriate action. Specific lifecycle transitions, e.g. borrowing a smart
thing, will require locking private information temporarily, e.g. the readings of a vital
signs monitor. Once the device has returned to its original owner, the private data can
be unlocked, and the original owner can continue to use it seamlessly [221].

Inventory Attack

Inventory attacks refer to the unauthorised collection of information about the existence
and characteristics of personal things. One evolving feature of the IoT is interconnection.
With the realisation of the All-IP and end-to-end vision, smart things become query-
able over the Internet. While things can then be queried from anywhere by legitimate
entities (e.g. the owner and authorised users of the system), non-legitimate parties can
query and exploit this to compile an inventory list of things at a specific place, e.g. of
a household, office building, or factory. Even if smart things could distinguish legitimate
from illegitimate queries, a fingerprint of their communication speeds, reaction times and
other unique characteristics could potentially be used to determine their type and model.
With the predicted proliferation of wireless communication technology, fingerprinting
attacks could also be mounted passively, e.g. by an eavesdropper in the vicinity of the
victim’s house.

The impact of new technologies on this threat is not yet clear. On the one hand, we

7. IoT Security and Privacy

324

expect the diversification of technologies in the IoT as more and more different things
become smart. Diversification increases the attack vector for fingerprinting, as, e.g.
observed with the many diverse configurations of web browsers. On the other hand, at
some point in time, we expect the establishment of specific standards for communication
and interaction that could reduce such differences.

Numerous concrete privacy violations based on inventory attacks are imaginable or have
happened. First, burglars can use inventory information for targeted break-ins at private
homes, offices and factories, similar to how they already use social media today to stake
out potential victims. Note that a comprehensive inventory attack could then also be
used to profile the anti-burglar system down to every last presence sensor. Second,
law enforcement and other authorities could use the attack to conduct (unwarranted)
searches. Third, private information is disclosed by the possession of specific things,
such as personal interests (e.g. books, movies, music) or health (e.g. medicine, medical
devices). Fourth, efforts for industrial espionage can be complemented through an
inventory attack, as noted by Mattern.

Radomirovic and Van Deursen have recognised the danger of profiling through
fingerprinting in the context of RFID. However, with RFID, the problem is at a much
more local scope as RFID tags can be read only from a close distance and queries
are mostly restricted to reading the tag’s identifier. As analysed above, the problem
will aggravate in the IoT evolution as the attack vector is significantly increased by
increasing proliferation of wireless communications, end-to-end connectivity, and more
sophisticated queries. To thwart inventory attacks in the IoT, we identify the following
two technical challenges: First, smart things must be able to authenticate queries and
only answer to those by legitimate parties to thwart active inventory attacks through
querying. Research in lightweight security provides useful approaches for authentication
in resource-constrained environments. Second, mechanisms that ensure robustness
against fingerprinting will be required to prevent passive inventory attacks based on
the communication fingerprint of a smart thing. Inventory attacks will undoubtedly be
difficult to counter. The fact that the use of PETs, though meant to protect privacy, can
make fingerprinting even easier, leaves hiding in the (privacy-ignorant) masses currently
as the most viable but suboptimal solution. However, an IoT system that discloses
comprehensive information about its owner’s possessions is not likely to gain acceptance
[222].

Linkage

This threat consists in linking different previously separated systems such that the
combination of data sources reveals (truthful or erroneous) information that the subject
did not disclose to the previously isolated sources and, most importantly, also did not
want to reveal. Users fear poor judgement and loss of context when data that was
gathered from different parties under different contexts and permissions are combined.
Privacy violations can also arise from bypassing privacy protection mechanisms, as the
risks of unauthorised access and leaks of private information increases when systems
collaborate to combine data sources. A third example of privacy violations through
linkage of data sources and systems is the increased risk of re-identification of
anonymised data. A common approach towards protecting privacy is working on
anonymised data only, but the act of combining different sets of anonymous data can
often enable re-identification through unforeseen effects. The examples show that the
threat of linkage primarily appears in the information dissemination phase.

7.7. IoT Privacy Preservation Threats

325

The threat of linkage will aggravate the IoT evolution for two main reasons. First,
horizontal integration will eventually link systems from different companies and
manufacturers to form a heterogeneous distributed system- of-systems delivering new
services that no single system could provide on its own. Successful collaboration will
above all require an agile exchange of data and controls between the different parties
[223]. However, as horizontal integration features more local data flows than vertical
integration, it could provide a way to enhance privacy. Second, the linkage of systems
will render data collection in the IoT even less transparent than what already is expected
from the predicted passive and unintrusive data collection by smart things.

Threats from linking different systems and information sources are not entirely new.
They can already be observed in the domain of online social networks (OSN) and
their applications. However, this involves only two parties (i.e. the OSN and the third
party application), while the IoT is expected to feature services that depend on the
interaction and collaboration of many coequal systems. Here, we identify three technical
challenges for privacy- enhanced systems-of-systems: First, transparency about what
information system-of-systems shares with whom is crucial to gain user acceptance.
Second, permission models and access control must be adapted to the plurality of
stakeholders collaborating in linked systems. Third, data anonymisation techniques must
work on linked systems and be robust against a combination of many different sets of
data. E.g. it will be interesting how concepts like differential privacy can be fitted to such
multi-stakeholder multi-systems scenarios.

7.8. Support of Confidentiality and Methods of Authentication
Support for confidentiality becomes harder and harder as IoT becomes more widespread.
More devices are connected to different types of devices, and this increase in
opportunities for connection and data collection leads to smaller monitoring. Both the
control of data and tracking of the attached devices are staked.

Control of support of confidentiality can be lost if someone cracks the smartphone or
the computer acting as the panel for other devices. In the case of computers and
smartphones, this cracking can be remotely and often not found. Smartphones, as well
as computers, contain a vast number of personal information on their owners. They often
refer to bank accounts, e-mail accounts and in some instances to household appliances.
The stolen data can lead to severe problems. Vehicles contain many computers which
control the function. Initially, these computers could not be cracked. Nevertheless, in
case of the increase in the possibility of connection of IoT vehicles are exposed to risk
because of connection to the Internet.

In other sense, monitoring can be lost as more and more companies collect data on
users. These data often draw a detailed pattern of certain users by means of the
collection online of data. The companies using these data monitor everything that
you look for, all your actions on the Internet. These companies often use data for
improvement of the user experience, but they also use these data for the sale of products
of users or for sale to other companies which sell products of users.

Innovations in this sphere mean that the companies shall change the privacy policy,
which exists and also how they interact with these devices [224]. The companies will look
at a policy which they have to provide to users a possibility of access and monitoring of
their own data once again. Customers everything will realise more consequences for the
confidentiality of this interoperability layer using interaction from IoT and susceptibility

7. IoT Security and Privacy

326

to policies which provide them with the companies.

Now first of all the principles of the notification message, consent, access and safety are
applied, for example, in electronic commerce and online advertising. The legislation on
confidentiality also affects some mature technologies which are a part of the evolution of
IoT: last RFID and a network of cameras paid much attention. Recent legislative efforts
focused on data protection in cloud computing and support of appropriate protection of
web users against tracing.

However, already today, the protection level of personal privacy offered by the legislation
is insufficient as demonstrate data leakages and unpunished violations of confidentiality
day by day. The Internet of Things, undoubtedly, will create new grey zones with
sufficient space to bypass legislative barriers.

First, the majority of acts is concentrated around an indistinct concept of Personally
identified information (PII). Nevertheless, efforts on receiving a short determination of
what represents PII (for example, by listing of combinations of the identifying attributes)
quickly become outdated as new IoT technologies are unblocked and integrate new data
sets which can provide identification and make more difficult to distinguish PII from a
не-PII,

Secondly, the timeliness of the legislation is a constant problem, e.g. the tracking of web
users was used for many years before the European Commission adopted the law against
it at the beginning of 2011. With the fast development of IoT, the legislation will be
inevitable to fall further away. An example is indications of Smart Meter, which already
allow making exhaustive information on the life of people.

Thirdly, already today many violations of confidentiality remain unnoticed. In IoT
realisation of breaches of privacy among users will be even lower as data collection
moves to daily things and happens more passively. The legislation, however, often is
only the response to public protests and shouts which require the realisation of incidents
first of all.

At last, the economy of private life still appears for those who ignore the legislation on
confidentiality. On the one hand, development of PET, ensuring compliance and audit of
policies of protection of private life are expensive and can restrict business models. On
the other side, violations of the law about personal privacy either remain unpunished or
lead only to rather small penalties while awareness of the public still too low to cause
unacceptable damage to public reputation. Thus, ignoring the legislation on personal
privacy as, for example, Google intentionally bypasses the protection of tracing of users
of Safari, seems profitable. In this regard, an incident of Google paid a record penalty
in the amount of $22.5 million of the USA in the settlement with the Federal trade
commission (FTC), but it is entirely possible that profit more than is compensated [225].

Will be a severe problem to draft the uniform strong legislative base for privacy
protection in IoT instead of quickly revising outdated acts for unique technologies.
Success, undoubtedly, will demand all-round knowledge of a technological basis of IoT
and its current evolution. The key, however, will consist of a deep understanding of the
current and remaining new threats of confidentiality in IoT – these threats are what the
legislation shall protect from, eventually.

Authentication Methods

7.8. Support of Confidentiality and Methods of Authentication

327

Implementation of intelligent devices created the incalculable potential both for
customers, and for business, but thanks to it there was an opportunity for hackers to
abduct valuable information from personal data in intellectual property which does the
company or a product unique. On the broader context of IoT, this idea of authentication
of users or devices becomes more and more widespread. For example, when we go to
unblock our connected car utilising our mobile phone, we want to be sure that only
we, owners, are authorised to do it to which successful “authentication” precedes. It
means that users of the device (and/or the accounting entry) are that whom they speak,
and have the authorised registration data for information access after that that helps
to create the primary basis for support of communication and with the device on these
expanded networks.

Nevertheless, presence only of one allowed user also creates problems or restrictions.
For example, if the defect in the attached device is found? The supplier, most likely, will
demand access to the device far off to provide updates of the software for the solution of
these problems. It was evident in updates of the software of the iPhone. Therefore, the
device receives the software far off but is set only after you agree with conditions, and
you allow loading to begin [226].

If Apple had no original powers on sending you the software, you will not be able to
approve loading and to maintain operability of the device effectively or effectively.

One more practical example from the courageous new world of IoT is a concept of the
virtual keys for cars which you can “wear with yourself” on the mobile phone, but also
you can share with other family members or service personnel in a garage and resolve
them (for example, during limited time) to use your car (of course, after successful
authentication).

It is necessary to set the trust level according to which the public shall be sure that
correspondence arrives directly from the specified source, but not for this purpose, which
creates a security risk for a network.

Thanks to several recent loud attacks in the field of cybersecurity, such as TalkTalk and
Ashley Maddison, is more and more important that the enterprises assured the clients
that these growing networks will be safe and will allow the user to control the data.

One of the methods of the solution of this problem of false authentication of users is the
use of biometric data, that is the use of unique “biology” of individuals for access to their
data. It includes unique means of identification, such as fingerprints and scanning of an
iris of the eye of an eye which is incredibly tricky for reproducing.

Use of biometry and behavioural biometry (gestures, retina, etc.) creates the unique
level of identification of users - indeed attributing feeling “personal” between the user
and the device. It considerably increases registration this safety of the device and acts as
the main barrier between hackers and their data access. When “things” communicate in
IoT, registration data which are in the protected elements protected from illegal access
which are built in devices can not only safeguard network access and communication but
also support the protected services, such virtual private area networks, for example for
updates of the software.

When the attached devices IoT/M2M (for example, the built-in sensors and the executive
mechanisms or ending points) need access to IoT infrastructure, trusting relationships
are initiated based on the device identifier. The method of storage and provision

7. IoT Security and Privacy

328

of the identification information can significantly differ for IoT devices. Pay attention
that on typical corporate networks ending points can be identified through registration
data of the person (for example, username and the password, a token or biometry).
Ending points of IoT/M2M shall be printed by fingers using means which do not require
interaction with the person. Such identifiers include radio frequency identification (RFID),
the general secret, certificates of X.509, the MAC address of an ending point or some
type of the invariable trust based on hardware.

Establishment of authenticity through certificates of X.509 provides a reliable
authentication system. However, in the IoT domain memory for storage of the certificate
cannot be enough for many devices or even not have the required CPU power for the
execution of cryptography operations of verification of certificates of X.509 (or any type
of operations with the public key).

The present identification traces, such as 802.1AR and protocols of authentication
as IEEE 802.1X is defined, can be used for those devices which can control loading
and memory of the CPU for storage of the strong registration data. Nevertheless,
problems of new shape factors and also new modalities create an opportunity for
further researches in the determination of more small-sized account types and fewer
cryptography constructions and authentication protocols with intensive computation.

The second level of a framework is the authorisation controlling access of the device on
all network. This level is based on the main authentication level, using the identification
information of an object. With components of authentication and authorisation, the
trusting relationship between IoT devices for exchange of the relevant information is
established.

For example, the car can set a confidential union with another vehicle at the same
supplier. Nevertheless, these trusting relationships can allow cars to exchange
opportunities for safety. When an entrusted alliance is set between the same vehicle and
a network of his dealer, the vehicle can have the right to share additional information,
such as indications of the odometer, the last protocol of maintenance, etc.

Fortunately, the existing policy mechanisms for control and monitoring of access to
consumer and corporate networks very well reflect needs of IoT/M2M [227]. The big task
will consist in the creation of architecture, which can be scaled for processing of billions
of IoT/M2M devices with different relations of trust in structure. Policies of traffic and the
appropriate controls will be applied on all network to segmentation of traffic of data and
establishment of open communication.

