Introduction
to the lol

Erasmus+

283asset:
ITT GROUP)
INNOVATSIOON - TEADUS - TEHNIKA ITMO UNIVERSITY

. 1862

WO FRIGE

TS TAL
RIGA TECHNICAL TECH

UNIVERSITY

Introduction to the loT
(Internet of Things)

Coursebook

RTU Press
Riga 2019

Introduction to the loT. Coursebook. Riga: RTU Press, 2019. 366 pp.

This coursebook provides comprehensive information about Internet of Things and its
infrastructure. Its goal is to introduce loT to the bachelor and master students, technology
enthusiasts and engineers that are willing to extend their current knowledge. This book can also
assist teachers and educators in preparing a course on loT technology (full or partial).

Some general knowledge about IT technology is required.

Project Coordinator Piotr Czekalski

Scientific Editor Agris Nikitenko

Proofreading Iréna Skarda

Technical Editor Iréna Skarda

Graphic Design Blanka Czekalska, Matgorzata Wiktorczyk
Images Blanka Czekalska, Matgorzata Wiktorczyk
Technical Support Tomy Kalm

Published by RTU Press

1 Kalku Street, Riga, LV-1668
Phone: +37167089123
E-mail: izdevnieciba@rtu.lv

Printed by SIA “EVEKO”

Published in accordance with the decision of the Council of Institute of Applied Computer Systems
of Faculty of Computer Science and Information Technology of RTU of 22 March 2019 (Minutes
No. 12300-1/1).

This Intellectual Output was implemented under the Erasmus+ KA2: Strategic Partnerships in the
Field of Education, Training, and Youth — Higher Education. Project IOT-OPEN.EU — Innovative Open
Education on loT: Improving Higher Education for European Digital Global Competitiveness.
Project number: 2016-1-PLO1-KA203-026471.

Erasmus+ Disclaimer

This project has been funded with support from the European Commission. This publication
reflects the views only of the author, and the Commission cannot be held responsible for any use
which may be made of the information contained therein.

Copyright Notice
This content was created by the IOT-OPEN.EU consortium: 2016-2019. The content is Copyrighted
and distributed under CC BY-NC Creative Commons Licence, free for Non-Commercial use.

This book is compiled by DokuWiki and

proofread using Grammarly. This approach

speeds up the publishing process and
ISBN 978-9934-22-295-5 (print) more than likely will be generally used in
ISBN 978-9934-22-296-2 (pdf) future to prepare books for publishing.

Table of Contents

B Y =T =] o} o 8
B S = = = 9
2.1. Project INformation ... 9
3. INEFOAUCHION 1uiniaiiii e 10
3.1, Definition Of IOT .uiviiiiiiiiii 10
A s R 1 o =) = (0 10
3.0 2, T NG e 11
3.2. Enabling TeChNOIOGIES . .c.viiiiiiiii e e 12
3.2.1. Small-Scale Computer SYStemMS......ccvuviiiiiiiiiii s 12
3.2.2. Medium-Scale Computer SYStEMS ...vvvirirviieieinreienere e rernenraenens 12
3.2.3. Access to the Internet......cccoiiiiiiiiiii 13
3.2.4. IP Addressing EVOIULION......coviiiiiiiiii e 13
3.2.5. Data Storage and ProCeSSING ...ovvuvviereiriteeeiererneenenererarsnrnererneenenens 13
3.2.6. MODIIE DVICES . v vttt 13
3.3. Mobility — New Paradigm for IoT SysStemsccovviviiiiiiiiiinaas 13
3.3.1. Cloud COMPULING +ouiuiieieiniiiiiaeee e e e s s e ener e s sneeanrernanens 14
3.3.2. FOG COMPULING .ttt 14
3.3.3. Cognitive IoT SYStemsS ...ouiuiiiiiiiiii 14
3.4. Hints for Further Readings on Development Boards, Kits and Sites 15
3.5. Data Management Aspects in IoTooiiiiiiiiiiiii 16
3.6. Application Domains and Their SPeCifiCS......cviviiiiiiiiiiiii s 17
4, TOT HardWare OVEIVIEWcuiuiuieiiiiitiariiise st ss s e s eneas 20
4.1. Most Noticeable Platformsocvvieiiiiiii s 20
4.2. Embedded Systems Communication Protocolscoevviiiiiiiiniiiiinnnns 20
L T 1Y o -1 [Yo PP 21
4.2.2. DiIgItal eriieiiii i e 21
L TR 1 = PP 21
L I (17) 22
L T T o P 24
4.3, ArdUiNO OVEIVIEW .uuuuiuieiiiiiiiititisr e e e e eaaas 28
4.3.1. Overview of the Hardware Device Usedcoeviiiiiiiiniiiininiiinens 29
4.3.2. Digital Input/OUtput PiNS. ..o 30
4.3.3. Pulse Width Modulationcccoiiiiiiii 30
4.3.4. ANAIOG PiNS ..uiiieiiie e 30
4.3.5. Power and Other PiNSiiiiiiiiiii e 31

4,36, MEIMIOIY tuititiiit ittt e 31

4.3.7. INEEIACE .t 31
4.3.8. Size of the BOardccovieiiiiiiiii e 32
4.3.9. Arduino Shields......oiiiiiiiiiiiiii 32
4.3.10. SeNSOrs @anNd SENSING . ..cuiuiuiiieenirrrerererrrenere e nrrraerernenrararananrnns 34
4.3.11. Drivers @nd DriViNg...o.oeiiiiiiiiiiin e 57
4.3.12. IoT Application Example Projectscoovvviiiiiiiiiiiiiininnnn 71
4.3.13. Setting Up Development/Experimenting Environment..............cccvuenene. 72
4.3.14. Arduino Programming Fundamentals.........c.coooiiiiiiiiiiiiiiinneeen 77
4.4, ESPressif SOC OVEINVIEW ..uiuiuiuiiisiiiiiiiinsrsssin s rarasaeas 107
4.4, 1. ESPresSif SOC. ..iiiiiiiiiiitii it e 108
4.4.2. Espressif SOC NetWOrKingcovvuiuieiiiiniiiie e 121
4.4.3. ESP Programming Fundamentalscoooviiiiiiiininn 122
4.4.4. ESP8266 Wifi SCANNEI.....cuiuitiiiiiiiiiiiirrn s 150
4.4.5. ESP32 Wifi SCANNEI iuiiiiiiiiiiii et aes 151
4.5, RASPDErry Pi OVEIVIEW ...viviiiiiiiitiiiaiiiinri s rasaeas 164
4.5.1. Raspberry Pi General Informationccovviiiiiiiiiiiiiiiicicc e 166
4.5.2. RASPberry Pi SENSOISuiuiiiiiiiiiiin et 180
4.5.3. Raspberry Pi Drivers and DrivViNgcocvviiiiiniiiiiinnnnnnaas 196
4.5.4. Raspberry Pi OS GUIAEiiiiiiiiiii e e eas 208
4.5.5. Programming Fundamentals Raspbian OS..........cccciiiiiiiiiiinninnen 210
4.5.6. Programming Fundamentals Windows 10 IOT COrecovvveviininininens, 226
5. Introduction to the IoT Communication and Networkingcocvvvvieiinnnnnne. 263
5.1. Networking OVEIrVIEWc.viiieiiiiii e 264
5.2. Communication MOdelS.......oviuiiiiiiiiii 266
5.2.1. Device to Device and Industry 4.0 Revolutioncooveviiiiiiiiiiiennn. 267
5.2.2. DeViCe t0 GatEWAY ...iuiuiiiiiiiiiiii i 269
5.2.3. DeVice t0 CloUd.viiiiiiiiiiiiiiii s 270
5.3. Media Layers — Wired Networkingccvveiiiiiiiiiiiiii i e 271
5.4. Media Layers — Wireless ProtOCOIScccuviiiiiiiiiiiiiiiiiein e 273
5.4.1. PHY 4+ MAC 4 LLC LAYEIS .ouvuiiiiiiiieiiiiieiie e e e e e seaae e s e eaeaenens 274
5.4.2. NET (NWY) Layer .ovviiiiiiiiiiii e e 280
5.5. HoSt Layer ProtOCOISciiiieiiiiii e 284
520 0 I 1 I N 284
55,2, COAP et 288
6. Data and Information Management in the Internet of Things............cocvvvininins 290
6.1. IOT Data LifECYCIE ot e s 291

6.2. IoT Data Management Versus Traditional Database Management Systems.. 293

6.3. IOT Data SOUICESuiniieiitiit ittt e s e e e e e a e e raeeas 294
6.4. Main IoT Domains Generating Datacoovviiiiiiiiii 295
6.5. Infrastructure and Architectures for Iot Data Processing: Cloud, Fog, and Edge
COMPUEING 1atuttiai i e 296
6.6. IoT Data Storage Models and Frameworks........cccviviiveiniiiiiiinnineenenenenss 298
6.7. IoT Data Processing Models and Frameworks.......ccvvvvriieiiiiiiiiiieininniieinanns 298
6.8. I0T Data SEmMANTICS ...viviuiiiiiiiii 301
6.9. IoT Data VisualiSationccovveieiiiiiii e e e e 302
7. 10T Security @nd PriVACY ...c.cicieieieiiiiir e e e eeens 303
7.1. Types of Vulnerabilities of IOTc.iviiiiiiiiiii e 304
7.2. Monitoring of Vulnerabilitiesccovviiiiii e 306
7.3. Malware Detection iN T0T ..uiuiiriiiiiii i e e e e aes 308
7.4. 10T Security ProtoColscooiviiiiiiiiiiii 312
728 T (o X I = o V= [P 317
7.6. Privacy Preservation.covuieiiiiiii i 320
7.7. 10T Privacy Preservation Threats..........ooviviiiiiiiii 320
7.8. Support of Confidentiality and Methods of Authentication 326
8. Introduction to the IoT Energy CONSUMPLION .. .cvvieiiiiiiiiiiiieere e 332
8.1. Power Efficiency iN I0T ..iuiviiiiiiiiiir e 333
8.2. Minimum Energy Performance Standards (MEPS)ccocvvviiiviininninnnnns 333
8.2.1. Vertical MEPS ... e 333
8.2.2. Horizontal MEPSo 334
8.2.3. Clustered MEPS..... ..ot e aens 334
8.2.4. Electronic Components and Their Power Requirements: Motors, Sensors,
[\ Te goTele]) o] 1 1= o= J PP 334
8.2.5. IoT Software Platformccveiriiiiii e 335
8.2.6. IoT Battery Management Systemscooiiiiiiiiiiii e 336
9. Emerging Technologies iN IOTouiiiiiiiiiiiiiiierre e aea e 337
9.1. ROS — A New Framework iN I0T ...uuiiiiie e eriiienise e seeienereseseeenenesenaenenens 337
9.1.1. What iS ROS? ittt e e 337
9.1.2. ROS FEATUMES ...uiuiiiiiiiiiiit e aeas 337
9.1.3. Operating SystemS ... e 339
9.1.4. ROS ArChiteCIUI. ...v et e e enens 339
9.1.5. Introduction to ROS Programmingcccveveiriiiniiniriininieennnraseeans 342

1S T I S T o I o T o PP 349

9.2. AutonomMouUs TransSport SYSEEMS ...viiiiii i e e naeaeaas 353

9.3, BlOCKCNAIN Lot s 353

9.3.1. In Search of CONSENSUS. ... ciiuieititiiiiiiit e 354
9.3.2. Mechanisms of Reaching CONSENSUS........ccvuiriiiiiieiiitiiiieiiereraeeeaens 357
9.3.3. Ethereum: The New Generation of Internet.........c.ccoeviiiiiiiiiininnnns 358
9.3.4. CONCIUSIONS 1.uvitiiiiii it 359
10. Bibliography .oueeiii e 360

Authors

IOT-OPEN.EU consortium partners collective scholar literature. The full list of contributors
is juxtaposed below.

ITMO University
= Aleksandr Kapitonov, Ph. D., Assoc. Prof.
= Dmitrii Dobriborsci, M. sc., Eng.
Igor Pantiukhin, M. sc., Eng.
= Valerii Chernov, Eng.

ITT Group

= Raivo Sell, Ph. D., ING-PAED IGIP
Rim Puks, Eng.

= Mallor Kingsepp, Eng.

Riga Technical University

= Agris Nikitenko, Ph. D., Eng.
Karlis Berkolds, M. sc., Eng.

= Anete Vagale, M. sc., Eng.

= Rudolfs Rumba, M. sc., Eng.

Silesian University of Technology
Piotr Czekalski, Ph. D., Eng.