Different medical devices shall be authenticated on the local gateway at the left when
sending state-of-health data of health. Then the gateway shall be authenticated in an
ending point of a cloud in case of transfer of these data. Applications with the rights
which will analyse and display data of working capacity also shall be authenticated in
a cloud in case of a request of data. The single scalable model for all authentications
mentioned above are tokens of safety – one actor is authenticated on another, including
earlier received token in the messages. This token serves for identification of the first
actor, allowing the second actor to accept the appropriate permission.

It is crucial for data on health and other personal information that the appropriate users
controlled as their data on health are collected, shared and analysed. The dominant
mechanism providing such monitoring is the requirement of the active involvement of
the user in the process when different characters are given safety tokens used for the

7.8. Support of Confidentiality and Methods of Authentication

329

subsequent interactions. Without the consent of the user, tokens are not given, and there
are no authenticated interactions. Thus, state-of-health data of health cannot proceed.

OAuth 2.0 and OpenID Connect 1.0 are the two standardised frames for authentication
and authorisation, which obviously support the model stated above. Both allow the user
to participate obviously in the release of tokens for the applications requiring user data
– health or otherwise, – and, thus, can provide significant monitoring of confidentiality.
Besides, Connect provides the built-in mechanisms of detection and registration, which
are extremely important for scaling of any architecture to the number of the participants
created by IoT.

One of the problems is that OAuth and Connect are still connected to HTTP. Experts in
safety read that HTTP is not enough for many interactions in IoT, especially between
things/devices and other participants. There was a new class of protocols which promises
to be more suitable than HTTP, for such interactions, including MQ Telemetry Transport
and Constrained Application Protocol. There were early researches of binding OAuth and
Connect with this new category of protocols with IoT optimisation, but the operation
remains.

The task to invent new mechanisms and standards for authentication of participants of
IoT is not all history. The possibility of authentication in IoT consists in acknowledging
the possibility of switching on new methods of authentication of users via devices and
things which surround us. Use of the smartphone for two-factor authentication is an early
manifestation of this tendency. Opportunities which do the smartphone by a powerful
authentication factor are the same that will allow our hours, bracelets and thermostats
to have a judgement on our identity – and ability to approve this judgement.

A phone does robust coefficient of authentication because for most of the users it always
with them – a factor “what you have” matters a little if you cannot assume that the
user has it at their instruction. But this quality which is tightly connected to the user is
even fairer concerning a new class of the carriers used for monitoring of suitability of the
person, a dream and other personal indices.

We will consider a bracelet of Fitbit, which gives users reviews of the daily activities.
Fitbit is a tiny connected computer which is tightly connected to the specific user. Thus,
Fitbit and other similar devices can facilitate authentication of the user in case of access
to applications, devices or cloud services. The Nymi device accepts the idea on one step,
having added biometric authentication of the user; it will not do keys which it saves for
authentication, before confirmation of the electrocardiogram of the user from the saved
template.

Authentication with the use of the infrastructure of OAuth over the simple level of
authentication and safety (sasl) in IoT devices

OAuth is the open standard structure of authorization and the authentication protocol
providing to third-party applications the limited delegated access to private resources
by establishment of interaction between the third-party application and the owner of
a resource and determination of a certain process to which the owner of a resource
provides authorization of access to third-party applications to server resources, without
tearing off their registration information (a user id, passwords, etc.) [228].

On the other hand, the authentication level of level and the security level (SASL)
is an authentication basis for data protection in the environment of the application

7. IoT Security and Privacy

330

layer. During the provision of access to the client (for example, Facebook application,
application of Twitter, etc.). For protected resources (the user account of Facebook,
the accounting entry of Twitter, etc.)Originally the permissions on access to resources
executed over Plain OAuth 2.0 were requested, but the last stage of authentication the
client for access to resources from the owner of a resource is implemented with the use of
the infrastructure of the OAuth protocol through the structure of authentication of SASL.
Systematic transmissions of requests from the client for the provision of permission are
given below:

Use of Plain OAuth

Step I: the client's request for provision of permission from the owner of a resource two
methods: i) The owner of a resource receives the request sent per the client, directly; ii)
A request is sent per the client via the intermediate server of authorisation.

Step II: authorisation is provided to the client in the form of registration data. This
permission depends on whether the client for receiving a grant directly or indirectly
requested.

Step III: access to the resource server is possible only by means of a certain token
of access. They are requested by the client, at first verifying authenticity with the
authorisation server, and then redirecting the authorisation permission got directly from
the owner of a resource or indirectly via the authorisation server.

Step IV: if the client is authenticated on the servers, the server of authorisation checks
the permission of authorisation and then gives an access token.

Use of OAuth over SASL

Step I: after receiving a token of access, the client requests access to private resources
from the server of resources, authenticating himself by means of an access token.

Step II: the server of resources checks an access token. In case of success, the client is
authenticated for access to resources on behalf of the owner of a resource.

Figure 274: Block diagram for OAuth.

7.8. Support of Confidentiality and Methods of Authentication

331

https://home.roboticlab.eu/_detail/en/iot-open/security_and_privacy_in_iot_ume/iot_privacy/diagram.png?id=en%3Abook

8. Introduction to the IoT Energy Consumption
The IoT energy consumption technology market is difficult to define because the
discovery of energy optimisation is ongoing, and most of the producers do not define
it as the main priority. The competitiveness of European technologies could strengthen
the European position in the global market for energy efficient solutions. The EU is
making rapid progress towards establishing Europe-wide energy consumption standards;
however, most European countries have developed and follow their own set of
regulations. Although IoT energy consumption effective solutions are currently not
available, none represent a complete solution with low cost-performance parameters.
Energy efficiency consists of reducing energy consumption, keeping the same energy
services but using sustainable methods that protect the environment. Those come from
renewable resources.

The energy and environment benefits of the energy efficiency implementation are the
CO2 reductions in the atmosphere. It is essential to be conscious of the use of resources
and to contribute to sustainability. Boost renewable energy and the importance of
making use of it.

The socio-economic factors that are related to the energy efficiency are the saving on
the energy bill, reducing climate change impact and also the reduction of the external
energy dependency.

The IEA (International Energy Agency) promotes energy efficiency policy and technology
in buildings, transport, appliances and industry and at lighting applications. They
developed the document “25 energy efficiency policy recommendations” which identify
best-practice, for energy efficiency improvements and implements the full potential of
it in each sector. IEA is an autonomous organisation founded in 1974 which works to
ensure reliable, affordable and clean energy for its 29 member countries and beyond. It
has four main areas of focus:

▪ energy security: promoting diversity, efficiency and flexibility within all energy
sectors,

▪ environmental awareness: analysing policy options to offset the impact of energy
production and use on the environment, especially for tackling climate change,

▪ economic development: supporting free markets to foster economic growth and
eliminate energy poverty,

▪ engagement worldwide: working closely with partner countries, especially major
economies, to find solutions to share energy and environmental concerns.

▪ “8.1. Power Efficiency in IoT”;

▪ “8.2. Minimum Energy Performance Standards (MEPS)”;

▪ “8.3. Electronic Components and Their Power Requirements: Motors, Sensors,
Microcontrollers”;

▪ “8.4. IoT Software Platform”;

▪ “8.5. IoT Battery Management Systems”.

8. Introduction to the IoT Energy Consumption

332

https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/power_requirements_in_iot
https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/minimum_energy_performance_standards_meps
https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/electronic_components_and_their_power_requirements_motors_sensors_microcontrollers
https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/electronic_components_and_their_power_requirements_motors_sensors_microcontrollers
https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/iot_software_platform
https://home.roboticlab.eu/en/iot-open/power_efficiency_in_iot/iot_baterry_management_systems

8.1. Power Efficiency in IoT
The primary indicator of IoT, which provides a practical network application, is the
overall life expectancy of a network and the tasks that are related to modelling the
life expectancy as well as the practical application. The concept of an IoT provides that
any network element uses an independent power supply. Any network element performs
specific tasks in the common IoT network, which, according to the network scenario, are
pre-programmed.

Looking at the life cycle of the IoT, it is essential to pay attention to the device energy
efficiency. The energy efficiency of each device is dependent on the characteristics of the
applied standards, the algorithm used and the network protocol. While developing the
project of a network, one of the most important factors is increasing energy efficiency
and the operating cycle of the network depends on it.

Often when actions are related to IoT the term “network energy efficiency” is equated to
the operating cycle of the autonomous devices and it is believed that longer operating
time of each IoT device ensures a higher energy efficiency of the network.

It is understandable that IoT devices can be seen as active for as long as they are capable
of reading the information from the sensors correctly as well as transferring it to the
coordinator node within a network. IoT energy consumption depends on several factors:

▪ the technical parameters of the node battery capacity as well as the parameters of
the processor, the transmitter, the sensors and the other elements;

▪ data collection frequency, which may depend on the situation and the environment in
which the network operates;

▪ physical and channel level protocols that determine the control of access mechanism
in the environment;

▪ network topology that defines the amount of the transmitted information within each
node including the flow of technical information;

▪ the use of routing protocols that complement the network with the additional service
data flow.

Any IoT network has three node types – the terminals, the routers and the coordinator
or data collector. Data collectors do not affect the overall life expectancy of a system
because they are provided with a permanent power supply or are equipped with a much
more powerful autonomous power supply.

8.2. Minimum Energy Performance Standards (MEPS)
MEPS specify the maximum energy or power demand of devices, which manufacturers
must ensure in their models of a regulated category when using the test method that
accompanies the MEPS. MEPS may define two measures: modal power, expressed in
watts W, and total annual energy consumption (TEC), shown in kWh. The modal power
specifies the maximal power consumption for one or more low power modes. TEC
provides the annual estimate of energy consumption across various modes, based on an
assumed use profile.

8.2.1. Vertical MEPS

Vertical MEPS are set on a device category basis. Vertical MEPS advantages:

8.1. Power Efficiency in IoT

333

▪ can be tailored to each specific device category;

▪ energy saving can be defined.

Vertical MEPS disadvantages:

▪ complex to develop;

▪ costly to support and update;

▪ unable to define one structure for multiple devices.

Considering the need for a quick implementation of policies to keep up with technology
developments, Vertical MEPS should focus on well-defined, high impact product
categories. The following Vertical MEPS policies are proposed for the prioritized IoT
categories:

▪ vertical MEPS for network standby of home security cameras, smart home gateways,
smart LED lamps and network-connected audio products;

▪ tightening of Vertical MEPS for external power supplies.

8.2.2. Horizontal MEPS

Horizontal MEPS cover a range of different device categories. Horizontal MEPS
advantages:

▪ covers a broad range of devices;

▪ the energy saving plan can be defined.

Horizontal MEPS disadvantage is some specific devices require unique structure and
design. Horizontal MEPS don’t consider specific device characteristics. Therefore, the
defined performance limits are typically a compromise between the best possible values
and broad product coverage. Given the rapid evolution of the IoT market and the many
and diverse product categories, it may be an excellent trade-off to use Clustered MEPS.

8.2.3. Clustered MEPS

Clustered MEPS combine a few device categories with similarities in main functions,
network interactions and energy demand. An example of horizontal MEPS is the European
Union s Standby Regulation 1275/2008/EC amended by Regulation EU/801/2013 to
include network standby).

8.2.4. Electronic Components and Their Power Requirements:
Motors, Sensors, Microcontrollers

Power consumption is one of the most significant challenges for IOT. Today IOT device
needs to be able to sustain longer battery lifespan, especially in cases such as outdoor
deployments, to shorten hardware maintenance and prevent the breakdown of
communication. In many deployment cases, to prolong the usability of the equipment in
the field, large battery sources have to be attached to the sensors, making the sensor
setup bulky and cumbersome. IOT supports the pervasive connectivity of sensors and
the need for them to interact with each other, i.e., act as both tags and interrogators. To
support such connectivity and communications, the design and use of low-power chipsets
will create a significant impact and consideration on power consumption for future
sensors. Ultra-low power designs for chipset circuits have been an ongoing research

8. Introduction to the IoT Energy Consumption

334

area, with techniques moving from a single gate to multi-gate transistors and carbon
nanotube designs.

Energy harvesting technologies that convert energy out of physical energy sources
such as temperature differences and applied pressure have been researched to explore
their capability to replace conventional batteries. Two examples of power scavenging
technologies are photovoltaic technology which generates electric power by using solar
energy and piezoelectric technology that creates charges on stress or shape change on
the voltage applied. Newer forms of battery technologies, e.g., polymer battery, fuel
cell and paper batteries will support increasing functionality and longer battery lifetime.
Paper and smart label batteries have shown promising use cases in warehousing usage
as they allow containers to perform two-way communications with the reader.

8.2.5. IoT Software Platform

The IoT hardware requires operating systems and communication protocols to interact
with a user and other devices. Some components facilitate communication and exchange
of information between devices. In IoT architectures, integration layers play an important
role in combining and integrating information acquired from thousands of devices and
presenting this information to users. In this section, we review the general software
structure inside of an IoT system. In the design of an IoT software platform, scalability,
the extensibility and interoperability between heterogeneous devices and their business
models should be considered. Also, IoT enabling technologies (hardware) may move
geographically hence need to communicate with others in a real-time mode. This kind
of operation necessitates decentralised and event-driven software architecture. Service-
oriented-architecture (SoA) ensures the scalability and interoperability of heterogeneous
technologies in one platform. In a generic SoA four layers are defined:

▪ sensing layer uses integrated hardware to sense things’ statuses;

▪ network layer which connects the things together and collects the data from hardware
infrastructure,

▪ service layer creates and manages services requested by users or applications;

▪ interface layer enables the interaction methods with applications or users.

In a SoA for an IoT middleware, the software between objects (things which are equipped
with sensors) and applications should provide object abstraction, service management
and service composition through a secure network.