= Krzysztof Tokarz, Ph. D., Eng.
Oleg Antemijczuk, M. sc., Eng.

= Jarostaw Paduch, M. sc., Eng.

Tallinn University of Technology
= Raivo Sell, Ph. D., ING-PAED IGIP

University of Messina

= Salvatore Distefano

= Rustem Dautov

= Riccardo Di Pietro
Antonino Longo Minnolo

Graphic Design and Images
Blanka Czekalska, M. sc., Eng., Arch.

= Matgorzata Wiktorczyk, B. sc.

= Ritankar Sahu

6

Reviewers

= Fabio Bonsignorio, Ph. D., Eng.- Professor at Scuola Superiore Sant'Anna, Institute
of Biorobotics

= Artur Pollak, M. sc., Eng. - CEO at APAGroup
Ivars Parkovs, M. sc., Eng. - R&D Senior Engineer at “SAF Tehnika” Ltd.
= Janis Lacaunieks, M. sc., Eng. — R&D Engineer at “"SAF Tehnika” Ltd.

1. Versions

1. Versions

This page keeps track of the content reviews and versions done as a continuous
maintenance process

Table 1: Versions and Content Updates

Version Change Content updates summary Other
Date comments
1 vO0.1 01.01.2019 Fixed pre-publish version
v 0.2 07.03.2019 Updated content on BLE
3 v0.3 12.03.2019 Corrected Python syntax in RPi samples
Awaiting
ITMO

Changed RPI versions table from image to
textual, reformatted ROS, removed ROS logos,
removed Arduino logo, added figure 208
graphics

contribution
on captions of
the

Blockchain
figures.

4 v 0.4 24.05.2019

Corrected long lines in the code listings and
corrected numbering and style in IoT Security

5 v 0.4.1 24.05.2019 chapter. Minor formatting and error corrections
in the Python Data types chapter. Added
captions in Blockchain section.

Converted RPI models table to the number of

6 vO0.5 25.05.2019
small ones

Some minor and major corrections. Moved
chapter 6 source list to the Bibliography and
removed fixed text links to other chapters to
cancel their rendering in final PDF.

8 vO0.7 29.05.2019 Corrected Designers list

7 v0.6 27.05.2019

2. Preface

2. Preface

This book and its offshoots were prepared to provide comprehensive information about
the Internet of Things. Its goal is to introduce IoT to the bachelor students, master
students, technology enthusiasts and engineers that are willing to extend their current
knowledge. This book is also designated for teachers and educators willing to extend
their knowledge and prepare a course on IoT technology (full or partial).

We (authors) assume that persons willing to study this content do possess some general
knowledge about IT technology, i.e. understand what embedded system is, know the
general idea of programming and are aware of wired and wireless networking as it exists
nowadays.

We believe this book is constituting a comprehensive manual to the IoT technology;
however, it is not a full encyclopedy nor exhausts market review. The reason for it
is pretty simple - IoT is so rapidly changing technology, that new devices, ideas and
implementations appear every single day. Even so, once you read this book, you will
be able to quickly move over IoT environment and market, chasing ideas with ease and
implementing your own IoT infrastructure.

We also believe this book will help adults that took their technical education some time
ago to update their knowledge.

We hope this book will let you find new brilliant ideas both in your professional life as
well as see a new hobby or even startup innovative business.

Note: the sky is no longer the limit, so keep exploring with IoT!

2.1. Project Information

This Intellectual Output was implemented under the Erasmus+ KA2: Strategic
Partnerships in the Field of Education, Training, and Youth - Higher Education.

Project IOT-OPEN.EU - Innovative Open Education on IoT: Improving Higher Education
for European Digital Global Competitiveness.

Project number: 2016-1-PL01-KA203-026471.

Erasmus+ Disclaimer

This project has been funded with support from the European Commission.

This publication reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

Copyright Notice

This content was created by the IOT-OPEN.EU consortium: 2016-2019.

The content is Copyrighted and distributed under CC BY-NC Creative Commons Licence,
free for Non-Commercial use.

[NoI)

In case of commercial use, please contact IOT-OPEN.EU consortium representative.

https://en.wikipedia.org/wiki/Creative_Commons_license
https://home.roboticlab.eu/_detail/en/iot-open/ccbync.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/ccbync.png?id=en%3Abook

3. Introduction

3. Introduction

Here comes the Internet of Things. The name that recently makes red-hot people in
business, researchers, developers, geeks and ... students. The name that non-technology
related people consider as kind of magic and even danger for their privacy. The name
that the EU set as one of the emerging technologies and analysts estimate the worldwide
market is expected to hit well over 500 billion US dollars in 2022.

What is IoT (Internet of Things) then? Surprisingly, the answer is not straightforward.

= Definition of IoT
Enabling Technologies

= Mobility - New Paradigm for IoT Systems

= Hints for Further Readings on Development Boards, Kits and Sites
Embedded Systems Communication Protocols

= Data Management Aspects in IoT

= Application Domains and Their Specifics

3.1. Definition of IoT

Let us roll back to 1970s first. In 1973 the first RFID device was patented. This device,
even if does not look nor reminds modern IoT devices, was the key enabling technology.
The low power (actually here passive) solution with remote antenna large enough to
collect energy from the electromagnetic field and power the device brought an idea
of uniquely identifiable items. That somehow mimics well known EAN barcodes and
their evolution we use nowadays like QR codes, but here every single thing has a
different identity, while EAN barcodes present class of products, not an individual one.
The possibility to identify a unique identity remotely became a fundamental of the
IoT as we know today. Please note RFID is not the only technology standing behind
IoT. In 1990s rapid expansion of wireless networks, including broadband solutions
like cellular-based transfers with its consequent generations brought the possibility to
connect devices located in various, even distant geographical locations. Paralelly we
experienced an exponential increase in the number of devices connected to the global,
Internet network, including the Smartphone revolution that started around mid of the
first decade of the XXI century. On the hardware level, microchips and processors
became physically smaller and more energy efficient yet offering growing computing
capabilities and memory size increase, along with significant price drops. All those facts
drove the appearance of small, network-oriented, cheap and energy efficient electronic
devices.

3.1.1. What is IoT?

Phrase “Internet of Things” has been used for the first time in 1999 by Kevin Ashton
- an expert on digital innovation. Formally IoT was introduced by the International
Telecommunication Union (ITU) in the ITU Internet report in 2005 [1]. The understanding
and definitions of IoT changed during the years, but now all agree that this cannot be
seen as the technology issue only. According to IEEE “Special report: Internet of Things”
[2] released in 2014, 10T is:

10

https://home.roboticlab.eu/en/iot-open/introduction/definition_of_iot_in_the_context_of_modern_technology
https://home.roboticlab.eu/en/iot-open/introduction/overview_of_the_enabling_technologies_behind_the_iot
https://home.roboticlab.eu/en/iot-open/introduction/mobility_as_a_new_paradigm_of_communicating_devices
https://home.roboticlab.eu/en/iot-open/introduction/hints_for_further_readings_on_development_boards_kits_and_sites
https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_iot_communication_and_protocols
https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_data-related_design_questions_of_iot
https://home.roboticlab.eu/en/iot-open/introduction/application_domains_and_their_specifics

3.1. Definition of IoT

IEEE Definition of IoT

A network of items - each embedded with sensors — which are connected to the
Internet.

It relates to the physical aspects of IoT only. Internet of Things also address other
aspects that cover many areas [3]:

enabling technologies,

= software,

= applications and services,
business models,

= social impact.

We also cannot forget the management of elements of the IoT system and security and
privacy aspects. IEEE, as one of the most prominent standardisation organisations, also
work on standards related to the IoT. The primary document is IEEE P2413™ [4]. It
covers the technological architecture of IoT as three-layered: sensing at the bottom,
networking and data communication in the middle, and applications on the top. It is
essential to understand that the IoT systems are not only the small, local range systems.
ITU-T has defined IoT as:

ITU-T Definition of IoT

A global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving
interoperable information and communication technologies.

In the book [5] by European Commission we can read similar description of what
IoT is: “The IoT is the network of physical objects that contain embedded technology
to communicate and sense or interact with their internal states or the external
environment.” IoT has an impact on many areas of human activity: manufacturing,
transportation, logistics, healthcare, home automation, media, energy saving,
environment protection and many more. In this course, we will consider the technical
aspects mainly.

3.1.2. "Thing"

In IoT world, the “thing” is always equipped with some electronic element that can
be as simple as the RFID tag, active sensor sending data to the global network, or
autonomous device that can react on environmental changes. In CERP-IoT book “Visions
and Challenges” [6] in the context of “Internet of Things” a “thing” could be defined as:

CERP-IoT Definition of “"Thing”

A real/physical or digital/virtual entity that exists and moves in space and time and is
capable of being identified. Things are commonly identified either by assigned
identification numbers, names and location addresses.

We can also find other terms used in the literature like “smart object”, “device” or
“nodes” [7].

11

3. Introduction

Passive Thing

We can imagine that almost everything in our surroundings is tagged with an RFID
element. They do not need a power supply; they respond with the short message, usually
containing the identification number. Modern RFID’s can achieve the 6 to 7 meters of the
range. Using the active RFID reader, we can easily locate lost keys, know if we still have
the butter in the fridge, in which wardrobe there is our favourite t-shirt.

Active Thing

If the “thing” includes the sensor, it can send interesting data about current conditions.
We can sense the environmental parameters like temperature, humidity, air pollution,
pressure, localisation data, water level, light, noise, movement. This data, using different
methods and protocols, can be sent to the central collector that connects to the Internet
and further to the database or cloud. There the data can be processed, and using Artificial
Intelligence algorithms can be used to decide actions that could be taken in different
situations. Active things can also receive control signals from the main controller to
control the environment: turn on/off the heating or light, water flowers, turn on the
washing machine when there is sunlight enough to generate the required amount of
electricity.

Autonomous Thing

This thing does not even require the controller to realise the proper decision. An
autonomous vacuum cleaner can clean our house while it detects that we aren’t present
at home, and the floor needs to be cleaned. The fridge can order our favourite beverage
once it detects that the last bottle is almost empty.

3.2. Enabling Technologies

In this chapter, we describe modern technologies that appeared in the last few years,
enabling the idea of IoT to be widely implementable. In the [8] we can read that “The
confluence of efficient wireless protocols, improved sensors, cheaper processors and a
wave of startups and established companies made the concept of the IoT mainstream”.
Similar analyze been done in [9] systems. These are essential elements of technologies
used in IoT systems.

3.2.1. Small-Scale Computer Systems

Last years we can observe rapid growth in the field of microprocessors. It includes not
only the powerful desktop processors but also microcontrollers — elements that are used
in small-scale embedded systems. We can also notice the popularity of microprocessor
systems that can be easily integrated with other elements like sensors, actuators,
connected to the network. Essential is also the availability of programming tools and
environments supported by different companies and communities. An excellent example
of such systems is Arduino.

3.2.2. Medium-Scale Computer Systems

The same growth can be observed in medium-scale computers. They have more powerful
processors, more memory and networking connectivity build in than small-scale
computer systems. They can work under control of multitasking operating systems like

12

3.3. Mobility - New Paradigm for IoT Systems

Linux, Windows, embedded or real-time operating systems like FreeRTOS. Having many
libraries, they can successfully work as hubs for local storage, local controllers and
gateways to the Internet. The example of such systems we consider in our course is
Raspberry Pi.

3.2.3. Access to the Internet

Nowadays the Internet is (almost) everywhere. There are lots of wireless networks
available in private and public places. The price of cellular access (3G/4G/5G) is low,
offering a good performance of data transfer. Connecting the “thing” to the Internet has
never been so easy.

3.2.4. IP Addressing Evolution

The main paradigm of IoT is that every unit can be individually addressed. With the
addressing scheme used in IPv4, it wouldn’t be possible. IPv4 address space delivers
“only” 4 294 967 296 of unique addresses (27 32). If you think it's a big number, imagine
that every person in the world has one IP-connected device - IPv4 covers about half of
the human population. The answer is IPv6 with a 128-bit addressing scheme that gives
3.4 x 10738 addresses. It will be enough even if every person will have a billion devices
connected to the Internet.

3.2.5. Data Storage and Processing

IoT devices generate the data to be stored and processed somewhere. If there is a couple
of sensors, the amount of data is not very big, but if there are thousands of sensors
generating data hundreds of times every second. It can be handled by the cloud - the
huge place for the data with tools and applications ready to help with data processing.
There are some big, global cloud available for rent offering not only the storage but
also Business Intelligence tools, Artificial Intelligence analytic algorithms. There are also
smaller private clouds created to cover the needs of one company only. Many universities
have their own High-Performance Computing Centre.

3.2.6. Mobile Devices

Many people want to be connected to the global network everywhere, anytime having
their “digital twin” with them. It is possible now with small, powerful mobile devices
like smartphones. Smartphones are also elements of IoT world being together sensors,
user interfaces, data collectors, wireless gateways to the Internet, and everything with
mobility feature.

The technologies we mentioned here are the most recognisable, but there are many
others, smaller, described only in the technical language in some standard description
document, hidden under the colourful displays, between large data centres, making our
IoT world operable. In this book, we will describe some of them.

3.3. Mobility - New Paradigm for IoT Systems

As defined IoT previously in its essence is a network of physical things or devices
that might include not only sensors or simple data processing units but also complex
actuators and significant hybrid computing power as well. Today IoT systems have
transited from being perceived as sensor networks to smart-networked systems capable

13

3. Introduction

of solving complex tasks in mass production, public safety, logistics, medicine and other
domains, which require a broader understanding and acceptance of current technological
advancements.

Since the very beginning of sensor networks on of the main challenges have been
data transport and data processing, where significant efforts have been put by the ICT
community towards service based system architectures. The current trend, however,
already provides considerable computing power available even in small mobile devices,
and therefore, the concepts of future IoT already are shifted towards smarter and more
accessible IoT devices.

3.3.1. Cloud Computing

Cloud-based computing is rather well known and adequately employed paradigm, where
IoT devices can interact with remotely shared resources such as data storages, data
processing, data-mining and other services that are not available to the system due
it cost-effectiveness or other limitations. Although the cloud computing paradigm can
handle vast amounts of data from IoT clusters, the transfer of extensive data to and
from cloud computers presents a challenge due to limited bandwidth[10]. Consequently,
there is a need to process data near data source, employing the increasing number of
smart devices with enormous processing power and a rising number of service providers
available for IoT systems as well.

3.3.2. Fog Computing

Fog-computing addressed the bottlenecks of cloud computing regarding data transport
while providing the needed services to IoT systems. It is a new trend in computing
that aims to process the data near the data source. Fog computing pushes applications,
services, data, computing power, and decision making away from the centralised nodes
to the logical extremes of a network. Fog computing significantly decreases the data
volume that must be moved between end devices and cloud. Fog computing enables
data analytics and knowledge generation to occur at the data source. Furthermore, the
dense geographic distribution of fog helps to attain better localised accuracy for many
applications as compared to the cloud [11].

3.3.3. Cognitive IoT Systems

According to [12] Cognitive IoT besides a proper combination of hardware, sensors and
data transport, comprises cognitive computing, which consists of the following main
components:

= understanding - in case of IoT it means systems capability to process a significant
amount of structured and unstructured data, extracting the meaning of the data -
produce a model that binds data to reality;

= reasoning - involves decision making according to the understood model and
acquired data;

learning - a creation of new knowledge from the existing, sensed data and
elaborated models.

Usually, cognitive IoT systems or C-IoT are expected to add more resilience to the overall
solution. The resilience is a complex term and is differently explained under different

14

3.4. Hints for Further Readings on Development Boards, Kits and Sites

contexts; however, there are common features for all resilient systems. C-IoT, as a
part of their resilience, should be capable of self-failure detection and self-healing that
minimises or gradually degrades the system's overall performance. In this respect, the
non-resilient system fails or degrades in a step-wise manner. In case of security issues
that system should be able to change its security keys, encryption algorithms and take
other measures to cope with the detected threats. Abilities of self-optimisation often are
considered as a part of C-IoT feature list to provide more robust solutions.

All three approaches from cloud to cognitive systems are focusing on adding value to
10T devices, system users and related systems on-demand. Since market and technology
acceptance of mobile devices is still growing, and amount of produced data of those
devices is growing exponentially, mobility as a phenomenon is one of the main driving
forces of the technological advancements of the near future.

3.4. Hints for Further Readings on Development Boards, Kits
and Sites

Some additional information about the Arduino boards, programming environment, the
programming language can be obtained on the Arduino website [13]. It also includes an
Internet store, where the different type of Arduino boards or components can be bought
and even forum and blog for the community where to look for the solution to various
problems. Many Arduino projects, developed by Arduino, enthusiasts can be found in the
Arduino Project Hub [14].

More information about the Raspberry Pi controllers can be found on the official website
of it [15]. It includes the blog, community, forums, education section, etc. There is also
possible to download the Raspbian operating system.

There are many online platforms that provide online courses by different universities
about relevant topics like Internet of Things, embedded systems, programming
languages, connectivity and security, robotics, big data, computer vision and many more.
Some of the most popular platforms are Coursera [16], edX [17], Udacity [18], Udemy
[19], Skillshare [20].

The Electronics Tutorials website [21] offers multiple basic electronics tutorials topics
including AC and DC circuit theory, amplifiers, semiconductors, filters, Boolean algebra,
capacitors, power electronics, transistors, operational amplifiers, sequential logic, and
many more. It contains an extensive description of theory with graphics and
explanations.

Instructables [22] is a project platform that includes plenty of Internet of Things
projects for different knowledge levels. It is also possible to enrol to different classes
with many lessons that teach about specific related topics that are not limited only to
electronics but also cover issues such as sewing, food, craft, 3D printing, etc. One section
of the Instructables website offers multiple contests and challenges about the related
topic with valuable prizes.

Tinkercad is a simple, online 3D design and 3D platform that also allows to model and
test circuits [23]. With Tinkercad, it is possible to program and simulate virtual Arduino
board online, to use different libraries and serial monitor. There are also plenty of already
existing starter examples.

15

3. Introduction

3.5. Data Management Aspects in IoT

Data management is a critical task in IoT. Due to the high number of devices, things,
already available (tens of billions), and considering the data traffic generated by each of
them through sensor networks, infotainment (soft news) or surveillance systems, mobile
social network clients, and so on, we are now in the ZettaByte (ZB 2770, 10~21 bytes)
era. This opened up several new challenges on (IoT) data management, giving rise to
data sciences and BigData technologies. Such challenges have not to be considered as
main issues to solve, but also as big opportunities fuelling digital economy with new
directions such as Cloudonomics [24] and IoTonomics, where data can be considered as a
utility, a commodity to properly manage, curate, store, and trade. Therefore, to properly
manage data in IoT contexts is not only critical but also of strategic importance for
business players as well as for users, evolving into prosumers (producers-consumers).

From a technological perspective, the main aspects of dealing with IoT data management
are:

data source: data generation and production is a relevant part of IoT, involving
sensors probing the physical system. In a cyber-physical-social system view, such
sensors could also be virtual (e.g. software), or even human (e.g. citizens,
crowdsensing). Main issues to deal with in data production are related to the type
and format of data, heterogeneity in measurements and similar issues. Semantics
is the key to solve these issue, also through specific standards such as Sensor Web
Enablement and Semantic Sensor Network [25];

= data collection/gathering: once data are generated, these should be gathered
and made available for processing. The collection process needs to ensure that the
data gathered are both defined and accurate so that subsequent decisions based on
the findings are valid. Some types of data collection include census (data collection
about everything in a group or statistical population), sample survey (collection
method that includes only part of the total population), and administrative by-product
(data collection is a byproduct of an organisation’s day-to-day operations). Usually,
wireless communication technologies such as Zigbee, BlueTooth, LoRa, Wi-Fi and 3G/
4G networks are used by IoT smart objects and things to deliver data to collection
points;

= filtering: is a specific preprocessing activity, usually performed at data source or
data collector (IoT) nodes (e.g. motes, base stations, hotspots, gateways), aiming at
cleaning noisy data, filtering noise and not useful information;

aggregation/fusion: in order to reduce bandwidth before sending data to
processing nodes, these are further elaborated, compressed, aggregated and fused
(sensor/data fusion) to reduce the overall volume of raw data to be transmitted and
stored;

= processing: once data are properly collected, filtered, aggregated, and fused, they
can be processed. Processing can be both local and remote, and usually, also
include preprocessing activities aiming at preparing data for real processing. Local
processing, when possible, is mainly tasked at a fast, lightweight computation on
edges (Edge computing), quickly providing results and local analytics. More complex
computation are usually demanded to remote (physical or virtual) servers, either
provided by local nodes (e.g. communication servers, cloudlets) in a Fog computing
fashion, or by Cloud providers as virtual machines hosted in data centres. This kind
of computation can also involve historical data, providing global analytics, but hardly

16

3.6. Application Domains and Their Specifics

meets time-constrained applications and real-time requirements;

storage/archive: remote servers are also used for permanently store and archive
data, making these available for further processing, even to third parties. The
database is often used for that, mainly based on distributed, NoSQL key-store
technologies to improve reliability and performance;

= delivering/presentation/visualization: the results of processing activities have
to be then delivered to requestors and users. These have to be therefore properly
organised and formatted, ready for end-users. IoT data visualisation is becoming an
integral part of the IoT. Data visualisation provides a way to display this avalanche of
collected data in meaningful ways that clearly present insights are hidden within this
mass amount of information;

= security and privacy: data privacy and security are among the most critical issues
to address in IoT data management. Good results and reliable techniques for secure
data transmission, such a TLS and similar, are available. This way, IoT data security
issues mainly concern [26] securing IoT devices, since they are usually resource
constrained and therefore do not allow to adopt traditional cryptography scheme
to data encryption/decryption. Data privacy and integrity them while ensuring
availability. Indeed, security and privacy issues vertically span into the whole IoT
stack. A promising technique to address IoT security issues, attracting growing
interests from both academic and business communities, is blockchain [27].

3.6. Application Domains and Their Specifics

Application domains of the Internet of Things solutions are wide. Most prominent
applications include (among others) [28]:
= building and home automation,
smart water,
= smart metering,
= smart city (including logistics, retail, transportation),
smart animal farming,
= industrial IoT,
precision agriculture and smart farming,
= security and emergencies,
= healthcare and wellness (including wearables),
smart environment,
= energy management,
= robotics,
smart grids.

Smart homes are one of the first examples that come to mind when talking about
the domain applications of the Internet of Things. Smart home benefits include reduced
energy wastage, the quality and reliability of devices, system security, reduced cost
of basic needs, etc. Some home automation examples are environmental control (that
monitors and controls heating, ventilation, air conditioning and sunscreens), electrical
charging of vehicles, solar panels for electrical power and hot water, ambient lighting
control, smart lighting for aquaria, home cooking, garage doors, smart plant watering

17

3. Introduction

systems indoors and outdoors, baby monitors, timed pet food dispensers, monitoring
perishable goods (for example, in the refrigerator), remote monitoring (for instance, of
washer cycle status), tracking and proactive maintenance scheduling, event-triggered
task execution. Home security also plays a significant role in smart homes. Example
applications are automatic door locks, sensors for opening doors and windows, pressure,
motion and infrared sensors, security cameras, notifications about the security (to the
owner or the police) and fitness related applications.

In smart city, multiple IoT-based services are applied to different areas of urban
settings. The aim of the smart city is the best use of public resources, improvement
of the quality of resources provided to people and reduction of operating costs of
public administration [29]. Smart city can include many solutions like smart buildings,
smart grids for improving energy management, smart tourism, monitoring of state
of the roads and occupation of parking lots, public safety, environment monitoring,
automatic street lighting, signalling with smart power devices, control of water levels
for hydropower or flood warnings, electricity generating devices like solar panels and
wind turbines, weather monitoring stations. Transportation in smart cities may include
aviation, monitoring and forecasting of traffic slowdowns, timetables and current status,
navigation and route planning, as well as vehicle diagnostics and maintenance reports,
remote maintenance services, traffic accident information collection, fleet management
using digital tachographs, smart parking, car/bicycle sharing services [30]. IoT in
transportation makes cars connected.

Smart grid is a digital power distribution system. In this system, information is gathered
using smart meters, sensors and other devices. After these data are processed, power
distribution can be adapted accordingly. Smart grids are used to deliver sustainable,
economical and secure electricity supplies efficiently.

In precision agriculture and smart farming IoT solutions can be used to monitor
the moisture of the soil, conditions of the plants, control microclimate conditions and
monitor the weather conditions in order to improve farming [31]. The goal of using
IoT in agriculture is the maximization of the harvest, reducing operational costs, being
more efficient in general and reducing environmental pollution using low-cost automated
solutions. An interaction between the farmer and the systems can be done using a
human-machine interface. In the future smart precision farming can be a solution for
such challenges like increasing worldwide demand for food, a changing climate, and a
limited supply of water and fossil fuels [32].

Similar to precision agriculture that is part of IoT in industry, smart factories also
tend to improve the manufacturing process by monitoring of pollutant gases, locating
employees and with many other solutions.