Each IoT software main task is device identification in the network. For object
identification, different addressing methods are used based on internet protocols (IPs)
such as IPv4, IPv6, and 6LoWPAN. For the identification, it should be notified that an
object’s identification and address are different. While an object can be identified locally,
for example inside a 6LoWPAN network, the object within the global network uses public
IPs as the address. Identification methods aim to make a clear identity for an object
inside the network. Communication link technologies should provide the infrastructure
for the connection of smart devices (sensor nodes). The IoT sensor nodes should
work normally under severe designs specifications including low-power consumption,
and operation in the noisy environment. Currently, there are different communication
protocols which can be used for IoT applications, which have been covered in chapter “5.
Introduction to the IoT Communication and Networking”.

8.2. Minimum Energy Performance Standards (MEPS)

335

8.2.6. IoT Battery Management Systems

The term battery management system (BMS) refers to a structure that allows a battery
pack to be kept in a safe operating area. A relatively advanced battery management
system is expected to provide the following functions:

▪ keeping the battery pack between specific voltage values, preventing overcharging
and discharging. It is particularly important in case of use of the Lithium-based
batteries (LiPo, LiIon, LiFe);

▪ to keep the battery pack within certain temperature limits and to intervene in the
system to provide these limits when necessary;

▪ measuring and limiting the charge and discharge current;

▪ reducing voltage imbalances between cells to increase the productive use capacity of
the battery pack;

▪ remaining useful life (RUL), state of charge (SoC) and state of health (SoH)
estimation.

Battery System Security Issues on Physical Layer

The physical layer of a battery system includes the battery cells, the surrounding
circuitry, and the connections with the BMS. The battery cells have certain limits (lower
and upper voltage/current bounds) and demonstrate specific behaviour towards different
power requests. The BMS and the circuity components are responsible for monitoring
the battery cells and protecting them from overvoltage, under voltage, overcurrent,
overloading, and also overheating.

Battery System Security Issues on Management System Layer

The BMS can be any system that manages the battery. As discussed, batteries are
sensitive to overcharging and deep discharging because they may damage the battery,
therefore shortening its lifetime and even causing hazardous situations. This requires the
adoption of a proper BMS to maintain the states of each cell of the battery within its safe
and reliable operating range. In addition to its primary function of battery protection, a
BMS should estimate the battery status to predict the actual amount of energy that can
still be delivered to the load.

8. Introduction to the IoT Energy Consumption

336

9. Emerging Technologies in IoT
Since IoT as a paradigm for developing systems of the next generation is being actively
advanced by the IoT community, new technologies are arriving every year. This chapter
is devoted only to few of them to show the direction of the current efforts.

▪ “9.1. ROS – A New Framework in IoT” – introduction to Robot Operating system;

▪ “9.2. Autonomous Transport Systems” – introduction to autonomous transport
systems;

▪ “9.3. Blockchain” – introduction to blockchains.

9.1. ROS – A New Framework in IoT

9.1.1. What is ROS?

ROS is an open-source, meta-operating system for your robot. It provides the services
you would expect from an operating system, including hardware abstraction, low-
level device control, implementation of commonly-used functionality, message-passing
between processes, and package management. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple computers. ROS is similar
in some respects to “robot frameworks”, such as Player, YARP, Orocos, CARMEN, Orca,
MOOS, and Microsoft Robotics Studio [229]. The ROS runtime “graph” is a peer-to-
peer network of processes (potentially distributed across machines) that are loosely
coupled using the ROS communication infrastructure. ROS implements several different
styles of communication, including synchronous RPC-style communication over services,
asynchronous streaming of data over topics, and storage of data on a Parameter Server.
All these things would be explained a bit later.

Important! ROS is not a real-time framework, though it is possible to integrate ROS
with real-time code.

9.1.2. ROS Features

Distributed Computation
Many modern robot systems rely on software that spans many different processes and
runs across several different computers. For example:

▪ some robots carry multiple computers, each of which controls a subset of the robot’s
sensors or actuators;

▪ even within a single computer, it’s often a good idea to divide the robot’s software
into small, stand-alone parts that cooperate to achieve the overall goal. This
approach is sometimes called “complexity via composition”;

▪ when multiple robots attempt to cooperate on a shared task, they often need to
communicate with one another to coordinate their efforts;

▪ human users often send commands to a robot from a laptop, a desktop computer, or
mobile device. We can think of this human interface as an extension of the robot’s
software.

Software Reuse
The rapid progress of robotics research has resulted in a growing collection of useful

9. Emerging Technologies in IoT

337

https://home.roboticlab.eu/en/iot-open/emerging_iot_technologies/robot_operating_system_ros_for_iot
https://home.roboticlab.eu/en/iot-open/emerging_iot_technologies/autonomous_transport_systems
https://home.roboticlab.eu/en/iot-open/emerging_iot_technologies/blockchains_and_their_applications_in_iot_context

algorithms for common tasks such as navigation, motion planning, mapping, and many
others. Of course, the existence of these algorithms is only truly useful if there is a way
to apply them in new contexts, without the need to reimplement each algorithm for each
new system. ROS can help to prevent this kind of pain in at least two important ways.

▪ ROS’s standard packages provide stable, debugged implementations of many
important robotics algorithms;

▪ ROS’s message passing interface is becoming a de facto standard for robot software
interoperability, which means that ROS interfaces to both the latest hardware and to
implementations of cutting-edge algorithms are quite often available. For example,
the ROS website lists hundreds of publicly-available ROS packages. This sort of
uniform interface greatly reduces the need to write “glue” code to connect existing
parts.

As a result, developers that use ROS can expect — after, of course, climbing ROS’s initial
learning curve — to focus more time on experimenting with new ideas, and less time
reinventing wheels.

Rapid Testing
One of the reasons that software development for robots is often more challenging
than other kinds of development is that testing can be time-consuming and error-prone.
Physical robots may not always be available to work with, and when they are, the process
is sometimes slow and finicky. Working with ROS provides two effective workarounds to
this problem.

▪ Well-designed ROS systems separate the low-level direct control of the hardware
and high-level processing and decision making into separate programs. Because of
this separation, we can temporarily replace those low-level programs (and their
corresponding hardware) with a simulator, to test the behaviour of the high-level part
of the system.

▪ ROS also provides a simple way to record and playback sensor data and other kinds of
messages. This facility means that we can obtain more leverage from the time we do
spend operating a physical robot. By recording the robot’s sensor data, we can replay
it many times to test different ways of processing that same data. In ROS parlance,
these recordings are called “bags” and a tool called rosbag is used to record and
replay them.

A crucial point for both of these features is that the change is seamless. Because the
real robot, the simulator, and the bag playback mechanism can all provide identical (or
at least very similar) interfaces, your software does not need to be modified to operate
in these distinct scenarios, and indeed need not even “know” whether it is talking to a
real robot or not. Of course, ROS is not the only platform that offers these capabilities.
What is unique about ROS, at least in the author’s judgment, is the level of widespread
support for ROS across the robotics community. This “critical mass” of support makes
it reasonable to predict that ROS will continue to evolve, expand, and improve in the
future.

The primary goal of ROS is to support code reuse in robotics research and development.
ROS is a distributed framework of processes (Nodes) that enables executables to be
individually designed and loosely coupled at runtime. These processes can be grouped
into Packages and Stacks, which can be easily shared and distributed. ROS also supports
a federated system of code Repositories that enable collaboration to be distributed as
well. This design, from the filesystem level to the community level, enables independent

9. Emerging Technologies in IoT

338

decisions about development and implementation, but all can be brought together with
ROS infrastructure tools. In support of this primary goal of sharing and collaboration,
there are several other goals of the ROS framework.

▪ Thin: ROS is designed to be as thin as possible – we won't wrap your main() – so that
code written for ROS can be used with other robot software frameworks. A corollary
to this is that ROS is easy to integrate with other robot software frameworks: ROS
has already been integrated with OpenRAVE, Orocos, and Player.

▪ ROS-agnostic libraries: the preferred development model is to write ROS-agnostic
libraries with clean, functional interfaces.

▪ Language independence: the ROS framework is easy to implement in any modern
programming language. We have already implemented it in Python, C++, and Lisp,
and we have experimental libraries in Java and Lua.

▪ Easy testing: ROS has a builtin unit/integration test framework called roster that
makes it easy to bring up and tear down test fixtures.

▪ Scaling: ROS is appropriate for large runtime systems and large development
processes.

9.1.3. Operating Systems

ROS currently only runs on Unix-based platforms. Software for ROS is primarily tested
on Ubuntu and Mac OS X systems, though the ROS community has been contributing
support for Fedora, Gentoo, Arch Linux and other Linux platforms.

While a port to Microsoft Windows for ROS is possible, it has not yet been fully explored.

9.1.4. ROS Architecture

ROS has three levels of architecture: the Filesystem level, the Computation Graph level,
and the Community level. These levels and concepts are summarised below, and later
sections go into each of these in greater detail.

In addition to the three levels of concepts, ROS also defines two types of names –
Package Resource Names and Graph Resource Names – which are discussed below.

ROS Filesystem Level

The filesystem level concepts mainly cover ROS resources that you encounter on disk,
such as:

▪ packages – packages are the main unit for organising software in ROS. A package
may contain ROS runtime processes (nodes), a ROS-dependent library, datasets,
configuration files, or anything else that is usefully organised together. Packages are
the most atomic build item and release the item in ROS. Meaning that the most
granular thing you can build and release is a package;

▪ metapackages – metapackages are specialised Packages which only serve to
represent a group of related other packages. Most commonly metapackages are used
as a backwards compatible placeholder for converted rosbuild Stacks;

▪ package manifests – manifests (package.xml) provide metadata about a package,
including its name, version, description, license information, dependencies, and other

9.1. ROS – A New Framework in IoT

339

meta information like exported packages. The package.xml package manifest is
defined in REP-0127;

▪ repositories – a collection of packages which share a common VCS system.
Packages which share a VCS share the same version and can be released together
using the catkin release automation tool bloom. Often these repositories will map to
converted rosbuild Stacks. Repositories can also contain only one package;

▪ message (msg) types – message descriptions, stored in my_package/msg/
MyMessageType.msg, define the data structures for messages sent in ROS;

▪ service (srv) types – service descriptions, stored in my_package/srv/
MyServiceType.srv, define the request and response data structures for services in
ROS.

Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes that are
processing data together. The basic Computation Graph concepts of ROS are nodes,
Master, Parameter Server, messages, services, topics, and bags, all of which provide
data to the Graph in different ways.

These concepts are implemented in the ros_comm repository.

▪ Nodes: nodes are processes that perform a computation. ROS is designed to be
modular at a fine-grained scale; a robot control system usually comprises many
nodes. For example, one node controls a laser range-finder, one node controls the
wheel motors, one node performs localisation, one node performs path planning, one
Node provides a graphical view of the system, and so on. A ROS node is written with
the use of a ROS client library, such as roscpp or rospy.

▪ Master: the ROS Master provides name registration and lookup to the rest of the
Computation Graph. Without the Master, nodes would not be able to find each other,
exchange messages, or invoke services.

▪ Parameter server: the parameter Server allows data to be stored by key in a central
location. It is currently part of the Master.

▪ Messages: modes communicate with each other by passing messages. A message
is simply a data structure, comprising typed fields. Standard primitive types (integer,
floating point, boolean, etc.) are supported, as are arrays of primitive types.
Messages can include arbitrarily nested structures and arrays (much like C structs).

▪ Topics: messages are routed via a transport system with publish/subscribe
semantics. A node sends out a message by publishing it on a given topic. The
topic is a name that is used to identify the content of the message. A node that is
interested in a particular kind of data will subscribe to the appropriate topic. There
may be multiple concurrent publishers and subscribers for a single topic, and a single
node may publish and/or subscribe to various topics. In general, publishers and
subscribers are not aware of each others' existence. The idea is to decouple the
production of information from its consumption. Logically, one can think of a topic as
a strongly typed message bus. Each bus has a name, and anyone can connect to the
bus to send or receive messages as long as they are the right type.

▪ Services: the publish/subscribe model is a very flexible communication paradigm,
but it's many-to-many, one-way transport is not appropriate for request/reply
interactions, which are often required in a distributed system. Request/reply is done

9. Emerging Technologies in IoT

340

via services, which are defined by a pair of message structures: one for the request
and one for the response. A providing node offers a service under a name, and a
client uses the service by sending the request message and awaiting the reply. ROS
client libraries generally present this interaction to the programmer as if it were a
remote procedure call.

▪ Bags: bags are a format for saving and playing back ROS message data. Bags are
an essential mechanism for storing data, such as sensor data, that can be difficult to
collect but is necessary for developing and testing algorithms.

The ROS Master acts as a name service in the ROS Computation Graph. It stores topics
and services registration information for ROS nodes. Nodes communicate with the Master
to report their registration information. As these nodes communicate with the Master,
they can receive information about other registered nodes and make connections as
appropriate. The Master will also make callbacks to these nodes when this registration
information changes, which allows nodes to dynamically create connections as new nodes
are run.

Nodes connect to other nodes directly; the Master only provides lookup information,
much like a DNS server. Nodes that subscribe to a topic will request connections from
nodes that publish that topic and will establish that connection over an agreed upon
connection protocol. The most common protocol used in a ROS is called TCPROS, which
uses standard TCP/IP sockets.

This architecture allows for decoupled operation, where the names are the primary
means by which more extensive and more complex systems can be built. Names have
a crucial role in ROS: nodes, topics, services, and parameters all have names. Every
ROS client library supports command-line remapping of names, which means a compiled
program can be reconfigured at runtime to operate in a different Computation Graph
topology.