Industrial IoT and smart factories are part of the Industry 4.0 revolution. In this
model, modern factories are able to automate complex manufacturing tasks, thanks to
the Machine-To-Machine communication model and thanks to it, provide more flexibility
in the manufacturing process to enable personalised, short volume products
manufacturing with ease.

In the healthcare and wellness, 10T applications can be used for monitoring and
diagnosing of patients, managing of people and medical resources. It allows to remotely
and continuously monitor the vital signs of patients to improve medical care and wellness
of patients [33] and many more. Medical robotics can also be part of the healthcare

18

3.6. Application Domains and Their Specifics

IoT system that includes medical robots in precision surgery or distance surgery; some
robots are used in rehabilitation and hospitals (for example, Panasonic HOSPI [34] for
delivering medication, drinks, etc. to patients.

Wearables used in IoT applications should be highly energy efficient, ultra-low power
and small sized. Wearables are installed with sensors and software for data and
information collected about the user. Devices used in daily life like Fitbit [35] are
used to track people health and exercise progress in previously impossible ways, and
smartwatches allow to access smartphones using this device on the wrist. But wearables
are not limited only by wearing them on the wrist. They can also be glasses that equipped
with the camera, a sports bundle attached to the shoes or camera attached to the helmet
or as a necklace [36].

19

4. IoT Hardware Overview

4. IoT Hardware Overview

IoT hardware infrastructure is mostly inheriting from the embedded systems of the
SoC type. As IoT devices are by its nature network-enabled, many of the existing
embedded platforms evolved towards network-enabled solutions, sometimes indirectly
through delivering network processor (wired or wireless) as a peripheral device yet
integrated on the development board (i.e. Arduino Uno with Ethernet Networking shield,
GSM shield, etc.), sometimes a new system, integrating networking capabilities in one
benefited from externally connected peripheral network interfaces via common wired
ports like USB (i.e. early versions of the Raspberry Pi, where WiFi card was delivered as
USB stick), currently, usually integrate most of the network interfaces in a single board
(i.e. RPi 3B, including Ethernet, WiFi and Bluetooth).

“4.1. Most Noticeable Platforms”;
= “4.2. Embedded Systems Communication Protocols”;
= “4.3. Arduino Overview”;

“4.4. Espressif SoC Overview”;
= “4.5. Raspberry Pi Overview”.

4.1. Most Noticeable Platforms

IoT market is an emerging one. New hardware solutions appear almost daily, while
others disappear quick. At the moment of writing this publication (2016-2019), there are
some core hardware solutions that seem to be prominent for at least a couple of years,
however. We've provided a short review of those platforms in the following sections:

= AVR: Arduino - a development board that uses Atmel SoC, that is no doubt the
most popular development platform for enthusiasts and professionals. Arduino itself
barely offers networking capabilities yet; there is a vast humber of extension boards
including network interfaces (both wired and wireless);

= ESP: Espriff (Espressif Systems) - the great SoC solution of the single SoC including
wireless network interfaces;

ARM: Raspberry Pi (and its clones) - advanced boards, including Linux operating
system with interface, even able to replace desktop computers.

4.2. Embedded Systems Communication Protocols

Understanding the principals of communication are essential for further reading on
hardware and programming. Most microcontrollers (including SoCs) can communicate in
the protocols juxtaposed below right “out of the box”. Interfaces can be implemented
in hardware or (recently) in software. Some microcontrollers may require an external,
dedicated protocol converter (a chip or a module).

IoT systems are typically structured into three basic layers [37] Layer, the intermediate
is the Network Layer, and the higher is the Application Layer. The function of the
perception layer is to keep contact with the physical environment. Devices working
in this layer are designed as embedded systems. They include the microprocessor or
microcontroller, memory, communication unit, and interfaces - sensors or actuators.
Sensors are elements that convert a value of some physical parameter into an electrical

20

https://home.roboticlab.eu/en/iot-open/introduction/introduction_to_iot_communication_and_protocols
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/esp
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/raspberrypi_rpi

4.2. Embedded Systems Communication Protocols

signal, while actuators are elements that control environment parameters. Sensors
and actuators are interfaced with the microcontroller using different connection types.
This chapter describes some internal protocols used to communicate between
microcontrollers and other electronic elements that can be named “embedded protocols”.
Description of the protocols used for wire and wireless transmission between the
perception layer and higher layers is present in Introduction to the IoT Communication
and Networking The embedded protocol that can be used in specific implementation
depends mainly on the type of the peripheral element. Some of them use an analogue
signal that the microcontroller must convert to digital internally, some directly implement
digital communication protocol.

4.2.1. Analog

Simple sensors do not implement the conversion and communication logic, and the
output is just the analogue signal - voltage level depending on the value of the
parameter that is measured. It needs to be further converted into a digital
representation; this process can be made by analogue to digital converters (ADC)
implemented as the internal part of a microcontroller or separate integrated circuit.
Examples of the sensors with analogue output are a photoresistor, thermistor,
potentiometer, resistive touchscreen.

4.2.2. Digital

Dummy, true/false information can be processed via digital I/O. Most devices use
positive logic, where, i.e. +5 V (TTL) or +3.3 V (those are the most popular, yet
there do exist other voltage standards) presents a logical one, while OV presents logical
zero. In real systems this bounding is fuzzy and brings some tolerance, simplifying, i.e.
communication from 3.3 V output to 5 V input, without a need of the conversion (note,
the reverse conversion is usually not so straightforward, as 3.3 V inputs driven by 5V
output may burn easily). A sample of the sensor providing binary data is a button (On/
Off).

4.2.3. SPI

One of the most popular interfaces to connect the sensor is SPI (Serial Peripheral
Interface). It is a synchronous serial interface and protocol that can transmit data
with speed up to 20 Mbps. SPI is used to communicate microcontrollers with one or
more peripheral devices over short distances - usually internally in the device. In SPI
connection there is always one master device, in most cases the microcontroller (uC) that
controls the transmission, and one or more slave devices - peripherals. To communicate
SPI uses three lines common to all of the connected devices, and one enabling line for
every slave element.

Table 2: SPI Lines

Line Description Direction

MISO Master In Slave Out peripheral — pC
MOSI Master Out Slave In uC — peripheral
SCK Serial Clock HC — peripheral

21

https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut
https://home.roboticlab.eu/en/iot-open/communications_and_communicating_sut

4. IoT Hardware Overview

Line Description Direction

SS Slave Select MC — peripheral

MISO is intended to send bits from slave to master, MOSI transmits data from master to
slave. SCK line is used for sending clock pulses which synchronize data transmission. The
clock signal is always generated by the master device. Every SPI compatible device has
the SS (Slave Select) input that enables communication in this specific device. Master is
responsible to generate this enable signal - separately for every slave in the system.

MOSI
MISD
5P1 Master SCK I I

5PI Slave 5P| Slave

551 552
J |

Figure 2: Sample SPI connection.

SPI is used in many electronic elements like analogue to digital converters (ADC), real-
time clocks (RTC), EEPROMs, LCD displays, communication interfaces (e.g. Ethernet,
WiFi) and many others. Due to different hardware implementations, there are four modes
of operation of the SPI protocol. The mode used in master must fit the mode that is
implemented in the slave device.

Table 3: SPI Modes

Mode Clock polarity Clock phase Idle state Active state Output edge Data capture

mode 0 0 0 0 1 falling rising
mode 1 0 1 0 1 rising falling
mode 2 1 0 1 0 rising falling
mode 3 1 1 1 0 falling rising

It results in different timings of the clock signal concerning the data sent. Clock polarity
= 0 means that the idle state of the SCK is 0, so every data bit is synchronised with
the pulse of logic 1. Clock polarity = 1 reverses these states. Output edge (rising/falling)
says at which edge of active SCK signal sender puts a bit on the data line. Data capture
edge says at what edge of SCK signal data should be captured by the receiver.

4.2.4. TWI (12C)

TWI (Two Wire Interface) is one of the most popular communication protocol used in
embedded systems. It has been designed by Philips as I12C (Inter-Integrated Circuit) for

22

4.2. Embedded Systems Communication Protocols

using in the audio-video appliances controlled by the microprocessor. There are many
chips that can be connected to the processor with this interface, including:

= EEPROM memory chips,

= RAM memory chips,

= AD/DA converters,

= real-time clocks,

= sensors (temperature, pressure, gas, air pollution),
= port extenders,

= displays,

= specialised AV circuits.

TWI, as the name says, uses two wires for communication. One is the data line (SDA);
the second is the clock line (SCL). Both lines are common to all circuits connected to the
one TWI bus. The method of the communication of TWI is the master-slave synchronous
serial transmission. It means that data is sent bit after bit synchronised with the clock
signal. SCL line is always controlled by the master unit (usually the processor), the signal
on the SDA line is generated by the master or one of the slaves - depending on the
direction of communication. The frequency rate of the communication is up to 100 kHz
for most of the chips, for some can be higher — up to 400 kHz. The new implementation
lines have the open-collector or open-drain circuit. It means that there are external pull-
up resistors needed to ensure proper operation of the TWI bus. Value of these resistors
depends on the number of connected elements, speed of transmission and the power
supply voltage and can be calculated with the formulas presented in Texas Instrument
Application Report [38]. Usually, it is assumed between 1 kQ and 4.7 kQ.

+Veo +Veo

Rp Rp

5DA
5CL

Wi Master

TWl Slave TWI Slave

Figure 3: Sample TWI connection.

The data is sent using frames of bytes. Every frame begins with the sequence of signals
that is called the start condition. This sequence is detected by slaves and causes them
to collect the next eight bits that form the address byte - unique for every circuit on
the bus. If one of the slaves recognises its address remains active until the end of the
communication frame, others become inactive. To inform the master that some unit has

23

4. IoT Hardware Overview

been appropriately addressed slave responses with the acknowledge bit - it generates
one bit of low level on the SDA line (the master generates clock pulse). After sending the
proper address, data bytes are sent. The direction of the data bytes is controlled by the
last bit of the address, for 0 data is transmitted by the master (Write), for 1 data is sent
by the slave (Read). The receiving unit must acknowledge every full byte (eight bits).
There is no limitation on the number of data bytes in the frame, for example, samples
from the AD converter can be read byte continuously after byte. At the end of the frame,
another special sequence is sent by the master — stop condition. It is also possible to
generate another start condition without the stop condition. It is called a repeated start
condition.

STA MSB LSB ACK STO

Figure 4: TWI frame.

Address byte activates one chip on the bus only, so every unit must have a unique
physical address. This byte usually consists of three elements: 4-bit field fixed by the
producer, 3-bit field that can be set by connecting three pins of the chip to 0 (ground)
or 1 (positive supply line), 1-bit field for setting the direction of communication (R/#W).
Some elements (e.g. EEPROM memory chips) uses the 3-bit field for internal addressing
so there can be only one such circuit connected to one bus. There are no special rules
for the data bytes. First data byte sent by the master can be used for configuration of
the slave chip. In memory units, it is used for setting the internal address of the memory
for writing or reading, in multi-channel AD converters to choose the analogue input. The
detailed information on the meaning of every bit of the transmission is present in the
documentation of the specific integrated circuit. The I2C standard also defines the multi-
master mode, but in most of the small projects, there is one master device only.

4.2.5. 1-Wire

1-Wire is a master-slave communication bus system designed formerly by Dallas
Semiconductor Corp[39] are very popular. Each 1-Wire device must contain logic unit to
operate on the bus. The 1-Wire products include temperature, voltage, current sensors,
loggers, timers, battery monitors, memory and many more. To connect them to a PC
the special bus converter is needed. The most popular PC/1-Wire converters use USB,
RS-232 serial, and parallel port interfaces allowing connect the MicroLAN to the host PC.
1-Wire devices can also be connected directly to the microcontroller boards.

1-Wire Protocol Description

Within the MicroLAN, there is always one master device, which may be a PC or a
microcontroller unit. The master always initiates activity on the bus to avoid collisions on

24

4.2. Embedded Systems Communication Protocols

the network chain. If a collision occurs, the master device retries the communication. In
the 1-Wire network, many devices can share the same bus line. To identify devices in the
MicroLAN, each connected device has a unique 64-bit ID number. The least significant
byte of the ID number defines the type of the device (temperature, voltage etc.
sensors). The most significant byte represents a standard 8-bit CRC. The 1-Wire protocol
description contains several broadcast commands and commands used to address the
selected device. The master sends a selection command, then the address of a slave
selected device. This way, the next command is executed only by the addressed device.
The 1-Wire bus implements enumeration procedure which allows the master to get
information about ID numbers of all connected slave devices to the MicroLAN network.
Device address includes the device type, and a CRC allows to identify what type of slaves
are currently connected to the network chain for inventory purposes. The 64-bit address
space is searched as a binary tree. It allows to find up to 75 devices per second.