ROS Community Level

The ROS Community Level concepts are ROS resources that enable separate
communities to exchange software and knowledge. These resources include:

▪ distributions – ROS Distributions are collections of versioned stacks that you can
install. Distributions play a similar role to Linux distributions: they make it easier to
install a collection of software, and they also maintain consistent versions across a
set of software;

▪ repositories – ROS relies on a federated network of code repositories, where
different institutions can develop and release their own robot software components;

▪ the ROS wiki – the ROS community Wiki is the main forum for documenting
information about ROS. Anyone can sign up for an account and contribute their own
documentation, provide corrections or updates, write tutorials, and more;

▪ bug ticket system – please see tickets for information about file tickets;

▪ mailing lists – the ROS-users mailing list is the primary communication channel
about new updates to ROS, as well as a forum to ask questions about ROS software;

▪ ROS answers – a Q&A site for answering your ROS-related questions;

▪ blog – the ros.org blog provides regular updates, including photos and videos.

9.1. ROS – A New Framework in IoT

341

9.1.5. Introduction to ROS Programming

What Does IoT Need?

It’s clear that in the future we will have many devices that need the Internet for
their work in our regular life. While devices are becoming more intelligent, the degree
of automatisation is increasing. Today devices use the Internet to find or store some
data. However, frequently it's hard to integrate different IoT-devices in one system. The
market needs standardisation.

In this chapter, we are going to introduce you to the Robot Operating Systems (ROS)
libraries, which could be used in IoT tasks. The ROS is not just the most popular platform
for academic researches in robotics, but a powerful open-source set of software libraries
and tools not only for robotics but also autonomous systems.

Why ROS?

Firstly, the ROS is the most popular education platform for world universities. ROS is
widely used in different researches. Secondly, ROS is based on Linux, so you can use all
libraries from ROS to stop worrying about the physical side of your device and write code
to it or even your own Linux core. So far, Linux is the best OS for embedded systems.

ROS Installation

The latest version of ROS is Kinetic Kame, which is available for Ubuntu Wily (15.10)
and Ubuntu Xenial (16.04 LTS). If you have older Ubuntu version install ROS Indigo
Igloo.

Instructions for installing ROS Kinetic Kame:

1. Configure your Ubuntu repositories to allow restricted, universe, and multiverse
2. Setup your computer to accept software from packages.ros.org.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

3. Make sure your Debian package is up-to-date

sudo apt-get update

4. Install ROS Desktop version. If you want to work with navigation and 2D/3D
perception packages, make Desktop-full install

sudo apt-get install ros-kinetic-desktop

apt-cache search ros-kinetic

5. To make all system dependencies for source you want to compile, run rosdep. Also it
is required to run some core components in ROS.

9. Emerging Technologies in IoT

342

sudo rosdep init

rosdep update

6. Environment setup

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

7. To create and manage your own ROS workspaces, there are various tools and
requirements that are distributed separately. To install this tool and other dependencies
for building ROS packages, run:

sudo apt-get install python-rosinstall python-rosinstall-generator |
python-wstool build-essential

First steps

To be good at ROS programming, you need to understand ROS filesystem concepts and
be able to use roscd, rosls, and rospack command line tools.

After that, let's instal turtlesim. This package illustrates how different things work. Use
the following command:

sudo apt-get install ros-kinetic-turtlesim

Now, there is a need to configure rosdep systemwide. Just execute the command:

rosdep

The goal of this command is to initialise rosdep, which is a tool for checking and installing
package dependencies in an OS-independent way. On Ubuntu, for instance, rosdep acts
as a front end to apt-get.

Account Configuration

Doesn't matter you install ROS yourself of you're using a computer with pre-installed
ROS, the are two important configuration steps that must be done within the account of
every user that is going to ROS using.

At start, initialize the rosdep system in your account:

rosdep update

This command stores some files in your home directory, in a sub-directory named .ros.
This action must be done one time.

Before using this command be sure you are acting into your account, not using sudo.

9.1. ROS – A New Framework in IoT

343

Turtlesim Example

Let's start ROS programming with a simple example. This exercise serves a few
purposes: it provides an opportunity to check that ROS is installed correctly, introduce
turtlesim simulator and it is used in a lot of tutorials published on the web.

Starting turtlesim

roscore
rosrun turtlesim_node
rosrun turtlesim turtle_teleop_key

By running separate command terminals, we can run three commands simultaneously.
If the configuration is OK you can see a graphical window:

Figure 275: Turtlesim windows.

This window shows a simulated turtle robot that operates in a squad.

Note, the appearance of your turtle may be different. It
depends on the version of ROS.

If you choose the terminal one which is executing turtle_teleop_key and give the
inputs by pressing Left, Right, Up, Down, the turtle should move to your commands.
You should keep these three terminals open because of the examples in the following
sections will show some additional ways to interact with this system. Before we start to
write programs, we should create a workspace to save there our packages, and then
create the package.

Creating workspace Packages we are creating should be situated together in a

9. Emerging Technologies in IoT

344

https://home.roboticlab.eu/_detail/en/iot-open/robot_operating_system_ros_for_iot_itmo/ros.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/robot_operating_system_ros_for_iot_itmo/ros.png?id=en%3Abook

directory called a workspace. For instance: /home/$username$/ros. You can name your
workspace ever you want and save the directory anywhere in your account. To create a
directory, use the mkdir command. If you are working on many projects, we recommend
you to create several independent workspaces. Now, lets set up the workspace. Create
an src subdirectory inside the workspace directory. This directory will contain the source
code of your packages.

A package creation To create a new ROS package use the following command:

catkin_create_pkg //package-name//

This command should be run from the src directory of initial workspace. This command
a directory to hold the package and creates two configuration files inside that directory.

▪ package.xml is the manifest. This file defines some details about the package,
such as its name, version, maintainer, and dependencies. The directory containing
package.xml is called the package directory.

▪ CMakeLists.txt is a script for an industrial-strength cross-platform build system
CMake. It contains a list of build instructions including what executables should be
created, what source files to use to build each of them, and where to find the include
files and libraries needed for those executables. CMake is used internally by catkin.

Hello, ROS!

Now, after the workspace configuration we can create ROS programs. Let us consider a
version of the “Hello”.

#include <ros / ros<h>
int main(int agrc, char **argv) {
ros::init(argc, argv, "hello_ros");
ros::NodeHandle nh;
ROS_INFO_STREAM("Hello, ROS!");
}

▪ ros/ros.h is declaration of the ROS classes. It is necessary to connect it in every
ROS program you are creating.

▪ ros::init It is a function which initialises the library of the ROS client.

▪ ros::NodeHandle object is the main mechanism that your program will use to
interact with ROS system. By creating this object provides registration with your
program as a node to the ROS master.

▪ ROS_INFO_STREAM this command generates an information message. This message is
going to be sent to several various locations, including the console.

Arduino IDE Setup

The Arduino and Arduino IDE are great tools for quickly and easily programming
hardware. Using the rosserial_arduino package, you can use ROS directly with the
Arduino IDE. rosserial provides a ROS communication protocol that works over your
Arduino's UART. It allows your Arduino to be a full-fledged ROS node which can directly
publish and subscribe to ROS messages, publishes TF transforms, and get the ROS

9.1. ROS – A New Framework in IoT

345

system time. Our ROS bindings are implemented as an Arduino library. Like all Arduino
libraries, ros_lib works by putting its library implementation into the libraries folder of
your sketchbook. If there is not already a libraries folder in your sketchbook, make one.
You can then install the library using the instructions below. In order to use the rosserial
libraries in your own code, you must first put:

#include <ros.h>

First, should be done.

#include <std_msgs/String.h>

Otherwise the software will not be able to locate header files.

Setting Up the software

At first we should install rosserial for Arduino by the following command

sudo apt-get install ros-kinetic-rosserial-arduino
sudo apt-get install ros-kinetic-rosserial

If you use another ROS version just replace kinetic to your release, e.g. hydro

Installing From Source Onto the ROS Workstation

Source build instructions are different for groovy+ (catkin) than for earlier (rosbuild)
releases. Select the build system based on your release to see appropriate instructions.
Rosserial has been catkin-ized since the groovy release, and the workflow is a bit
different from Fuerte and earlier versions. Rather than running the library generator over
each package you want to use, you run it once and generate libraries for all installed
messages. In the instructions below, <ws> represents your catkin workspace.

cd <ws>/src
git clone https://github.com/ros-drivers/rosserial.git
cd <ws>
catkin_make

These commands clone rosserial from the github repository, generate the
rosserial_msgs needed for communication, and make the ros_lib library in the
<ws>/install directory.

Note: currently you HAVE to run the catkin_make install.
Otherwise, portions of the ros_lib directory will be missing.
It will hopefully be fixed in the future release.

In case if you use previous ROS versions, use:

9. Emerging Technologies in IoT

346

hg clone https://kforge.ros.org/rosserial/hg rosserial
rosmake rosserial_arduino

These commands clone rosserial from the kforge repository using mercurial, generate
the rosserial_msgs needed for communication and make the ros_lib library.

ros_lib Installing to the Arduino Environment

The preceding installation steps created ros_lib, which must be copied into the Arduino
build environment to enable Arduino programs to interact with ROS.

In the steps below, <sketchbook> is the directory where the Linux Arduino environment
saves your sketches. Typically this is a directory called sketchbook in your home
directory. Alternately, you can install into a Windows Arduino environment.

The ros_lib installation instructions are different for the groovy source (catkin) than
for earlier (rosbuild) or binary releases. Be sure you've selected the correct build
system above to see appropriate instructions – catkin for a groovy source build, rosbuild
otherwise.

Now that you've installed either from source or debs, all you have to do is to copy the
rosserial_arduino/libraries directory into your Arduino sketchbook:

roscd rosserial_arduino/src
cp -r ros_lib <sketchbook>/libraries/ros_lib

If you are building Arduino on Windows, copy the ros_lib directory from Linux to the
Windows system's sketchbook/libraries folder (typically found in My Documents).

Note: Currently you can install the Arduino libraries directly
in the Arduino IDE. Just open the Library Manager from the
IDE menu in Sketch → Include Library → Manage Library.
Then search for “rosserial”. It is useful if you need to work
on an Arduino sketch but doesn't want to set up a full ROS
workstation.

After restarting your IDE, you should see ros_lib listed under examples.

Publisher Example

We'll start our exploration into rosserial by creating a “hello world” program for our
Arduino.

9.1. ROS – A New Framework in IoT

347

Note: the Arduino community often calls source code for
programs a “sketch”, we will use the same convention below.

If you have followed the Arduino IDE Setup tutorial, you'll be able to open the sketch
below by choosing ros_lib → HelloWorld from the Arduino examples menu.

It should open the following code in your IDE:

1 /*
2 * rosserial Publisher Example
3 * Prints "hello world!"
4 */
5
6 // Use the following line if you have a Leonardo or MKR1000
7 //#define USE_USBCON
8
9 #include <ros.h>

10 #include <std_msgs/String.h>
11
12 ros::NodeHandle nh;
13
14 std_msgs::String str_msg;
15 ros::Publisher chatter("chatter", &str_msg);
16
17 char hello[13] = "hello, ROS!";
18
19 void setup()
20 {
21 nh.initNode();
22 nh.advertise(chatter);
23 }
24
25 void loop()
26 {
27 str_msg.data = hello;
28 chatter.publish(&str_msg);
29 nh.spinOnce();
30 delay(1000);
31 }

The Code Compiling and Running

To compile the code, use the compile function within the Arduino IDE. It is no different
from compiling any other sketch. Once the compilation is completed, you will receive a
message about program storage space and dynamic memory usage. To upload the code
to your Arduino, use the upload function within the Arduino IDE. It is no different from
uploading any other sketch.

Now, launch roscore:

9. Emerging Technologies in IoT

348

roscore

Next, run the rosserial client application that forwards your Arduino messages to the rest
of ROS. Make sure to use the correct serial port:

rosrun rosserial_python serial_node.py /dev/ttyUSB0

Alternatively, if you want the ability to programmatically reset your Arduino, run using:

rosrun rosserial_arduino serial_node.py _port:=/dev/ttyUSB0

It will automatically provide a service endpoint at ~reset_arduino that you can call which
will have the same effect as pressing the Arduino's reset button.

Finally, watch the greetings come in from your Arduino by launching a new terminal
window and entering:

rostopic echo chatter

9.1.6. IoT bridge

The iot_bridge provides a connection between ROS and any smart device of the control
system. Since 2017, the package offers to bridge with OpenHAB, one of the most actively
developed and used a framework for home automation.

▪ ROS is an extremely powerful open source set of libraries and tools that help you
build robot applications – providing drivers and state-of-the-art algorithms for vision,
movement, etc. See the official website [230] for more info.

▪ OpenHAB is an open source system that connects to virtually any intelligent device,
such as smoke detectors, motion detectors, temperature sensors, Amazon Alexa,
security systems, TV/audio, Chromecast, fingerprint scanners, lighting, 1-Wire,
Bluetooth, MQTT, Z-Wave, telephony, weather sensors, and web services such as
Twitter, etc. OpenHAB also provides a basic Web GUI and iPhone / Android app for
setting and dynamically viewing values. To access the full list of supported features
go to [231] for more info.

Use Cases

▪ A motion detector in OpenHAB triggers and ROS dispatches the robot to the location.

▪ ROS facial recognition recognises a face at the door, and OpenHAB turns on the lights
and unlocks the door.

▪ A Washing Machine indicates to OpenHAB that the load is complete and ROS
dispatches a robot to move the laundry to the dryer.

▪ A user gives a voice smart home command to Alexa. Using the OpenHAB/Amazon
Alexa integration then forwarded to ROS via the iot_bridge.

▪ The OpenHAB MQTT location binding indicates that Sarah will be home soon and
a sensor indicates that the temperature is hot. ROS dispatches the robot to bring
Sarah's favourite beer. OpenHAB turns on her favourite rock music and lowers the
house temperature.

9.1. ROS – A New Framework in IoT

349

▪ A user clicks on the OpenHAB GUI on an IPAD and selects a new room location for
the robot. The message is forwarded by the iot_bridge to ROS, and ROS dispatches
the robot [232].

Using iot-bridge technology, any OpenHAB device can be easily set up to publish updates
to the iot_updates topic in ROS, giving a ROS robot knowledge of any Home Automation
device. ROS can publish to the iot_set topic (or iot_command), and the device in
OpenHAB will be set to the new value (or act on the specified command).

Installing iot_bridge

At first, we should install and configure OpenHAB, for details and guides see [233]. Many
people find that the simplest way to experiment with OpenHAB is to get a Raspberry Pi
and install openHABian – the “hassle-free openHAB setup”. While openHABian offers a
streamlined and simplified way to get up and running quickly, it is a complete OpenHAB
home automation system capable of automating your entire home [234].

Just in a few steps, let's present the OpenHAB installation.
Configure the repository in your Ubuntu OS:

wget -qO - 'https://bintray.com/user/downloadSubjectPublicKey?username=openhab' |
sudo apt-key add - echo "deb http://dl.bintray.com/openhab/apt-repo stable main" |
sudo tee /etc/apt/sources.list.d/openhab.list
sudo apt-get update

After this, we can install the runtime:

sudo apt-get install openhab-runtime

After installation, you should configure the runtime. See the following guide [235].

Now, we should install iot-bridge on the ROS system:

▪ go to Github website [236] and find the GIT clone address,

▪ in the ROS console type and run:

cd catkin_ws/src
git clone address-from-above
cd ..
catkin_make

▪ edit iot_bridge/config/items.yaml:

▪ update host address and port to match your OpenHAB server;

▪ edit OpenHAB's item file:

▪ create the ROS group: Group ROS (All);

▪ add the ROS group to each item that should send status updates to ROS.

9. Emerging Technologies in IoT

350

Note that the items must be directly in a (ROS) group, not in
a sub-group of the (ROS) group. Note, this is only needed for
status updates to go from OpenHAB to ROS – you can send
commands from ROS to any OpenHAB item regardless of what
group it is in [237].

▪ add ROS_Status to OpenHAB's item file;

Sample Open_HAB item definition:

Group ROS (All)
String ROS_Status "ROS [%s]"
Switch Light_GF_Corridor_Ceiling "Ceiling" (GF_Corridor, Lights, ROS)
Switch Light_GF_Bathroom (GF_Bathroom, Lights, ROS)

Note: you must have two or more items defined in the ROS
group.

Running

Run the iot-bridge using:

roslaunch iot_bridge iot.launch

Testing

Follow steps to check to receive from OpenHAB.

▪ In your browser, go to [238].

▪ We can see an XML response with the state of the items you have put in the ROS
group.

▪ In the console, type:

rostopic echo /iot_updates

▪ Bring up the OpenHAB demo site in your browser and change an item in the ROS
group.

▪ Now we can see the new state in the rostopic echo console.

Follow next steps to check sending to OpenHAB:

cd catkin_ws/src/iot_bridge/scripts
./iot_test item_name item_value

9.1. ROS – A New Framework in IoT

351

▪ You should see the message logged where you did the roslaunch.

▪ If you have the OpenHAB demo site in your browser, you should see the item you
named changed to your specified value.

▪ The value must be valid for that device (number, or ON/OFF, or OPEN/CLOSED). See
openhab/items for a summary of valid values.

Statistics

▪ You can place the ROS_Status item in your OpenHAB sitemap. It will display the time
of the last update (to the nearest minute) and counts of messages and errors.

▪ Place the following in demo.sitemap:

Text item=ROS_Status label="ROS [%s]"

Set Status for an OpenHAB Item

ROS topic subscribed by iot_bridge:

//iot_set (diagnostic_msgs/KeyValue)//

When the iot_bridge receives a name/value pair from the ROS iot_set topic, it publishes
those to OpenHAB, and OpenHAB updates the status for the item specified (e.g. indicate
that a switch is now ON). For instance: A ROS program running Facial Detection detects
that Sarah is present. It publishes the following to the iot_set topic:

▪ message type: diagnostic_msgs/KeyValue,

▪ key: “facedetection” – key must match OpenHAB's .items file,

▪ value: “Sarah” (string).

This will set the facedetection item in OpenHAB to person Sarah, indicating Sarah has
been detected. See the sample code in iot_test.

Receive Item Updates From OpenHAB

ROS topic published by iot_bridge: iot_updates (diagnostic_msgs/KeyValue)

The IoT bridge receives updates from OpenHAB and publishes those as name/value pairs
to the iot_updates ROS topic.

To see updates from the command line, type:

rostopic echo iot_updates

For example, a motion detector is triggered in OpenHAB. The OpenHAB bridge will
publish the following to the iot_updates topic in ROS

▪ message type: diagnostic_msgs/KeyValue,

▪ key: office_motion – key matches OpenHAB's .items file,

9. Emerging Technologies in IoT

352

▪ value: 1 (string).

Note: device states are ONLY published to ROS when they
change (or when iot_bridge is started). If you need the
current state for ALL items in the ROS group, use the Request
Refresh interface [239] .

OpenHAB will send the current status of every item in the ROS group to the iot_updates
topic. The following status will continue to send only when they change.

9.2. Autonomous Transport Systems
In the future cities, IoT will play a crucial role in connecting things. The new paradigm in
transportation is going to be happening in the near future. Mobility as a Service (MaaS)
or Transportation as a Service (TaaS) and connected vehicles are primary aspects of a
new paradigm. It means that instead of using the car like today, but, as with existing
ride-hailing or car-sharing services, vehicles will be booked or hailed through an app. But
not only personal transportation but also cargo transportation is changing significantly.
The leading technology behind this is the software-driven autonomous systems, which
has been come to intelligent enough to start replacing the human driver or operator.
The future of the automotive ecosystem is heading toward the integration of multiple
domains, such as the Internet of Things (IoT), connected vehicles, autonomous vehicles,
and V2X communication. The integration and shift in focus will make software-defined
cars to be the essence of connected vehicles in the future. Moreover, as the ecosystem
expands, the market would notice extreme competition from both proprietary and open
source solution providers.

9.3. Blockchain
News about the launch of new cryptocurrencies has been circulating for several
consequent years already. And while the core of debates is the most promising, effective
and economically viable model for reaching mutual understanding of all parties,
blockchain based systems have been actively developing for some years. Nevertheless,
in the Russian-language literature, and surprisingly, on the Internet (video conferences
do not count), the information on blockchain in general. And articles on examples of its
application in particular boil down to a dry description of the differences between the
new protocol and the most famous one – Bitcoin. Sometimes this information is inclined
to own advertising product or trying to describe an individual part of a decentralised
network working on the blockchain. At the same time, most readers who are not familiar
with the basic principles and concepts of this rather widely applied field, are often
bewildered by the very talk about blockchain and the possibilities of its application
outside the cryptographic currencies. Comprehensive articles aimed at explaining the
principles of blockchain and its application started appearing only recently.

9.2. Autonomous Transport Systems

353

Figure 276: Blockchain fork visualisation.

Using blockchain technology in IoT provides some advantages:

▪ decentralised systems;

▪ opportunity to create a net of different IoT devices (e.g. sensory market). We can at
any time attach a new device to the created net.

Moreover, any person could attach his sensors to the created net without any additional
authentication and to share its data. This data could be bought by someone who is
interested in. Therefore, attaching the IoT device, we can become an economic agent
and a node of the net.

The story of blockchain development is inextricably linked with the story of
cryptocurrencies’ mining. In many respects, Bitcoin is to be thanked for fundamentally
new systems that started appearing and operating on the blockchain. The climax of
this development at the moment is the emergence of the Ethereum system, which
revolutionised views on the blockchain itself.

Not so long ago Habrahabr.ru (the most significant Russian online IT community – Ed.)
has featured an article with a brief description of blockchain and its comparison with the
usual database [240] In this series of articles we will briefly, but more thoroughly than
in article attempt to describe the story of blockchain and the systems based on it, the
principles on which they operate, and the possible areas of application of this technology,
which are plenty.

9.3.1. In Search of Consensus

There were attempts to create an unregulated currency long before the appearance of
Bitcoin. The first prototypes of electronic money were proposed back in the 1980s by
David Chaum. He is most famous in the world of cryptography for inventing the so-called
“blind signature”, which enabled creating an electronic digital signature for a message
without getting to know its contents. It was the algorithm on which the electronic
currency he created was based.

9. Emerging Technologies in IoT

354

https://home.roboticlab.eu/_detail/en/iot-open/emerging_iot_technologies/block.png?id=en%3Abook

Another significant impact on the world was made by Adam Back’s work on denial
of service counter-measure. Thanks to this work, the first mechanism for reaching
consensus was elaborated: Proof-of-Work, which was named Hashcash. Further on we
will tell about it in details.

Studies conducted by Wei Dai and Nick Szabo are just as important here. These studies
aimed at identifying true information when interacting in an unreliable environment
where there is no reason to trust any remote nodes with which the connection was
established. The situation described above got the name “The Byzantine generals’
problem”. It was formulated by the well-known American scientist Leslie Lamport. And it
was he who proposed an ad hoc solution to this problem.

The essence of this problem simmers down to the following: once the Byzantine army
was about to enter into a great battle with the enemy. The whole army was divided
into N legions. A general was appointed as head of every legion. All generals are
receiving commands from the commander-in-chief. The night before the battle, each of
the generals gets a message from the commander-in-chief, which indicates what should
be done at 10 am the next day: the order was either to attack or to retire. The problem
lies in the fact that by that time Byzantium was in decline – and anyone, including the
commander-in-chief, could turn out to be a traitor. In particular, if the commander-in-
chief was the traitor, he could give different orders to different generals. So basically,
there are three possible outcomes of the battle:

1. If all the legions attack, then Byzantium will win.

2. If all the legions retire, then Byzantium will, at least, keep its army.

3. If some part of the legions retires, and the other attacks, then the Byzantine army
will be defeated – and this is precisely what the traitor was striving for.

Figure 277: Byzantine generals problem

Therefore, the generals are facing the problem of making a mutually agreeable decision.
That is, reaching a consensus in an unreliable environment where it is impossible to
trust unconditionally any of the interacting parties. The problem solution could be seen
in Byzantine fault tolerance

The emergence of Bitcoin in 2008 signalled a full-on revolution in the field of electronic
cash. Someone who uses the pseudonym Satoshi Nakamoto is the author of this system.
However, his or their true identity (in case if it is a group of people) has not been
established so far. By and large, as it was rightly noted, Bitcoin was built on the
foundation of work done for a quarter of a century in the field of cryptography and

9.3. Blockchain

355

https://home.roboticlab.eu/_detail/en/iot-open/emerging_iot_technologies/block2.png?id=en%3Abook
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

absorbed all the best ideas it could at that time. Nevertheless, this system is extremely
limited in some respects, as it will be repeatedly stipulated further. For instance, it does
not allow creating complex financial transactions (contracts in Ethereum’s terminology),
since its internal programming language does not allow the creation of cycles, and is
rather limited in general. Later on, the MasterCoin system emerged on top of Bitcoin.
It allowed users to create their currencies (tokens). Nevertheless, the very idea of this
system is still a subject of discussion, and besides, it has not been fully implemented.
However, Bitcoin’s feasibility raises many issues. The fact is that the number of this
currency’s units that have ever been created (we will discuss in detail how it is done
further on) is limited to 21 million. Fears of possible deflation are indeed justified: if
the demand for electronic money grows, and the offer cannot be increased because of
the particular characteristics of the protocol itself, the cost of each unit of this crypto-
currency will increase. This will lead to the unwillingness of crypto-currencies’ holders to
part with their savings in the hope of making even greater profits due to further rising
costs of each crypto-currency unit. It will even further reduce the supply – and so on.
The thoughts cited above are far from being a full-fledged economic rationale, but they
express one of the possible ways of future developments.

In a fairly short period after the creation of Bitcoin, a large number of alternative
cryptographic currencies were created based on its free implementation. Some
cryptocurrencies have made minimal changes to the structure of Bitcoin – increasing the
maximum number of coins ever created or completely removing this restriction. Others
made significant changes. Peercoin, for example, went this way, creating alternative
methods for protecting the internal data structure (blockchain). It started using the
mechanism of Proof-of-Stake on a par with Proof-of-Work. Primecoin uses the search for
Cunningham chains as Proof-of-Work, which, according to the author of the system, has
an exceptional scientific value. Namecoin creates a distributed database of matches “IP
address – network name” (a DNS-server analogue) based on the blockchain.

There are many examples of systems based on Bitcoin. Nevertheless, the most promising
system based on the blockchain does not stem from Bitcoin. We are talking about the
Ethereum system, proposed by Vitalik Buterin in 2013 and formally described by Gavin
Wood a year later. Changes in the concept from the developer's point of view can only be
described after considering a specific protocol. From the user’s point of view, the ability
to embed fragments of the program code for the Ethereum virtual machine (reminiscent
of the Java virtual machine) in the blockchain was the innovation. And this innovation is
subsequently executed by all nodes in the network when accessing from outside (this is
how contracts are created and executed). In addition to that, Ethereum allows creating
DAOs (Decentralized Autonomous Organizations), which are represented by a set of
contracts in the system that implements the logic of the organization in the network:
starting from the creation of inner currency, fundraising through the sale of shares and
ending with the work of the elected board of directors.

We should briefly mention that Ethereum developers are currently discussing the
prospects of transitioning to the so-called Web3 – a new Internet, built by blockchain
and implementing the interaction between non-trusted nodes in an unreliable network,
as it was repeatedly stated earlier. There are some individual applications based on such
a system: namely cryptographic currency, Whisper – a messenger based on such P2P
network, as well as Swarm – an application for storing data in the blockchain.