The physical implementation of the 1-Wire network is based on an open drain master
device connected to one or more open drain slaves. One single pull-up resistor for all
devices pull the bus up to 3/5 V and can be used to power the slave devices. 1-Wire
communication starts when a master or slave sets the bus to low voltage (connects the
pull-up resistor to ground through its output MOSFET). Typical data speed of the 1-Wire
interface is about 16.3 kbit/s.

1-Wire protocol allows for bursting the communication speed up by 10 factor. In this
case, the master starts a transmission with a reset pulse pulling down the data line to 0
volts for at least 480 ps. It resets all slave devices in the network chain bus. Then, any
slave device shows that it exists generating the “presence” pulse. It holds the data line
low for at least 60 ps after the master releases the bus. To send a “1”, the bus master
sends a 1-15 ps low pulse. To send a “0”, the master sends a 60 ps low pulse. The
negative edge of the pulse is used to start a slave's monostable multivibrator. The slave's
multivibrator clocks to read the data bus about 30 ps after the falling edge. The slave's
multivibrator has analogue tolerances that affect its timing accuracy, for the “0” pulses
are 60 ps long, and “1” pulses are limited to max 15 ps. When the designed solution
doesn't contain a dedicated 1-Wire interface peripheral, a UART can be used as a 1-Wire
master. Dallas also offers the Serial or USB “bridge” chips, very useful when the distance
between devices is long (greater than 100 m). For longer, up to 300 m buses, the simple
twisted pair telephone cable can be used. It will require adjustment of pull-up resistances
from 5 kQ to 1 kQ. The basic sequence is a reset pulse followed by an 8-bit command,
and after it, data can be sent/received in groups of 8-bits. In the case of transmission
errors, the weak data protection 8-bit CRC checking procedure can be used.

To find the devices, the enumeration broadcast command must be sent by a master. The
slave device response with all ID bits to the master and at the end it returns a 0.

25

4. IoT Hardware Overview

=480 us

Master

Slave

60 - 240 ps

Figure 5: 1-Wire reset timings.
1: no response from slave

0: 60 ys response
1] 0 0 1 0 1

weo T T T
e 1 |

M5B LSB

Figure 6: 1-Wire read timings.

1: 15 s
0: 60 us
1 1] 0 0 1 0 1

e TN

M5B LS8

Figure 7: 1-Wire write timings.

USB to 1-Wire Master

The DS9490B is a USB bridge and holder for a single F5-size iButton. The DS9490R
is a USB bridge with 1-Wire RJ11 interface to accommodate 1-Wire receptacles and

networks.

26

4.2. Embedded Systems Communication Protocols

Figure 8: DS9490R USB Bridge.

The bridge is based on the DS2490 chip developed by Dallas company, which allows to
interconnect USB interface with 1-Wire bus. This required programming and electrical
conversion between two different protocols in bidirectional way. The electrical wiring are

present on Figure 9.

use
Comnedtor

LPZReaING-33

8
||||_|' e B

Female RIT1

Figure 9: DS9490R USB schematic.

The appropriate 1-Wire cable pinout uses RJ11 telephone connectors.

SHGHNAL
PN NAME DESCRIPTION
1 Voo ENVDIC Ousput
2 | GND Foser Geourd
] O 1-Wire Cuata
4 GMO O 1-Wire Ristum
8 | GOEG UISE Suspend Culpul
[M.C Mo Connectian

Figure 10: DS9490 1-Wire RJ11 SOCKET pinout.

27

https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_usb_bridge.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_schematic.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/introduction/ds9490_rj11_pinout.png?id=en%3Abook

4. IoT Hardware Overview

1-Wire Products

The list of Dallas/Maxim integrated 1-Wire devices contains a wide range of industrial
implementations. The 1-Wire sensors and switches devices are very popular in the
developer's community due to ease implementation. 1-Wire protocol can be fast
implemented into the current IoT boards; most of the manufacturers share the software
libraries allowing developers to include them in their projects in C, C++4, assembly
languages. The 1-Wire sensors (temperature, humidity, pressure, etc.) are factory
calibrated and reading the physical measurements follows the International System of
Units (SI). 1-Wire products can be grouped as follows:

secure authenticators,

» memory EPROM, EEPROM ROM,

= temperature sensors and temperature switches,
data loggers,

= 1-Wire interface products,

= battery monitors, protectors, and selectors,

= battery ID and authentication,

= timekeeping and real-time clocks.

4.3. Arduino Overview

In no doubt, Arduino became the most widespread SoC, particularly among enthusiasts,
educators, amateurs, hobbyists, driving de-facto the embedded systems market for
years.

Using cheap Atmel AVR microcontrollers, delivered along with development board and
peripherals of almost any kind including sensors and actuators, where you do not need
to develop your PCB nor solder to obtain the fully functional device, all that triggered
new era where almost anyone can afford to have a development set and start playing
the way only professionals used to do. Moreover, Arduino was not only the hardware but
also the programming idea, delivering a simple development environment easy to use
for beginners. Perhaps the most important impact of the Arduino to the daily use was to
spread the idea of taking automation control from the industry and bring it on a massive
scale to the regular life, homes, cars, toys; to automate daily life.

Beginnings of the Arduino are dated to the year 2003 in Italy yet. Their most popular
development board was delivered to the market in fall 2010. While AVRs microcontrollers
are considered to be embedded systems more than IoT, and most of the early Arduino
boards didn't offer any network interface, even then it is essential to understand the
idea of how to work with SoCs, so we start our guide here. However, there are many
of the extension boards present, suitable for the standard development boards (so-
called shields) that offer wired and wireless networking for Arduino. Some of the Arduino
development boards nowadays do integrate networking SoC into the one board, i.e.
Arduino Yun. Also, their clones, mostly made by Chinese manufacturers, evolved into
more sophisticated products, integrating, i.e. Arduino Mega 2560 along with ESP8266
SoC into one development board.

Following chapters present the Arduino hardware overview, peripherals and
programming as universal basics for IoT systems development using advanced

28

4.3. Arduino Overview

processors like i.e. ESP:

“Setting Up the Programming Environment”;
= “The Syntax and the Structure of the Program”;
= “Data Types and Variables”;
“Program Control Structures”;
= “Looping”;
= “Interrupts and Sub-Programs”;
“Reading GPIOs, Outputting Data and Tracing”.

4.3.1. Overview of the Hardware Device Used

What is Arduino and Why to Use It?

Arduino is an open-source platform based on easy-to-use hardware and software [40].
The Arduino project was started at the Ivrea Interaction Design Institute in Italy. Initially,
the board aimed at students without a background in electronics and programming, but
now boards are suitable for different IoT applications, wearable, embedded environments
and other.

The Arduino board works by reacting on inputs that are received from various sensors
and, after executing a set of instructions, an output is generated to respond to the
environment. Input can be received by pressing a button, hearing the noise, perceiving
an image of the situation using a camera and many other. The output actions on
the environment are done using output sensors like actuator, blinking LED, audio
device and other. The set of instructions are created using the Arduino programming
language that is based on an open-source programming framework called Wiring and
the Arduino Software (IDE) that is based on Processing.

Arduino microcontrollers can be used both in research and everyday applications. It
is easy to use for people with different backgrounds, from students to experts. The
Arduino Forum [41] is the place where users of Arduino can share their knowledge and
get help and new ideas for developing their project.

The Most Common Arduino Boards

Arduino boards can be divided into six sections depending on their specifications -
entry level, enhanced features, Internet of things, education, wearable, and 3D printing
boards.

The most common boards of Arduino are Uno, Leonardo, Micro, Nano (entry level),
Mega, Pro Mini (enhanced features). Each of the board has different specifications and
therefore, can have different applications.

29

https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/setting_up_programming_environment
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/building_your_first_project
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/data_types_and_variable
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/program_control_structures
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/looping
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interrupts_and_sub-programs
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interacting_with_hardware_devices_and_debugging_the_code

4. IoT Hardware Overview

Arduine Arduino Arduino Arduino Uno Arduino Lecnardo Arduino Mega
Pro Mini Nano Micro

Figure 11: The most common Arduino boards.

4.3.2. Digital Input/Output Pins

Digital input/output (I/O) pins are contacts on the Arduino board that can receive or
transmit a digital signal. The status of the pin can be set either to 0 that represents LOW
signal or to 1 - HIGH signal. The maximum current of the pin output is 40 mA.

Table 4: The Comparison of Arduino Boards by the Digital I/O Pin Number

Uno Leonardo Micro Mega Nano Pro Mini

Digital /0 14 20 20 54 22 14

4.3.3. Pulse Width Modulation

Pulse Width Modulation (PWM) is a function of a pin to generate a square wave signal,
with a variable length of the HIGH level of the output signal. The PWM is used for digital
pins to simulate the analogue output.

Table 5: The Comparison of Arduino Boards by the Digital PWM Pin Number

Uno Leonardo Micro Mega Nano Pro Mini

PWM 6 7 7 12 6 6

4.3.4. Analog Pins

Analog pins convert the analogue input value to a 10-bit number, using Analog Digital
Converter (ADC). This function maps the input voltage between 0 and the reference
voltage to numbers between 0 and 1023.

By default, the reference voltage is set to a microcontroller operating voltage. Usually,
it is 5 V or 3.3 V. Also, other internal or external reference sources can be used, for
example, AREF pin.
Table 6: The Comparison of Arduino Boards by the Analog Pin Number
Uno Leonardo Micro Mega Nano Pro Mini

Analog pins 6 12 12 16 8 6

30

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/arduino_boards_c_name.jpg

4.3. Arduino Overview

4.3.5. Power and Other Pins

Power pins on the Arduino board connect the power source to the microcontroller
and/or voltage regulators. They can also be used as a power source to the external
components and devices.

The VIN pin is used to connect the external power source to the internal regulator, to
provide the regulated 5 V output. The input voltage of the board must be within the
specific range, mostly between 7 V and 12 V.

The 5V pin is used to supply a microcontroller with the regulated 5 V from the external
source or is used as a power source for the external components in the case when the
board is already powered using the USB interface or the VIN pin.

The 3V3 pin provides the regulated 3.3 V output for the board components and external
devices. The GND (ground pin) is where the negative terminal of the power supply is
applied.

The Reset pin and the reset button are used to reset the Arduino board and the
program. Resetting using the reset pin is done by connecting it to the GND pin.

4.3.6. Memory

There are three different types of memory on the Arduino board: flash memory, SRAM
and EEPROM.

The flash memory stores the Arduino code, and it is a non-volatile type of memory. That
means the information in the memory is not deleted when the power is turned off.

The SRAM (static random access memory) is used for storing values of variables when
the program of Arduino is running. This is the volatile memory that keeps information
only until the power is turned off, or the board is reset.

The EEPROM (electrically erasable programmable read-only memory) is a non-volatile
type of memory that can be used as the long-term memory storage.

Table 7: The Comparison of Arduino Boards by Memory Size

Uno Leonardo Micro Mega Nano Pro Mini

Flash (kB) 32 32 32 256 32 32
SRAM (kB) 2 2 25 8 2 2
EEPROM (kB) ‘1 1 1 4 1 1

4.3.7. Interface

Communication interfaces for Arduino are used to send and receive information to and
from other external devices. Standard interfaces for Arduino are USB, UART, I12C (two
wire interface), SPI, Ethernet and WiFi.

31

4. IoT Hardware Overview

Table 8: The Comparison of Arduino Boards by Interface Available

Uno Leonardo Micro Due Nano Pro Mini

usB 1USBB 1Micro 1 Micro 1USBB 1 Mini -
UART 1 1 1 4 1 1
Wire(I2¢) 1 1 1 1 1 1
SPI 1 1 1 1 1 1

4.3.8. Size of the Board

Arduino microcontrollers have different dimensions of the board, depending on the
components that are located on the board.

Table 9: The Comparison of Arduino Boards by the Size of the Board

Uno Leonardo Micro Mega Nano Pro Mini

Size (mm) 68.6 x 53.4 68.6 x 53.3 48 x 18 101.52 x 53.3 18 x 45 18 x 33

4.3.9. Arduino Shields

Arduino shields are the extension boards that can be plugged on top of the Arduino
board extending its capabilities. The shields can give additional functionality to the
Arduino board. There are multiple categories of the Arduino shields [42] - prototyping,
improving connectivity, displays and cameras, sound and motor driver shields.

Prototyping shields - are shields that do not give Arduino the additional functionality,
but help with the wiring. Some example prototyping shields are ProtoShield, ProtoScrew
Shield, Go-Between Shield, LiPower Shield, Danger Shield, Joystick Shield and microSD
Shield.

Figure 12: Prototype shield.

Connectivity shields - are shields that can add new functionalities to the Arduino board
like Ethernet, WiFi, Wireless, GPS, etc. Example shields are Arduino Ethernet Shield,
WiFly Shield, Arduino Wi-Fi Shield, Electric Imp Shield, XBee Shield, Cellular Shield
SM5100B and GPS Shield.

32

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_prototyping_c.jpg

4.3. Arduino Overview

Figure 13: Arduino wifi shield MKR WIFI 1010.

Displays and camera shields - can provide Arduino with an LCD screen or add a
camera. Example shields are Color LCD Shield, EL Escudo and CMUcam.

Figure 14: SparkFun Color LCD Shield.

Sound shields - give the functionality to Arduino to play MP3 files, add speakers, listen
to audio and sort it into different frequencies, etc. Example shields are MP3 Player Shield,
Music Instrument Shield, Spectrum Shield and VoiceBox Shield.

Figure 15: SparkFun MP3 Player Shield.

Motor driver shields - allow Arduino to control DC motors, Servo motors, Stepper
motors. Examples are Ardumoto Motor Driver Shield, Monster Moto Shield and PWM
Shield.

33

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/arduino_mkr_1010_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_display_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_sound_2_c.jpg

4. IoT Hardware Overview

Figure 16: Adafruit Servo shield.

4.3.10. Sensors and Sensing

A sensor is an element which can turn a physical outer stimulus into an output signal
which then can be used for further analysis, the management or decision making. People
also use sensors like eyes, ears and skin for gaining information about the outer world
and act accordingly to their aims and needs. Sensors can be divided into multiple
categories by the parameter that is perceived from the environment.

Input from
environment

\..*
—— > Sensor —— /\/
//T

' Figure 17: Environment sensing data flow.

Output signal

Usually, every natural phenomenon - temperature, weight, speed, etc. - needs specially
customised sensors which can change every phenomenon into electronic signals that
could be used by microprocessors or other devices. Sensors can be divided into many
groups according to the physical nature of their operations — touch, light, an electrical
characteristic, proximity and distance, angle, environment and other sensors.

Touch Sensors

Button

A pushbutton is an electromechanical sensor that connects or disconnects two points in
a circuit when the force is applied. Button output discrete value is either HIGH or LOW.

34

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/shield_servo_c.jpg
https://home.roboticlab.eu/lib/exe/fetch.php?tok=eac4af&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsensor2.png

4.3. Arduino Overview

Figure 18: Pushbutton.

A microswitch, also called a miniature snap-action switch, is an electromechanical
sensor that requires a very little physical force and uses tipping-point mechanism.
Microswitch has three pins, two of which are connected by default. When the force is
applied, the first connection breaks and one of the pins is connected to the third pin.

Figure 19: Microswitch.

The most common use of a pushbutton is as an input device. Both force solutions can be
used as simple object detectors, or as end switches in the industrial devices.

Arduino
Uno

5V

D2

GND

ok |

—

—"

Figure 20: Schematics of Arduino Uno and a push button.

An example code:

int buttonPin = 2;
int buttonState =

void setup ()
Serial.begi

pinMode (buttonPin, INPU

}

void loop () {

//Read the

} else {
Serial.println("The

}
delay(10);

{
n(9600) ;

= !digita

he push button v

Read (buttonPin) ;

s pressed

d.

button state is HIGH - it is pressed.");

button state is LOW - it is not pressed.");

between

"eads ror s

tability

35

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/push_button_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/micro_switch_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c687d8&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_button.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

Force Sensor

A force sensor predictably changes resistance, depending on the applied force to its
surface. Force-sensing resistors are manufactured in different shapes and sizes, and they
can measure not only direct force but also the tension, compression, torsion and other
types of mechanical forces. The voltage is measured by applying and measuring constant
voltage to the sensor.

Force sensors are used as control buttons or to determine weight.

()

*

Figure 21: Force sensitive resistor (FSR).

5V 10k
Arduino
Uno A0
oNDf— 7]
Figure 22: The voltage is measured by applying and measuring constant voltage to the
sensor.

An example code:

9600) ;

Fhe FOR

je (fsrPin, INPUT) ;

Serial.println(fsrReading);
delay (10);

36

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/preasure_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=b61287&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_fsr.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

Capacitive Sensor

Capacitive sensors are a range of sensors that use capacitance to measure changes in
the surrounding environment. A capacitive sensor consists of a capacitor that is charged
with a certain amount of current until the threshold voltage. A human finger, liquids or
other conductive or dielectric materials that touch the sensor, can influence a charge
time and a voltage level in the sensor. Measuring charge time and a voltage level gives
information about changes in the environment.

Capacitive sensors are used as input devices and can measure proximity, humidity, fluid
level and other physical parameters or serve as an input for electronic device control.

Figure 23: Touch button module.

—LOGND

. 5V \Yelo]

Arduino D2 SIG
Uno

GND
Figure 24: Arduino and capacitive sensor schematics.

sto

lastState = LOW;

1 co

600) ;7

(currentState IGH && lastState == LOW) {
Serial.println("Sensor is pressed");
delay(10); delay

e D e

ilous state to

currentState;

see

lastState

37

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/touch_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4a2d9d&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_capacitive.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

}

Light Sensors

Photoresistor

A photoresistor is a sensor that perceives light waves from the environment. The
resistance of the photoresistor is changing depending on the intensity of light. The higher
is the intensity of the light; the lower is the resistance of the sensor. A light level
is determined by applying a constant voltage sensor and measuring it. Photodiodes,
compared to photoresistors, are slower and more influenced by temperature; thus, they
are more imprecise.

Photoresistors are often used in the energy effective street lightning.

A=A

Figure 25: A photoresistor symbol.

=¥

Figure 26: A photoresistor.

5V 10k
Arduino A0
Uno \;\
GND

Figure 27: Arduino and photoresistor sensor schematics.

An example code:

/Define an analog A0 pin for photoresistor
int photoresistorPin = A0;
'/The analog reading from the photoresistor

int photoresistorReading;

Begir

egin (9600) ;

> (photoresistorPin, INPUT);

https://home.roboticlab.eu/lib/exe/fetch.php?tok=39b514&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphotoresistor2.gif
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photoresistor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4a96c1&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_photoresistor.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

photoresistorReading d (photoresistorPin) ;
//Print out value of ¢t} sistor reading to the serial monitor

1 (photoresistorReading) ;

Serial.print
delay (10); //«

aelay

Photodiode

A photodiode is a sensor that converts the light energy into electrical current. A current
in the sensor is generated by exposing a p-n junction of a semiconductor to the light.
Information about the light intensity can be determined by measuring a voltage level.
Photodiodes are reacting to the changes in the light intensity very quickly. Solar cells are
just large photodiodes.

Photodiodes are used as precise light level sensors, receivers for remote control,
electrical isolators and proximity detectors.

Anode | :‘l‘ll Cathode

Figure 28: A photodiode symbol.

&

Figure 29: A photodiode.

5V 10k

Arduino AO \
Uno
N

g
Figure 30: Arduino and photodiode sensor schematics.

An example code:

int photodiodePini

int photodi&deReadiﬁg;

egin (9600) ;

39

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=e7fb29&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphotodiode_symbol.svg_.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/photo_diode.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a12536&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_photodiode.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

1l1ze the analog pin O a pnotodiode as ar

> (photodiodePin, INPUT) ;

}
void loop ()
{
//Read the value of the p} bdiode
photodiodeReading = anal d (photodiodePin) ;
//Print out the value of todiode reading to the serial

Serial.println (photodiodeReading) ;

delay (10); //« delay
}
Phototransistor

A phototransistor is a light controlled electrical switch. In the exposed Base pin received
light level, changes the amount of current, that can pass between two phototransistor
pins - a collector and an emitter. A phototransistor is slower than the photodiode, but it
can conduct more current.

Phototransistors are used as the optical switches, proximity sensors and electrical
isolators.

Collector
c

E
Emitter

Figure 31: A phototransistor symbol.

@

Figure 32: An phototransistor.

5V 10k

Arduino

Uno Al

GND —@—
N\

Figure 33: Arduino and phototransistor schematics.

An example code:

int phototransistorPin = Al;

/The analog reading from the phototransistor

40

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=24cc66&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fphototrans.jpg
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/phototransitor.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3e52b0&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_phototransistor.png

4.3. Arduino Overview

int phototransistorReading;

void setup ()

{

[ele

Serial.begin (9600);

e the analoa pin of a phototrransistor as an inpiut
1ze the ar ¢ of a phototransistor as an input

> (phototransistorPin, INPUT);

//Read the value of the

phototransistorReading = d (phototransistorPin) ;

//Print out the value of ransistor reading to the serial monitor
Serial.println(phototransistorReading) ;

delay (10); // delay

Electrical Characteristic Sensors

Electrical characteristic sensors are used to determine whether the circuit of the device
is working properly. When the voltage and current sensors are used concurrently, the
consumed power of the device can be determined.

Voltage Sensor

A voltage sensor is a device or circuit for voltage measurement. A simple DC (direct
current) voltage sensor consists of a voltage divider circuit with the optional amplifier for
very small voltage occasions. For measuring the AC (alternating current), a transformer
is added to a lower voltage; then it is connected to the rectifier to rectify AC to DC, and
finally, an optoelectrical isolator is added for measuring circuit safety.

A voltage sensor can measure electrical load and detect a power failure. Examples of IoT
applications are monitoring of appliance, line power, power coupling, power supply and
sump pump.

Figure 34: Voltage sensor module 0-25 V.

5V

Arduing q@ y WCC + \oltage
Uno Al e + @

L_@S = J source

Figure 35: Arduino and voltage sensor schematics.

GND

41

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/voltage_sen_sch_hd.jpg?id=en%3Abook

4. IoT Hardware Overview

The example code:

int voltageReading;

float vout = 0.0;
float vin = 0.0;
float R1 = 30000.0;

float R2 = 7500.0; //

void loop ()

{
voltageReading d(voltagePin) ;
vout = (voltageReading * 5.0) / 1024.0;

vin = vout / (R2/(R1+R2));

("Voltage is: ");

the value of the

Serial.print

Serial.println(vin);
delay(10); g rt delay

Current Sensor

A current sensor is a device or a circuit for current measurement. A simple DC sensor
consists of a high power resistor with low resistance. The current is obtained by
measuring the voltage on the resistor and applying formula proportional to the voltage.
Other non-invasive measurement methods involve hall effect sensors for DC and AC and
inductive coils for AC. Current sensors are used to determine the power consumption, to
detect whether the device is turned on, short circuits.

Figure 36: Analog current meter module 0-50 A.

Power
5V supply
Arduino —| rTOGND 6]

A0 ouT
Uno LA - ol—
GND Load

Figure 37: Arduino and current sensor module schematics.

42

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/current_sen_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=4e445a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_current.png

4.3. Arduino Overview

The example code:

) pin For

t int currentPin = AOQ;

e factor of the sensor use 100 for 20 A Module and 66 for 30 A

int mVperAmp = 185;
int currentReading;
int ACSoffset = 2500;
double Voltage;

double Current;

currentReading = analogRead (currentPin);

Voltage = (currentReading / 1024.0) * 5000;

Current = ((Voltage - ACSoffset) / mVperAmp) ; rrent value
Serial.print ("Raw Value = "); re— 11led 11lue

Serial.print (currentReading) ;

Serial.print ("\t Current = ");

131 S ftay Nt

allows to

ar r Ccu

Serial.println(Current, 3);
delay (1000); //Short delay

Proximity and Distance Sensors

Optocoupler

An optocoupler is a device that combines light emitting and receiving devices. Mostly it
is a combination of the infrared light-emitting diode (LED) and a phototransistor. Other
optical semiconductors can be a photodiode and a photoresistor. There are two main
types of optocouplers:

= an optocoupler of a closed pair configuration is enclosed in the dark resin and is
used to transfer signals using light, ensuring electrical isolation between two circuits;

= a slotted optocoupler has a space between the light source and the sensor, light
can be obstructed and thus can influence the sensor signal. It can be used to detect
objects, rotation speed, vibrations or serve as a bounce-free switch;

= a reflective pair configuration the light signal is perceived as a reflection from
the object surface. This configuration is used for proximity detection, surface colour
detection and tachometer.
=

Figure 38: An optocoupler symbol.

43

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3b887a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Foptocoupler.jpg

4. IoT Hardware Overview

Figure 39: ELITR9909 reflective optocoupler sensor.