9. Emerging Technologies in IoT

356

9.3.2. Mechanisms of Reaching Consensus

We should separately focus on mechanisms of reaching consensus in an unreliable
network with unfamiliar nodes. Earlier, we mentioned that long before Bitcoin and any
other electronic currency sustainable over time emerged, the Hashcash scheme was
created, which determined the Proof-of-Work mechanism. Currently, this mechanism
is the most common and widely spread. It is used in parallel with the Proof-of-Stake
mechanism in some electronic currencies (Peercoin). And we may fully switch to it in
the future if it can overcome the restrictions imposed on it now and defend itself against
attacks.

First of all, let us discuss Proof-of-Work because this is the mechanism used in Bitcoin. It
is directly related to the mechanism of the cryptographic hash-sum, which was discussed
here earlier. We have mentioned that one of the main structural principles of hash-sums
was and remains as follows: there should be no computational possibility (other than a
complete enumeration) to restore the original message by a certain hash-sum. Roughly
speaking, this fact is used in Proof-of-Work.

Each node of the network that creates blocks (or mines them in Bitcoin and other
cryptocurrencies’ terminology) creates a new block and fills its body – generally, we are
not interested in how exactly it does it. The main thing is that the other nodes consider
it's content correct from the point of view of a particular protocol. Then the header is
filled in, in which one of the fields (nonce) essentially contains a random value. The
task of the node is to select such a header hash-sum value that it is less than a certain
predetermined value. This value is called complexity and varies over time. For example,
in Bitcoin, the complexity is maintained at the level necessary and sufficient for a new
block to appear once every 10 minutes. The calculation is extremely simple: it is enough
to calculate the number of new blocks appearing in a certain period and divide it by this
time interval, thus receiving the speed of new blocks’ appearance. Comparing this value
with the required one you can “adjust” the complexity to increase or decrease the speed.
Since all nodes in the network perform such an action, the system remains consistent:
blocks with an incorrect value of the achieved complexity will simply be discarded.

Further on, the work of the node is basically an enumeration of hash-sums by changing
the nonce field. We should mention that the drawback of the Bitcoin system and its
derivatives are that the speed of computation has a significant influence on the speed
of generating blocks to a great extent. At the same time, users of the system used
and continue using various tricks to increase the likelihood of success. At first, they
transitioned to calculating hash-sums on video-cards (thanks to technologies like NVIDIA
CUDA). Next transition was to the use of specialised ASIC boards, and later on – to
creating data centres. Presently, an ordinary user can not qualify for successful mining
in the Bitcoin system and its derivatives, simply using his home PC.

The Ethereum system offers one obvious way to solve this problem. A special structure
weighing about 2 GB called DAG is used to generate new blocks. This structure is created
in advance. Its advantage is that once it is installed the use of ASIC boards becomes
impossible without their significant improvement, which can not pay off if we keep in
mind the current cost of RAM modules and all the required changes. It also makes no
sense to create full-fledged pools consisting of “weak” machines with insufficient RAM
capacity, when each node checks nonce, starting with a specific value so that the speed
of calculating the hash-sum increases in proportion to the number of participants.

9.3. Blockchain

357

Proof-of-Stake is an even more promising, but still not entirely safe way to abandon
Proof-of-Work. It appeared as a response to the public's displeasure with the costs of
electricity and equipment required for the new blocks’ mining. The idea is the following.
Each node on the network (in this case, we are dealing with a cryptographic currency)
has accumulated certain savings. You can reduce the cost needed to generate a new
block by the node, allowing it to include a transaction that transfers its funds to its
account in the blockchain. Reduction of complexity, in this case, depends on the “age”
of the funds used (the moment when they were received) and their quantity. And as a
result of all this, we get the following consequences:

▪ the node that created the block is not interested in the blockchain being addressed
since it receives a fee from the transferred funds;

▪ the cost of mining is reduced, as complexity is reduced, and hence the number of
hash-sums’ enumerations is also reduced;

▪ a node can not use all the same tools for mining of sequential blocks, as their age
after the transaction is less than the age of the system’s other participants’ savings.

There is one problem that is not obvious at first sight. The attacker can purchase private
keys for some UTXO (Unspent Transaction Output) from the users of the system, namely,
keys used by them in the past. As a result of all this, there may arise a situation when the
node will be in possession of absolutely all private keys at some point in the past. Then
it will be very easy for it to quickly generate an absolutely new blockchain, which will
replace the original blockchain and will be accepted by the system. And all of it can be
done just by using its own means. As a protection against such an attack, a time frame
is established for the age of the tools used in all systems implementing Proof-of-Stake.

9.3.3. Ethereum: The New Generation of Internet

Ethereum takes a special place in the array of technologies based on the blockchain.
Vitalik Buterin invented this system in 2013. Several important features distinguish it
from all the previous systems:

▪ each block stores not only the sequence of transactions but also the current state of
the system in the form of links;

▪ mining requires DAG generation;

▪ a fully featured programming language, Turing complete (able to create cycles) and
the Ethereum Virtual Machine for executing the bytecode are introduced;

▪ thanks to the existence of its own programming language, it is possible to create
“smart contracts” – pieces of program code that “live” in the blockchain and is
consistently executed by nodes when called from transactions;

▪ creation of DAOs (Decentralized Autonomous Organizations) on the basis of
blockchain is also possible due to the availability of contracts. This way, it becomes
possible to implement the logic of their financial interaction: issues of shares,
elections of the board of directors, etc.

Based on Ethereum, it is possible to create a new generation of the Internet – Web3
in the future. It entails the development of three areas: Ethereum – a cryptographic
currency, Whisper – a chat based on Ethereum P2P-network and Swarm – a P2P-system
of decentralised data storage. They are used to create Dapps – decentralised applications
that use the Ethereum API to interact with the blockchain.

9. Emerging Technologies in IoT

358

9.3.4. Conclusions

Decentralised technologies are one of the most promising areas for the development
of contemporary networks. And blockchain does take a special place among such
technologies. As we have mentioned here more than once, Ethereum remains the most
promising system based on the blockchain. Perhaps it will be a blockchain that will allow
us to create an absolutely anonymous Internet, the interaction where yet will remain
safe, but protected from tracking. The Internet community strives for that. Nevertheless,
the issue of security in the real world remains vital: terrorist organisations can also
interact, using these technologies – and because of their resistance to hacking and
absolute uncontrolled, the special services’ work aimed at preventing terrorist acts will
become more complicated. Therefore, the question of applying blockchain in its original
form is controversial. One thing we can be certain of, though: blockchain changed the
notion of a decentralised interaction and created the basis for its future development.

9.3. Blockchain

359

10. Bibliography
[1] “ITU Internet Reports 2005: The Internet of Things.” http://www.itu.int/osg/spu/
publications/internetofthings/
[2] “Special Report: The Internet of Things”, in “the institute”, IEEE 2014,
http://theinstitute.ieee.org/static/special-report-the-internet-of-things
[3] “Towards a definition of the Internet of Things (IoT)”, IEEE 2015
[4] Standard for an Architectural Framework for the Internet of Things (IoT)
http://grouper.ieee.org/groups/2413/
[5] , [8] Ovidiu Vermesan, Peter Friess (eds.): Digitizing the Industry, Internet of
Things Connecting the Physical, Digital and Virtual Worlds, River Publishers Series in
Communications, 2016
[6] Vision and Challenges for Realising the Internet of Things, CERP-IoT 2010,
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
[7] Salim Elbouanani, My Ahmed El Kiram, Omar Achbarou: “Introduction To The Internet
Of Things Security. Standardization and research challenges”, 2015 11th International
Conference on Information Assurance and Security (IAS), IEEE 2015
[9] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, Moussa
Ayyash: Internet of Things: A Survey on Enabling Technologies, Protocols and
Applications, IEEE Communications Surveys & Tutorials, Volume: 17, Issue: 4, 2015
[10] , [11] Arslan Munir, IFCIoT: Integrated Fog Cloud IoT Architectural Paradigm for the
Future Internet of Things, IEEE Consumer Electronics Magazine, Vol. 6, Issue 3, July
2017
[12] S.Matthews at http://www.ibmbigdatahub.com/blog/what-cognitive-iot, Cited:
11.06.2018.
[13] https://www.arduino.cc/
[14] , [48] https://create.arduino.cc/projecthub
[15] https://www.raspberrypi.org/
[16] https://www.coursera.org/
[17] https://www.edx.org/
[18] https://eu.udacity.com/
[19] https://www.udemy.com/
[20] https://www.skillshare.com/
[21] https://www.electronics-tutorials.ws/
[22] https://www.instructables.com/howto/iot/
[23] https://www.tinkercad.com/circuits
[24] Cloudonomics: The Business Value of Cloud Computing
[25] IoT Data Semantics
[26] Top 10 IoT security challenges
[27] IOTA: A permissionless distributed ledger for a new economy
[28] https://www.researchgate.net/publication/
273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
[29] , [31] , [33] https://hal.archives-ouvertes.fr/hal-01581127/file/
2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
[30] https://www.w3.org/WoT/IG/wiki/
Use_cases_across_application_domains#Use_Cases_and_Applications
[32] http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-
for-precision-farming
[34] https://news.panasonic.com/global/topics/2015/44009.html
[35] https://www.fitbit.com

10. Bibliography

360

http://www.itu.int/osg/spu/publications/internetofthings/
http://www.itu.int/osg/spu/publications/internetofthings/
http://theinstitute.ieee.org/static/special-report-the-internet-of-things
http://grouper.ieee.org/groups/2413/
http://www.internet-of-things-research.eu/pdf/IoT_Clusterbook_March_2010.pdf
http://www.ibmbigdatahub.com/blog/what-cognitive-iot
https://www.arduino.cc/
https://create.arduino.cc/projecthub
https://www.raspberrypi.org/
https://www.coursera.org/
https://www.edx.org/
https://eu.udacity.com/
https://www.udemy.com/
https://www.skillshare.com/
https://www.electronics-tutorials.ws/
https://www.instructables.com/howto/iot/
https://www.tinkercad.com/circuits
http://www.cloudonomics.com/
https://home.roboticlab.eu/en/iot-open/data/data_semantics
https://developer.ibm.com/dwblog/2017/iot-security-challenges/
https://www.iota.org/
https://www.researchgate.net/publication/273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
https://www.researchgate.net/publication/273389706_Towards_a_smart_city_based_on_cloud_of_things_a_survey_on_the_smart_city_vision_and_paradigms
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://hal.archives-ouvertes.fr/hal-01581127/file/2016-TE2016-Taxonomy-for-IoT-Sensors.pdf
https://www.w3.org/WoT/IG/wiki/Use_cases_across_application_domains#Use_Cases_and_Applications
https://www.w3.org/WoT/IG/wiki/Use_cases_across_application_domains#Use_Cases_and_Applications
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-for-precision-farming
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/IoT-as-a-solution-for-precision-farming
https://news.panasonic.com/global/topics/2015/44009.html
https://www.fitbit.com/

[36] http://www.businessinsider.com/wearable-technology-iot-devices-2016-8
[37] Internet of Things: Security Vulnerabilities and Challenges Ioannis Andrea,
Chrysostomos Chrysostomou, George Hadjichristofi, The 3rd IEEE ISCC 2015
International Workshop on Smart City and Ubiquitous Computing Applications,
https://doi.org/10.1109/ISCC.2015.7405513
[38] Rajan Arora, I2C Bus Pullup Resistor Calculation, Texas Instruments Application
Report
[39] https://www.maximintegrated.com/en/products/digital/one-wire.html
[40] https://www.arduino.cc/en/Guide/Introduction
[41] http://forum.arduino.cc/
[42] https://learn.sparkfun.com/tutorials/arduino-shields
[43] , [124] http://www.electronics-tutorials.ws/io/io_3.html
[44] , [126] https://www.engineersgarage.com/articles/humidity-sensor
[45] , [128] http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-
an-arduino/
[46] http://wiki.seeedstudio.com/Grove-GPS/
[47] , [139] https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/
breadboard-layout
[49] https://create.arduino.cc/projecthub/jose-cruz/arduino-home-controller-activated-
by-alexa-1a5fbc?ref=platform&ref_id=424_trending___&offset=11
[50] https://www.amazon.com/b/?node=14047587011
[51] https://create.arduino.cc/projecthub/aaronkow/iot-home-security-
model-71e48e?ref=platform&ref_id=424_popular___&offset=1
[52] https://create.arduino.cc/projecthub/carmelito/plant-monitoring-system-using-aws-
iot-6cb054?ref=platform&ref_id=424_popular___&offset=21
[53] https://create.arduino.cc/projecthub/ahmedismail3115/arduino-based-amazon-
echo-using-1sheeld-84fa6f?ref=tag&ref_id=iot&offset=4
[54] https://www.hackster.io/arduino/projects?category_id=13
[55] https://www.hackster.io/order-of-the-bolt-nix/harry-potter-weasleys-clock-using-
bolt-iot-a7d04a
[56] https://www.hackster.io/LightPro/phonelocator-dfef67
[57] https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
[58] https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
[59] , [90] https://www.arduino.cc/en/Main/Software
[60] http://arduino.cc/en/Guide/Environment#languages
[61] http://arduino.cc/en/Guide/Troubleshooting
[62] http://arduino.cc/en/Tutorial/HomePage
[63] http://arduino.cc/en/Reference/HomePage
[64] https://www.arduino.cc/reference/en/language/functions/time/delay/
[65] https://www.arduino.cc/reference/en/language/functions/time/millis/
[66] http://harteware.blogspot.com/2010/11/protothread-and-arduino-first-easy.html
[67] https://www.arduino.cc/en/Tutorial/DigitalPins
[68] https://www.espressif.com/en/media_overview/news/espressif-
achieves-100-million-target-iot-chip-shipments
[69] , [80] https://www.espressif.com
[70] , [72] https://en.wikipedia.org/wiki/ESP8266
[71] http://espressif.com/sites/default/files/documentation/0a-
esp8266ex_datasheet_en.pdf
[73] https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
[74] , [79] https://www.wemos.cc/
[75] , [76] , [77] , [78] https://en.wikipedia.org/wiki/ESP8266]

10. Bibliography

361

http://www.businessinsider.com/wearable-technology-iot-devices-2016-8
https://doi.org/10.1109/ISCC.2015.7405513
https://www.maximintegrated.com/en/products/digital/one-wire.html
https://www.arduino.cc/en/Guide/Introduction
http://forum.arduino.cc/
https://learn.sparkfun.com/tutorials/arduino-shields
http://www.electronics-tutorials.ws/io/io_3.html
https://www.engineersgarage.com/articles/humidity-sensor
http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/
http://www.circuitbasics.com/how-to-set-up-the-dht11-humidity-sensor-on-an-arduino/
http://wiki.seeedstudio.com/Grove-GPS/
https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/breadboard-layout
https://learn.adafruit.com/adafruit-arduino-lesson-16-stepper-motors/breadboard-layout
https://create.arduino.cc/projecthub/jose-cruz/arduino-home-controller-activated-by-alexa-1a5fbc?ref=platform&ref_id=424_trending___&offset=11
https://create.arduino.cc/projecthub/jose-cruz/arduino-home-controller-activated-by-alexa-1a5fbc?ref=platform&ref_id=424_trending___&offset=11
https://www.amazon.com/b/?node=14047587011
https://create.arduino.cc/projecthub/aaronkow/iot-home-security-model-71e48e?ref=platform&ref_id=424_popular___&offset=1
https://create.arduino.cc/projecthub/aaronkow/iot-home-security-model-71e48e?ref=platform&ref_id=424_popular___&offset=1
https://create.arduino.cc/projecthub/carmelito/plant-monitoring-system-using-aws-iot-6cb054?ref=platform&ref_id=424_popular___&offset=21
https://create.arduino.cc/projecthub/carmelito/plant-monitoring-system-using-aws-iot-6cb054?ref=platform&ref_id=424_popular___&offset=21
https://create.arduino.cc/projecthub/ahmedismail3115/arduino-based-amazon-echo-using-1sheeld-84fa6f?ref=tag&ref_id=iot&offset=4
https://create.arduino.cc/projecthub/ahmedismail3115/arduino-based-amazon-echo-using-1sheeld-84fa6f?ref=tag&ref_id=iot&offset=4
https://www.hackster.io/arduino/projects?category_id=13
https://www.hackster.io/order-of-the-bolt-nix/harry-potter-weasleys-clock-using-bolt-iot-a7d04a
https://www.hackster.io/order-of-the-bolt-nix/harry-potter-weasleys-clock-using-bolt-iot-a7d04a
https://www.hackster.io/LightPro/phonelocator-dfef67
https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://www.arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/Environment#languages
http://arduino.cc/en/Guide/Troubleshooting
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/functions/time/millis/
http://harteware.blogspot.com/2010/11/protothread-and-arduino-first-easy.html
https://www.arduino.cc/en/Tutorial/DigitalPins
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/en/media_overview/news/espressif-achieves-100-million-target-iot-chip-shipments
https://www.espressif.com/
https://en.wikipedia.org/wiki/ESP8266
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
http://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.esp8266.com/wiki/doku.php?id=esp8266-module-family
https://www.wemos.cc/
https://en.wikipedia.org/wiki/ESP8266]

[81] https://www.espressif.com/sites/default/files/documentation/
esp32_datasheet_en.pdf
[82] https://espressif.com/sites/default/files/documentation/esp32-pico-
d4_datasheet_en.pdf
[83] , [91] https://github.com/esp8266/Arduino
[84] , [93] https://github.com/espressif/arduino-esp32
[85] https://platformio.org/
[86] https://code.visualstudio.com/
[87] https://atom.io
[88] https://micropython.org/
[89] http://nodemcu.com/index_en.html
[92] https://www.python.org/downloads/
[94] https://git-scm.com/download/win
[95] https://www.espressif.com/en/support/download/other-tools
[96] https://bbs.espressif.com/viewforum.php?f=46
[97] http://www.electrodragon.com/w/ESP8266_AT-Command_firmware
[98] https://esp32.net/#Development
[99] http://randomnerdtutorials.com/esp8266-web-server-with-arduino-ide/
[100] https://www.freertos.org/
[101] https://exploreembedded.com/wiki/Hello_World_with_ESP32_Explained
[102] http://esp32.info/docs/esp_idf/html/dd/d3c/group__xTaskCreate.html
[103] http://esp32.info/docs/esp_idf/html/db/da4/
task_8h.html#a25b035ac6b7809ff16c828be270e1431
[104] https://www.freertos.org/Inter-Task-Communication.html
[105] https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
[106] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-Zero-V1.3-Schematics.pdf
[107] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
[108] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
[109] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-2B-V1.2-Schematics.pdf
[110] https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/
Raspberry-Pi-3B-V1.2-Schematics.pdf
[111] https://www.raspberrypi.org/documentation/hardware/camera/README.md
[112] https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-
camera.md
[113] https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/
README.md
[114] https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-
display.md
[115] https://www.raspberrypi.org/documentation/hardware/raspberrypi/usb/
README.md
[116] https://www.sparkfun.com/products/9190
[117] http://www.tradesparq.com/products/1459651/Microswitch-
SC7303-1-manufacturers
[118] http://www.trossenrobotics.com/store/p/6445-5-Inch-Force-Sensing-Resistor-
FSR.aspx
[119] https://www.geekbuying.com/item/Digital-Capacitive-Touch-Sensor-v2-0-Switch-
Module-for-Arduino-AVR-STM32-343414.html

10. Bibliography

362

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://espressif.com/sites/default/files/documentation/esp32-pico-d4_datasheet_en.pdf
https://github.com/esp8266/Arduino
https://github.com/espressif/arduino-esp32
https://platformio.org/
https://code.visualstudio.com/
https://atom.io/
https://micropython.org/
http://nodemcu.com/index_en.html
https://www.python.org/downloads/
https://git-scm.com/download/win
https://www.espressif.com/en/support/download/other-tools
https://bbs.espressif.com/viewforum.php?f=46
http://www.electrodragon.com/w/ESP8266_AT-Command_firmware
https://esp32.net/#Development
http://randomnerdtutorials.com/esp8266-web-server-with-arduino-ide/
https://www.freertos.org/
https://exploreembedded.com/wiki/Hello_World_with_ESP32_Explained
http://esp32.info/docs/esp_idf/html/dd/d3c/group__xTaskCreate.html
http://esp32.info/docs/esp_idf/html/db/da4/task_8h.html#a25b035ac6b7809ff16c828be270e1431
http://esp32.info/docs/esp_idf/html/db/da4/task_8h.html#a25b035ac6b7809ff16c828be270e1431
https://www.freertos.org/Inter-Task-Communication.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-Zero-V1.3-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-Zero-V1.3-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-A-Plus-V1.1-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-B-Plus-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-2B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-2B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-3B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/Raspberry-Pi-3B-V1.2-Schematics.pdf
https://www.raspberrypi.org/documentation/hardware/camera/README.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-camera.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md
https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/usb/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/usb/README.md
https://www.sparkfun.com/products/9190
http://www.tradesparq.com/products/1459651/Microswitch-SC7303-1-manufacturers
http://www.tradesparq.com/products/1459651/Microswitch-SC7303-1-manufacturers
http://www.trossenrobotics.com/store/p/6445-5-Inch-Force-Sensing-Resistor-FSR.aspx
http://www.trossenrobotics.com/store/p/6445-5-Inch-Force-Sensing-Resistor-FSR.aspx
https://www.geekbuying.com/item/Digital-Capacitive-Touch-Sensor-v2-0-Switch-Module-for-Arduino-AVR-STM32-343414.html
https://www.geekbuying.com/item/Digital-Capacitive-Touch-Sensor-v2-0-Switch-Module-for-Arduino-AVR-STM32-343414.html

[120] https://www.digibay.in/hc-sr04-ultrasonic-proximity-sensor
[121] http://hub360.com.ng/shop-2/pir-motion-sensor/
[122] http://www.hotmcu.com/gy521-mpu6050-3axis-acceleration-gyroscope-6dof-
module-p-83.html
[123] https://www.sparkfun.com/tutorials/301
[125] https://learn.adafruit.com/thermistor/overview
[127] https://www.inventelectronics.com/product/dht11-temperature-humidity-sensor/
[129] https://www.makerlab-electronics.com/product/digital-sound-sensor-detector-
module/
[130] http://www.circuitstoday.com/interfacing-mq2-to-arduino
[131] https://www.sparkfun.com/products/retired/9891
[132] https://www.2r-bg.com/blog/what-you-need-to-know-about-led-lights
[133] https://electronics.stackexchange.com/questions/2574/arduino-hooking-up-lcd-
without-pot
[134] https://banlinhkien.shop/oled-0-96-inch-2
[135] https://www.smart-prototyping.com/E-ink-E-paper-Display-
module-3.3V-2.04-inch-177x72.html
[136] http://www.vslot-europe.com/home/94-1-channel-relay-module-interface-board-
shield-for-arduino.html
[137] https://www.tlxtech.com/solenoids/long-stroke-latching-solenoid
[138] https://www.amazon.in/Robo-India-DCMHBY-Hobby-Manual/dp/B00WOCYQT8
[140] https://www.omc-stepperonline.com/hybrid-stepper-motor/
nema-23-bipolar-18deg-126nm-1784ozin-28a-25v-57x57x56mm-4-wires-23hs22-2804s.html
[141] https://www.raspbian.org/
[142] http://ubuntu-mate.org/
[143] https://www.ubuntu.com/core
[144] https://developer.microsoft.com/en-us/windows/iot
[145] https://osmc.tv/
[146] https://libreelec.tv/
[147] http://pinet.org.uk/
[148] http://www.riscos.com/
[149] https://www.raspberrypi.org/learning/hardware-guide/
[150] https://uk.rs-online.com/web/c/computing-peripherals/data-storage-memory/
secure-digital-cards/?searchTerm=noobs
[151] https://thepihut.com/products/raspbian-preinstalled-sd-card
[152] https://www.raspberrypi.org/downloads/noobs/
[153] https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
[154] , [157] https://www.microsoft.com/en-us/software-download/
windowsiot?wa=wsignin1.0
[155] https://etcher.io/
[156] https://www.sdcard.org/downloads/formatter_4/index.html
[158] , [159] , [160] , [161] https://www.tutorialspoint.com/csharp/
[162] 11 Internet of Things (IoT) Protocols You Need to Know About, DesignSpark,
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-
need-to-know-about
[163] http://www.ieee802.org/15/
[164] https://www.myo.com/
[165] https://en.wikipedia.org/wiki/Network_address_translation
[166] https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-
defined-and-functions-explained
[167] https://earthobservatory.nasa.gov/Features/OrbitsCatalog/

10. Bibliography

363

https://www.digibay.in/hc-sr04-ultrasonic-proximity-sensor
http://hub360.com.ng/shop-2/pir-motion-sensor/
http://www.hotmcu.com/gy521-mpu6050-3axis-acceleration-gyroscope-6dof-module-p-83.html
http://www.hotmcu.com/gy521-mpu6050-3axis-acceleration-gyroscope-6dof-module-p-83.html
https://www.sparkfun.com/tutorials/301
https://learn.adafruit.com/thermistor/overview
https://www.inventelectronics.com/product/dht11-temperature-humidity-sensor/
https://www.makerlab-electronics.com/product/digital-sound-sensor-detector-module/
https://www.makerlab-electronics.com/product/digital-sound-sensor-detector-module/
http://www.circuitstoday.com/interfacing-mq2-to-arduino
https://www.sparkfun.com/products/retired/9891
https://www.2r-bg.com/blog/what-you-need-to-know-about-led-lights
https://electronics.stackexchange.com/questions/2574/arduino-hooking-up-lcd-without-pot
https://electronics.stackexchange.com/questions/2574/arduino-hooking-up-lcd-without-pot
https://banlinhkien.shop/oled-0-96-inch-2
https://www.smart-prototyping.com/E-ink-E-paper-Display-module-3.3V-2.04-inch-177x72.html
https://www.smart-prototyping.com/E-ink-E-paper-Display-module-3.3V-2.04-inch-177x72.html
http://www.vslot-europe.com/home/94-1-channel-relay-module-interface-board-shield-for-arduino.html
http://www.vslot-europe.com/home/94-1-channel-relay-module-interface-board-shield-for-arduino.html
https://www.tlxtech.com/solenoids/long-stroke-latching-solenoid
https://www.amazon.in/Robo-India-DCMHBY-Hobby-Manual/dp/B00WOCYQT8
https://www.omc-stepperonline.com/hybrid-stepper-motor/nema-23-bipolar-18deg-126nm-1784ozin-28a-25v-57x57x56mm-4-wires-23hs22-2804s.html
https://www.omc-stepperonline.com/hybrid-stepper-motor/nema-23-bipolar-18deg-126nm-1784ozin-28a-25v-57x57x56mm-4-wires-23hs22-2804s.html
https://www.raspbian.org/
http://ubuntu-mate.org/
https://www.ubuntu.com/core
https://developer.microsoft.com/en-us/windows/iot
https://osmc.tv/
https://libreelec.tv/
http://pinet.org.uk/
http://www.riscos.com/
https://www.raspberrypi.org/learning/hardware-guide/
https://uk.rs-online.com/web/c/computing-peripherals/data-storage-memory/secure-digital-cards/?searchTerm=noobs
https://uk.rs-online.com/web/c/computing-peripherals/data-storage-memory/secure-digital-cards/?searchTerm=noobs
https://thepihut.com/products/raspbian-preinstalled-sd-card
https://www.raspberrypi.org/downloads/noobs/
https://www.raspberrypi.org/downloads/raspberry-pi-desktop/
https://www.microsoft.com/en-us/software-download/windowsiot?wa=wsignin1.0
https://www.microsoft.com/en-us/software-download/windowsiot?wa=wsignin1.0
https://etcher.io/
https://www.sdcard.org/downloads/formatter_4/index.html
https://www.tutorialspoint.com/csharp/
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about
https://www.rs-online.com/designspark/eleven-internet-of-things-iot-protocols-you-need-to-know-about
http://www.ieee802.org/15/
https://www.myo.com/
https://en.wikipedia.org/wiki/Network_address_translation
https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://support.microsoft.com/en-gb/help/103884/the-osi-model-s-seven-layers-defined-and-functions-explained
https://earthobservatory.nasa.gov/Features/OrbitsCatalog/