5V & o)
o =
Arduino
Uno A0 h
—
ool @=0)
B —

Figure 40: Arduino Uno and optocoupler schematics.

An example code:

int optoPin = AOQ;
int optoReading; /

int objecttreshold = 1000;
int whitetreshold = 150;

void setup ()

Serlal begln(96OOL

ize the ar

lode (optoPin, INPUT)

3egin

void loop ()
{

optoReading = analogRead (optoPin) ; ‘Read]
Serial.print ("The reading of the optocoupler sensor is: ");

Serial.println (optoReading) ;

if (optoReadlng < objecttreshold) {
Serlal pIAAfln ("There is an object in front of the sensor'");

Serial.pr
} else { /
Serial.prin

the readi

tln ("Object is in dark colour'

}
else { //When
Serial.print

delay (500);

btocoupler

shold

44

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/elitr9909_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c21c56&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_optocoupler.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

Infrared Sensor

Infrared (IR) proximity sensor is used to detect objects and to measure the distance
to them, without any physical contact. IR sensor consists of an infrared emitter, a
receiving sensor or array of sensors and a signal processing logic. The output of a sensor
differs depending on the type - simple proximity detection sensor outputs HIGH or LOW
level when an object is in its sensing range, but sensors which can measure distance
outputs an analogue signal or use some communication protocol, like I2C to send sensor
measuring results. IR sensors are used in robotics to detect obstacles starting from few
millimetres to several meters and in mobile phones to help detect accidental button
touching.

Figure 41: Distance Sensor GP2Y0OA21YKOF.

5v O
Arduino roout
Uno AO =OGND
rovce O
GND

Figure 42: Arduino and IR proximity sensor circuit.

An example code:

int irPin = AOQ;

int irReading;

void setup ()

Serial.begin (9600);

lize the ar

> (irPin, INPUT);

//Read

irReading

Serial.pri
delay (10); //«

Ultrasound Sensor

Ultrasound (ultrasonic) sensor measures the distance to objects by emitting ultrasound
and measuring its returning time. The sensor consists of an ultrasonic emitter and

45

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sharp_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c30208&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_ir_prox.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

receiver; sometimes, they are combined in a single device for emitting and receiving.
Ultrasonic sensors can measure greater distances and cost less than infrared sensors,
but are more imprecise and interfere which each other measurement if more than one
is used. Simple sensors have trigger pin and echo pin, when the trigger pin is set high
for the small amount of time ultrasound is emitted and on echo pin, response time is
measured. Ultrasonic sensors are used in car parking sensors and robots for proximity

detection.

Figure 43: Ultrasonic proximity sensor HC-SR04.

Examples of 1oT applications are robotic obstacle detection and room layout scanning.

L+DVCC<:::)
Arduino D2 OTrig
Uno D4 © Echo
4aGND<:::>
GND —r

Figure 44: Arduino and ultrasound proximity sensor circuit.

5V

An example code:

I
N

int trigPin =
int echoPin = 4;

void setup ()

{

Serial.begin (9600) ;
(trigPin, OUTPUT);
> (echoPin, INPUT);

void loop ()

digitalWrite (trigPin, LOW); //Clear the trigPin
Is(2);

Is (10) ;
rite(trigPin, LOW);

return the

in, return

pulseln (echoPin,

HIGH) ;

1c ing the di e

distance= duration*0.034/2;

nce on

"Distance: ");

Serial.println(distance);

46

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/ultrasound_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=8c3b55&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_ultrasound_proximity.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

Motion Detector

The motion detector is a sensor that detects moving objects, most people. Motion
detectors use different technologies, like passive infrared sensors, microwaves and
Doppler effect, video cameras and previously mentioned ultrasonic and IR sensors.
Passive IR sensors are the simplest motion detectors that sense people trough detecting
IR radiation that is emitted through the skin. When the motion is detected, the output of
a motion sensor is a digital HIGH/LOW signal.

Motion sensors are used for security purposes, automated light and door systems. As an
example in IoT, the PIR motion sensor can be used to detect motion in security systems
a house or any building.

A

Gy
o

=

Figure 45: PIR motion sensor.

5V _l
Arduino rovec
D2 ©0UuT
Uno r | SGND
GND

Figure 46: Arduino and PIR motion sensor circuit.

An example code:

(9600) ;

je (pirPin, INPUT);

("Digital reading
1t1ln (pirReading) ;

if (pirReading == HIGH) {
Serial.println("Motion Detected");

}

47

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/movemtn_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=1fadf0&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_pir_motion_detector.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

delay (10);
}

Angle Sensors

Potentiometer

A potentiometer is a type of resistor, the resistance of which can be adjusted using a
mechanical lever. The device consists of three terminals. The resistor between the first
and the third terminal has fixed value, but the second terminal is connected to the lever.
Whenever the lever is turned, a slider of the resistor is moved, it changes the resistance
between the second terminal and side terminals. Variable resistance causes the change
of the voltage variable, and it can be measured to determine the position of the lever.
Thus, potentiometer output is an analogue value.

Potentiometers are commonly used as a control level, for example, a volume level for the
sound and joystick position. They can also be used for angle measurement in feedback
loops with motors, for example, in servo motors.

7

Figure 47: A symbol of potentiometer.

Figure 48: A potentiometer.

5V

Arduino
Uno AO
GND

Figure 49: Arduino and potentiometer circuit.

An example code:

int potentioPin

'The analog read

48

https://home.roboticlab.eu/lib/exe/fetch.php?tok=aa22eb&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fpotentiometer_symbol_europe.svg.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/potentiometer_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=8d30b1&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_potentiometer.png

4.3. Arduino Overview

Serial.begin (9600) ;

potentiometer
> (potentioPin, INPUT) ;

he analog value of the potentiometer sensor
potentioReading = analogRead (potentioPin) ;
Serial.print ("Potentiometer reading = "); //Print out
Serial.println(potentioReading) ;
delay (10);

}

The Inertial Measurement Unit (IMU)

An IMU is an electronic device, that consist of accelerometer, gyroscope and sometimes
also a magnetometer. Combination of these sensors returns the orientation of the object
in 3D space.

A gyroscope is a sensor that measures the angular velocity. The sensor is made of the
microelectromechanical system (MEMS) technology and is integrated into the chip. The
output of the sensor can be either analogue or digital value of information, using 12C or
SPI interface. Gyroscope microchips can vary in the number of axes they can measure.
The available number of the axis is 1, 2 or 3 axes in the gyroscope. For gyroscopes with 1
or 2 axes, it is essential to determine which axis the gyroscope measures and to choose
a device according to the project needs. A gyroscope is commonly used together with an
accelerometer, to determine the orientation, position and velocity of the device precisely.
Gyroscope sensors are used in aviation, navigation and motion control.

A magnetometer is the sensor, that can measure the orientation of the device to the
magnetic field of the Earth. A magnetometer is used in outdoor navigation for mobile
devices, robots, quadcopters.

An accelerometer measures the acceleration of the object. The sensor uses a
microelectromechanical system (MEMS) technology, where capacitive plates are attached
to springs. When acceleration force is applied to the plates, the capacitance is changed;
thus, it can be measured. Accelerometers can have 1 to 3 axis. On 3-axis, the
accelerometer can detect orientation, shake, tap, double tap, fall, tilt, motion,
positioning, shock or vibration of the device. Outputs of the sensor are usually digital
interfaces like I12C or SPI. For precise measurement of the object movement and
orientation in space, the accelerometer is often used together with a gyroscope.
Accelerometers are used for measuring vibrations of cars, industrial devices, buildings
and to detect volcanic activity. In IoT applications, it can be used as well for accurate
motion detection for medical and home appliances, portable navigation devices,
augmented reality, smartphones and tablets.

Figure 50: IMU BNOO55 module.

49

http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_c.jpg?id=en%3Abook

4. IoT Hardware Overview

(-}

BV L Vin
Arduino Ad % (351lrh;|o[:l
Ura A5 He) SDA
) SCL
GND @® RST

Figure 51: Arduino Uno and IMU BNOO55 module schematics.

The example code:

#include
- I Fre hEtpa

#include <Adafruit_ Sensor.h>

/ ded fre https itht
#include <Adafruit_BNO055.h>
#include <utility/imumaths.h>

Adafruit BNO055 bno = Adafruit BNO055(55);
void setup (void)

{

bno.setExtCrystalUse (true);

}

void loop (void)

//Read sensor data
sensors_event_t event;
bno.getEvent (&event) ;

nt e

Serial.
Serial.pri
Serial.pri
Serial.pri
Serial.pri
Serial.prin

.orientation.x, 4);
wy .

)i
.orientation.y, 4);
")
.orientation.z, 4);

Serial.pri
delay (10
}

Environment Sensors

Temperature Sensor

A temperature sensor is a device that is used to determine the temperature of the
surrounding environment. Most temperature sensors work on the principle that the
resistance of the material is changed depending on its temperature. The most common
temperature sensors are:

= thermocouple - consists of two junctions of dissimilar metals,

50

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/imu_sch_hd.jpg?id=en%3Abook
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

= thermistor - includes the temperature-dependent ceramic resistor,
= resistive temperature detector - is made of a pure metal coil.

The main difference between sensors is the measured temperature range, precision
and response time. Temperature sensor usually outputs the analogue value, but some
existing sensors have a digital interface [43].

The temperature sensors most commonly are used in environmental monitoring devices
and thermoelectric switches. In IoT applications, the sensor can be used for greenhouse
temperature monitoring, warehouse temperature monitoring to avoid frozen fire
suppression systems and tracking temperature of the soil, water and plants.

3
Figure 52: Thermistor.
5V 10k
Arduino
Uno AO
onD—{ 7]
tO

Figure 53: Arduino and thermistor circuit.

An example code:

int thermoPin

int thermoReading;

Serial.begin (9600) ;

(thermoPin, INPUT);

void loop (v

id) |

d tF

jRead (thermoPin) ;

thermoReading = anal

Serial.print ("Thermistor reading = "); //Print out
Serial.println(thermoReading) ;
delay (10);

}

Humidity Sensor

A humidity sensor (hygrometer) is a sensor that detects the amount of water or water
vapour in the environment. The most common principle of the air humidity sensors is
the change of capacitance or resistance of materials that absorb the moisture from the

51

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/thermistor.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=eb787c&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_thermistor.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

environment. Soil humidity sensors measure the resistance between the two electrodes.
The resistance between electrodes is influenced by soluble salts and water amount in the
soil. The output of a humidity sensor is usually an analogue signal value [44].

Example IoT applications are monitoring of humidor, greenhouse temperature and
humidity, agriculture, art gallery and museum environment.

Figure 54: Temperature and humidity sensor module.

5V
. FOVCC
Arduino D7 | I LoouT

Uno I—-QGND

GND

Figure 55: Arduino Uno and humidity sensor schematics.

An example code [45]:

#include <dht.h>
dht DHT;

#define DHT PIN 7

void setup () {
Serial.begin(9600);

}

void loop ()
{
int chk = DHT.readll (DHT_PIN) ;

Serial.print ("Humidity = ");
Serial.println (DHT.humidity);
delay(1000) ;

}

Sound Sensor

A sound sensor is a sensor that detects vibrations in a gas, liquid or solid environments.
At first, the sound wave pressure makes mechanical vibrations, who transfers to changes
in capacitance, electromagnetic induction, light modulation or piezoelectric generation to
create an electric signal. The electrical signal is then amplified to the required output
levels. Sound sensors, can be used to record sound, detect noise and its level.

Sound sensors are used in drone detection, gunshot alert, seismic detection and vault
safety alarm.

52

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/humidity_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a60066&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_humidity.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

Figure 56: Digital sound detector sensor module.

5V
; —OGND
Arduino
Uno D7 NM-OOoUT O
5v
GND

Figure 57: Arduino Uno and sound sensor schematics.

An example code:

soundReading igita d (soundPin) ;
if (soundPin==LOW) { souna
Serial.println("Sound detec
} else { / >und
Serial.pri

ted!");
the sound is not det
tln ("Sound not detected!");

}
delay(10);

Chemical/Smoke and Gas Sensor

Gas sensors are a sensor group, that can detect and measure a concentration of certain
gasses in the air. The working principle of electrochemical sensors is to absorb the
gas and to create current from an electrochemical reaction. For process acceleration, a
heating element can be used. For each type of gas, different kind of sensor needs to be
used. Multiple different types of gas sensors can be combined in a single device as well.
The single gas sensor output is an analogue signal, but devices with multiple sensors
used to have a digital interface.