[168] http://web.mit.edu/modiano/www/6.263/lec22-23.pdf
[169] RFC 1631: http://www.faqs.org/rfcs/rfc1631.html
[170] https://en.wikipedia.org/wiki/ANT%2B
[171] http://www.zigbee.org/
[172] https://nodered.org/
[173] http://www.restapitutorial.com/lessons/whatisrest.html
[174] https://www.w3.org/TR/soap/
[175] https://www.w3schools.com/tags/ref_httpmethods.asp
[176] https://en.wikipedia.org/wiki/Power_over_Ethernet
[177] https://www.techworld.com/data/what-is-li-fi-everything-you-need-
know-3632764/
[178] What is Bluetooth, https://www.bluetooth.com/what-is-bluetooth-technology/how-
it-works
[179] https://blog.bluetooth.com/introducing-bluetooth-mesh-networking
[180] https://www.bluetooth.org/docman/handlers/
downloaddoc.ashx?doc_id=429633&_ga=2.211169244.858695694.1511814243-2000857715.1511814243
[181] Thread Stack Fundamentals, Thread group, 2015
[182] https://www.sigfox.com/en
[183] https://www.lora-alliance.org/
[184] https://en.wikipedia.org/wiki/IPv4
[185] https://www.gartner.com/newsroom/id/3598917
[186] Jonas Olsson, „6LoWPAN demystified”, 2014, Texas Instruments
[187] https://www.hivemq.com/mqtt/
[188] https://www.facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920/
[189] https://www.cbronline.com/internet-of-things/10-of-the-biggest-iot-data-
generators-4586937/
[190] https://www.sam-solutions.com/blog/how-much-data-will-iot-create-2017/
[191] http://www.enterprisefeatures.com/6-important-stages-in-the-data-processing-
cycle/
[192] https://pinaclsolutions.com/blog/2017/cloud-computing-and-iot
[193] http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Its-time-for-fog-
edge-computing-in-the-internet-of-things
[194] https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-
and-flink-big-data-frameworks-compared
[195] Meng Ma, Ping Wang, and Chao-Hsien Chu. 2013. Data Management for Internet
of Things: Challenges, Approaches and Opportunities. In Proceedings of the 2013 IEEE
International Conference on Green Computing and Communications and IEEE Internet of
Things and IEEE Cyber, Physical and Social Computing (GREENCOM-ITHINGS-CPSCOM
'13). IEEE Computer Society, Washington, DC, USA, 1144-1151. DOI=http://dx.doi.org/
10.1109/GreenCom-iThings-CPSCom.2013.199
[196] M. Marjani et al., “Big IoT Data Analytics: Architecture, Opportunities, and Open
Research Challenges,” in IEEE Access, vol. 5, pp. 5247-5261, 2017. doi: 10.1109/
ACCESS.2017.2689040 URL: http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=7888916&isnumber=7859429
[197] C. W. Tsai, C. F. Lai, M. C. Chiang and L. T. Yang, “Data Mining for Internet
of Things: A Survey,” in IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 77-97, First Quarter 2014. doi: 10.1109/SURV.2013.103013.00206 URL:
http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=6674155&isnumber=6734839
[198] R. Minerva, and A. Biru, “Towards a Definition of the Internet of Things,” in IEEE

10. Bibliography

364

http://web.mit.edu/modiano/www/6.263/lec22-23.pdf
http://www.faqs.org/rfcs/rfc1631.html
https://en.wikipedia.org/wiki/ANT%2B
http://www.zigbee.org/
https://nodered.org/
http://www.restapitutorial.com/lessons/whatisrest.html
https://www.w3.org/TR/soap/
https://www.w3schools.com/tags/ref_httpmethods.asp
https://en.wikipedia.org/wiki/Power_over_Ethernet
https://www.techworld.com/data/what-is-li-fi-everything-you-need-know-3632764/
https://www.techworld.com/data/what-is-li-fi-everything-you-need-know-3632764/
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works
https://www.bluetooth.com/what-is-bluetooth-technology/how-it-works
https://blog.bluetooth.com/introducing-bluetooth-mesh-networking
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=429633&_ga=2.211169244.858695694.1511814243-2000857715.1511814243
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=429633&_ga=2.211169244.858695694.1511814243-2000857715.1511814243
https://www.sigfox.com/en
https://www.lora-alliance.org/
https://en.wikipedia.org/wiki/IPv4
https://www.gartner.com/newsroom/id/3598917
https://www.hivemq.com/mqtt/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://www.facebook.com/notes/facebook-engineering/building-facebook-messenger/10150259350998920/
https://www.cbronline.com/internet-of-things/10-of-the-biggest-iot-data-generators-4586937/
https://www.cbronline.com/internet-of-things/10-of-the-biggest-iot-data-generators-4586937/
https://www.sam-solutions.com/blog/how-much-data-will-iot-create-2017/
http://www.enterprisefeatures.com/6-important-stages-in-the-data-processing-cycle/
http://www.enterprisefeatures.com/6-important-stages-in-the-data-processing-cycle/
https://pinaclsolutions.com/blog/2017/cloud-computing-and-iot
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Its-time-for-fog-edge-computing-in-the-internet-of-things
http://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Its-time-for-fog-edge-computing-in-the-internet-of-things
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.199
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.199
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888916&isnumber=7859429
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888916&isnumber=7859429
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6674155&isnumber=6734839
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6674155&isnumber=6734839

IoT Initiative White Paper
[199] H. Reza Ghorbani, M. Hossein Ahmadzadegan, “Security challenges in the Internet
of Things: a survey”, Wireless Sensors (ICWiSe) 2017 IEEE Conference on, pp. 1-6,
2017.
[200] https://www.welivesecurity.com/2016/12/30/biggest-security-incidents-2016
[201] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen, S. Shieh, “IoT
security: Ongoing challenges and research opportunities”, Proc. IEEE 7th Int. Conf.
Service-Oriented
[202] A. C. Sarma, and J. Girão, “Identities in the Future Internet of Things,” in Wireless
Personal Communications 49.3, 2009, pp. 353-363.
[203] R. Roman, P. Najera, J. Lopez, “Securing the Internet of Things,” Computer, vol.44,
no.9, 2011
[204] https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
[205] H. Reza Ghorbani, M. Hossein Ahmadzadegan, “Security challenges in the internet
of things: a survey”, Wireless Sensors (ICWiSe) 2017 IEEE Conference on, pp. 1-6, 2017.
[206] https://www.helpnetsecurity.com/2018/01/16/internet-of-things-security-
issues-2018/
[207] https://securelist.com/honeypots-and-the-internet-of-things/78751/
[208] , [227] R. Khan, S. U. Khan, R. Zaheer, S. Khan, “Future Internet: The Internet of
Things architecture possible applications and key challenges”, Proc. 10th Int. Conf. FIT,
pp. 257-260, Dec. 2012.
[209] H. Kumarage, I. Khalil, A. Alabdulatif, Z. Tari, X. Yi, “Secure data analytics for the
cloud-integrated Internet of Things applications”, IEEE Cloud Comput., vol. 3, no. 2, pp.
46-56, Mar. 2016.
[210] Se-Ra Oh, Young-Gab Kim, “Security Requirements Analysis for the IoT”, Platform
Technology and Service (PlatCon) 2017 International Conference on, pp. 1-6, 2017.
[211] H. Reza Ghorbani, M. Hossein Ahmadzadegan, “Security challenges in the internet
of things: survey”, Wireless Sensors (ICWiSe) 2017 IEEE Conference on, pp. 1-6, 2017.
[212] Amna Shifa, Mamoona N. Asghar, Martin Fleury, “Multimedia security perspectives
in IoT”, Innovative Computing Technology (INTECH) 2016 Sixth International Conference
on, pp.
[213] Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6
packets over IEEE 802.15.4 networks. RFC 4944, September 2007.
[214] F. Skarmeta, J. L. Hernandez-Ramos, M. Moreno, “A decentralised approach for
security and privacy challenges in the internet of things”, Proceedings of the IEEE World
Forum on the Internet of Things (WF-IoT), March 6-8, 2014.
[215] T. A. Alghamdi, A. Lasebae, M. Aiash, “Security analysis of the constrained
application protocol in the Internet of Things”, proceedings of 2nd IEEE International
Conference on Future Generation Communication Technology (FGCT), Nov 12-14, 2013
[216] Arijit Ukil, Soma Bandyopadhyay, Arpan Pal, “Privacy for IoT: Involuntary privacy
enablement for smart energy systems”, Communications (ICC) 2015 IEEE International
Conference on, pp. 536-541, 2015, ISSN 1550-3607.
[217] https://epic.org/privacy/internet/iot/
[218] https://www.networkworld.com/article/3221474/internet-of-things/30-ways-to-
improve-iot-privacy.html
[219] Mary R. Schurgot, David A. Shinberg, Lloyd G. Greenwald, “Experiments with
security and privacy in IoT networks”, World of Wireless Mobile and Multimedia Networks
(WoWMoM) 2015 IEEE 16th International Symposium on a, pp. 1-6, 2015.
[220] F. Skarmeta, J. L. Hernandez-Ramos, M. Moreno, “A decentralised approach for
security and privacy challenges in the internet of things”, proceedings of the IEEE World
Forum on Internet of Things (WF-IoT), March 6-8, 2014.

10. Bibliography

365

https://www.welivesecurity.com/2016/12/30/biggest-security-incidents-2016
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.helpnetsecurity.com/2018/01/16/internet-of-things-security-issues-2018/
https://www.helpnetsecurity.com/2018/01/16/internet-of-things-security-issues-2018/
https://securelist.com/honeypots-and-the-internet-of-things/78751/
https://epic.org/privacy/internet/iot/
https://www.networkworld.com/article/3221474/internet-of-things/30-ways-to-improve-iot-privacy.html
https://www.networkworld.com/article/3221474/internet-of-things/30-ways-to-improve-iot-privacy.html

[221] R. Roman, J. Zhou, J. Lopez, “On the Features and Challenges of Security and
Privacy in the Distributed Internet of Things”, Computer Networks, vol. 57, no. 10, pp.
2266-2279, 2013.
[222] N. Li et al., “Privacy Preservation in Wireless Sensor Networks: A State-of-the-Art
Survey”, Ad Hoc Networks, vol. 7, no. 8, pp. 1501-1514, 2009.
[223] R.H. Weber, “Internet of Things—New Security and Privacy Challenges”, Computer
Law and Security Rev., vol. 26, no. 1, pp. 23-30, 2010.
[224] Soma Bandyopadhyay, Arijit Ukil, Chetanya Puri, Rituraj Singh, Tulika Bose, Arpan
Pal, “SensIPro: Smart sensor analytics for the Internet of things”, Computers and
Communication (ISCC) 2016 IEEE Symposium on, pp. 415-421, 2016.
[225] Jongmin Lee, Michael Stanley, Andreas Spanias, Cihan Tepedelenlioglu,
“Integrating machine learning in embedded sensor systems for Internet-of-Things
applications”, Signal Processing and Information Technology (ISSPIT) 2016 IEEE
International Symposium on, pp. 290-294, 2016.
[226] Arijit Ukil, Soma Bandyopadhyay, Chetanya Puri, Arpan Pal, “IoT Healthcare
Analytics: The Importance of Anomaly Detection”, Advanced Information Networking and
Applications (AINA) 2016 IEEE 30th International Conference on, pp. 994-997, 2016,
ISSN 1550-445X.
[228] A. Capossele, V. Cervo, G. De Cicco, C. Petrioli, “Security as a CoAP resource:
an optimised DTLS implementation for the IoT”, Proceedings of the IEEE International
Conference on Communication, June 8-12, 2015.
[229] wiki.ros.org
[230] ros.org
[231] openhab.org/features
[232] , [237] , [239] http://wiki.ros.org/iot_bridge
[233] https://www.openhab.org/docs/|OpenHAB official website
[234] https://www.openhab.org/docs/
[235] https://github.com/openhab/openhab1-addons/wiki/Configuring-the-openHAB-
runtime|Configuring-the-openHAB-runtime
[236] https://github.com/corb555/iot_bridge|iot_bridge]]
[238] http://localhost:8080/rest/items/ROS
[240] https://habrahabr.ru/post/313212/

10. Bibliography

366

http://wiki.ros.org/iot_bridge
https://www.openhab.org/docs/
https://www.openhab.org/docs/
https://github.com/openhab/openhab1-addons/wiki/Configuring-the-openHAB-runtime
https://github.com/openhab/openhab1-addons/wiki/Configuring-the-openHAB-runtime
https://github.com/corb555/iot_bridge
http://localhost:8080/rest/items/ROS
https://habrahabr.ru/post/313212/

	IoT_sakums
	IoT-book-makets
	IoT-book-makets
	iot-open15