Gas sensors are used for safety devices, to control air quality and for manufacturing
equipment. Examples of IoT applications are air quality control management in smart
buildings and smart cities or toxic gas detection in sewers and underground mines.

53

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/sound_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=f21aee&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_sound.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

f'v

Figure 58: MQ-7 gas sensor.

5V
Arduino
Uno A0
GND |—

Figure 59: Arduino Uno and MQ2 gas sensor schematics.

An example code:

int gasPin = A0;
int gasReading;

void setup (void) {

Serial.begin (9600);

P (gasPin, INPUT) ; s t
}
void loop(void) {
gasReading = ~ad (gasPin) ; the geé
Serial.print ("Gas detector value: ");

Serial.println(gasReading);
delay (10); / ort delay

aelay

Level Sensor

A level sensor detects the level of fluid or fluidised solid. Level sensors can be divided
into two groups:

= continuous level sensors that can detect the exact position of the fluid. For the
level detection usually, the proximity sensors, like ultrasonic or infrared, are used.
Capacitive sensors can also be used by recording the changing capacitance value
depending on the fluid level. The output can be either analogue or digital value;

= point-level sensors can detect whether a fluid is above or below the sensor. For the
level detection, float or mechanical switch, diaphragm with air pressure or changes
in conductivity or capacitance, can be used. The output is usually a digital value that
indicates HIGH or LOW value.

Level sensors can be used as smart waste management, for measuring tank levels, diesel

fuel gauging, liquid assets inventory, chemical manufacturing high or low-level alarms
and irrigation control.

54

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gas_senor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=a99a58&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_gas.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

Ty

Figure 60: Liquid level sensor.

5V)
: =
Arduing ==
Uno 6 m 8
ax

GHND il

Figure 61: Arduino Uno and liquid level sensor schematics.

An example code:

int levelPin = 6;
int levelReading;

void setup(void) {
Serial.begin (9600) ;

pinMode (levelPin, INPUT); 1 3 1 t

}

void loop (void) {
levelReading = digitalRead(levelPin); Jigital 1lue of the leve e 7
Serial.print ("Level sensor value: ");

Serial.p
delay(10);
}

tln(levelReading) ;

aelay

Other Sensors

Hall sensor

A Hall effect sensor detects strong magnetic fields, their polarities and the relative
strength of the field. In the Hall effect sensors, a magnetic force influences current flow
through the semiconductor material and creates a measurable voltage on the sides of the
semiconductor. Sensors with analogue output can measure the strength of the magnetic
field, while digital sensors give HIGH or LOW output value, depending on the presence of
the magnetic field.

Hall effect sensors are used in magnetic encoders for speed measurements and magnetic
proximity switches because it does not require contact, and it ensures high reliability.
Example application can be sensing the position of rotary valves.

55

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/level_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/levle_sen_sch_hd.jpg?id=en%3Abook
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

Figure 62: Hall-effect sensor module.

5v
|—-evcc

Arduino
AO GND
Uno I—"—-OOUT

GND
Figure 63: Arduino Uno and Hall sensor schematics.

Thw example code:

int hallPin = AOQ;
int hallReading;

void setup(void) {
Serial.begin (9600) ;

pinMode (hallPin, INPUT); in ¢ an 1 t
}
void loop (void) {
hallReading analogRead (hallPin); 1lue of the 11

"Hall sensor value: ");
n (hallReading) ;

ae

o~ ~

Serial.print
Serial.print
delay (10);

}

1Lay

Global Positioning System

A GPS receiver is a device, that can receive information from a global navigation satellite
system and calculate its position on the Earth. GPS receiver uses a constellation of
satellites and ground stations to compute position and time almost anywhere on the
Earth. GPS receivers are used for navigation only in the outdoor area because it needs
to receive signals from the satellites. The precision of the GPS location can vary.

A GPS receiver is used for device location tracking. Real world applications might be, i.e.,
pet, kid or personal belonging location tracking.

Figure 64: Grove GPS receiver module.

56

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/hall_sensor_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=c7208c&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_hall2.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_c.jpg?id=en%3Abook

4.3. Arduino Overview

5
Arduing 3 9 GND
U) VGO GPS
no 2 _@ RK
SND =) T

Figure 65: Arduino Uno and Grove GPS receiver schematics.

The example code [46]:

#include <SoftwareSerial.h>
SoftwareSerial SoftSerial(2,
unsigned char buffer[64];
int count=0;
void setup ()
{
SoftSerial.begin(9600) ;
Serial.begin(9600);

}

void loop ()
{
if (SoftSerial.available()) /

while (SoftSerial.available())

{
buffer[count++]=SoftSerial.
if (count == 64)break;

}

Serial.write (buffer,count);

1 port

clearBufferArray(); to clear
count = 0;

}

if (Serial.available())

SoftSerial.write (Serial.read());

ion to clear

void clearBufferArray () /,

{

for (int 1=0; i<count;i++)
{

buffer[i]=NULL;
}

4.3.11. Drivers and Driving

Optical Device Drivers and Their Devices

57

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/gps_sch.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

Light-Emitting Diode

The light-emitting diode also called LED is a special type of diodes which emits light,
unlike the other diodes. LED has a completely different body which is made of
transparent plastic that protects the diode and lets it emit light. Like the other diodes
LED conducts the current in only one way, so it is essential to connect it to the scheme
correctly. There are two safe ways how to determine the direction of the diode:

= in the cathodes side of the diode its side is chipped,

= anodes leg usually is longer than the cathodes leg.

@

Figure 66: 5 mm Red LED.

The LED is one of the best light sources. Unlike incandescent light bulb LED transforms
most of the power into light, not warmth; it is more durable, works for a more extended
period and can be manufactured in a smaller size.

The LED colour is determined by the semiconductors material. Diodes are usually made
from silicon then LEDs are made from elements like gallium phosphate, silicon carbide
and others. Because the semiconductors used are different, the voltage needed for the
LED to shine is also different. In the table, you can see with which semiconductor you
can get a specific colour and the voltage required to turn on the LED.

When LED is connected to the voltage and turned on a huge current starts to flow
through it, and it can damage the diode. That is why all LEDs have to be connected to
current limiting resistor.

Current limiting resistors resistance is determined by three parameters:

= I D - current that can flow through the LED,
U_D - Voltage that is needed to turn on the LED,
= U - combined voltage for LED and resistor.
To calculate the resistance needed for a diode, this is what you have to do.
1. Find out the voltage needed for the diode to work UD; you can find it in the diodes
parameters table.

2. Find out the amperage needed for the LED to shine ID; it can be found in the LEDs
datasheet, but if you can't find it then 20 mA current is usually a correct and safe
choice.

3. Find out the combined voltage for the LED and resistor; usually, it is the feeding
voltage for the scheme.

Insert all the values into this equation: R = (U - U_D) / I_D.
5. You get the resistance for the resistor for the safe use of the LED.
Find resistors nominal that is the same or bigger than the calculated resistance.

58

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/led_c.jpg?id=en%3Abook

4.3. Arduino Overview

D8 10k
Arduino
Uno /;(

GND

y

Figure 67: Arduino Uno and LED control schematic.

The example of the blinking LED code:

int ledPin = 8;//Defining the pin of the

void setup ()

{

butput signal to HIGH — LED is working
(ledPin, HIGH) ;

000 ma

v Of

delay(1000) ;

Displays

Using display is a quick way to get feedback information from the device. There are many
display technologies compatible with Arduino. For IoT solutions, low power, easy to use
and monochrome displays are used:

= liquid-crystal display (LCD),

organic light-emitting diode display (OLED),
= electronic ink display (E-ink).
Liquid-Crystal Display (LCD)

LCD uses modulating properties of liquid crystal light to block the incoming light. Thus
when a voltage is applied to a pixel, it has a dark colour. A display consists of layers
of electrodes, polarising filters, liquid crystals and reflector or back-light. Liquid crystals
do not emit the light directly; they do it through reflection or backlight. Because of
this reason, they are more energy efficient. Small, monochrome LCDs are widely used
in devices to show a little numerical or textual information like temperature, time,
device status etc. LCD modules commonly come with an onboard control circuit and are
controlled through parallel or serial interface.

59

https://home.roboticlab.eu/lib/exe/fetch.php?tok=f25408&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_led.png

4. IoT Hardware Overview

Figure 68: Blue 16 x 2 LCD display.

5V 10k
D2 OLED-'
1= [oLED
D3 DB6
DB5
i
Arduino D4 J O08s
Uno D5 052
D11 [ODBO
ORW
D12
GNDh o

Figure 69: Arduino and LCD screen schematics.

The example code:

#include <LiquidCrystal.h> //include LCD library

1c
)

Organic Light-Emitting Diode Display (OLED)

OLED display uses electroluminescent materials that emit light when the current passes
through these materials. The display consists of two electrodes and a layer of an organic
compound. OLED displays are thinner than LCDs, they have higher contrast, and they
can be more energy efficient depending on usage. OLED displays are commonly used
in mobile devices like smartwatches, cell phones and they are replacing LCDs in other
devices. Small OLED display modules usually have an onboard control circuit that uses

digital interfaces like I12C or SPI.

60

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/lcd_display_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=00087a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_lcd.png
http://www.opengroup.org/onlinepubs/009695399/functions/liquidcrystal.html

4.3. Arduino Overview

Figure 70: OLED I2C display.

v LosDA
Arduino A4 LoscL
Uno A5 FO vee

FOGND
GND

Figure 71: Arduino and OLED I2C schematics.

#1nclude <Wire.h>
#include <Adafruit GFX.h>

#include <Adafruit SsSD1306.h>
#define OLED_RESET 4

Adafruit SSD1306 display(OLED RESET) ;

void setup() {

display.b (SSD1306_. SWITCHCAPVCC Ox3C, false);
display.setTextSize (1) ; 51z xt
display. setTextColor(WHITE);

void loop () {

dlsplay = 0);

display. clearDlsplay()
display.print ("Test of the OLED");
display.display () ;

delay(100);

display.clearDisplay () ;

Electronic Ink Display (E-Ink)

E-ink display uses charged particles to create a paper-like effect. The display consists
of transparent microcapsules filled with oppositely charged white and black particles
between electrodes. Charged particles change their location, depending on the
orientation of the electric field, thus individual pixels can be either black or white. The
image does not need the power to persist on the screen; power is used only when the
image is changed. Thus e-ink display is very energy efficient. It has high contrast and
viewing angle, but it has a low refresh rate. E-ink displays are commonly used in e-riders,
smartwatches, outdoor signs, electronic shelf labels.

61

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/oled_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=3b8b00&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_oled.png

4. IoT Hardware Overview

A
moog&
ow
E\Amg
}.éﬂiu

)
£l gmw
Arduino 6 c2g5¢
U D5 o
ne D6 58882
D13
D11
GND

Figure 73: Arduino Uno and E-ink display module schematics.

#include <SmartEink.h>
#include <SPI.h>

E_ink Eink;

Eink.InitEink();

Eink.ClearScreen();//Clear the screen

4, 8 "NOA-Labs.com") ;
"smart-prototyping.com") ;

8 ”0123456789")'

8, "ABCDEFG abcdefg") ;

Eink.EinkP8x16Str (
Eink.EinkP8x16Str (
Eink.EinkP8x16Str (

(

1
10
6,
Eink.EinkP8x16Str (2

’

Eink.RefreshScreen();

void loop ()

Mechanical Drivers

Relay

Relays are electromechanical devices that use electromagnets to connect or disconnect
plates of a switch. Relays are used to control high power circuits with low power circuits.
Circuits are mechanically isolated and thus protect logic control. Relays are used in
household appliance automation, lighting and climate control.

62

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/e-ink_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=2cac75&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_eink.png

4.3. Arduino Overview

Figure 74: 1 channel relay module.

device

V1 dovee
D

Arduino
Uno D4 TON
GND

Figure 75: Arduino Uno and 1 channel relay module schematics.

[Ole[

The example code:

#define relayPin 4 //Define the relay pin

void setup ()

{
Serial.begin(9600) ;
pinMode (relayPin, OUTPUT) ;

digitalWrite (relayPin,0);
Serial.println("Relay ON");
delay(2000); // Wait 2 sec

digitalWrite (relayPin,1);
Serial.println("Relay OFF");
delay(2000) ;

Solenoid

Solenoids are devices that use electromagnets to pull or push iron or steel core. They are
used as linear actuators for locking mechanisms indoors, pneumatic and hydraulic valves
and in-car starter systems.

Solenoids and relays both use electromagnets and connecting them to Arduino is very
similar. Coils need a lot of power, and they are usually attached to the power source of
the circuit. Turning the power of the coil off makes the electromagnetic field to collapse
and creates very high voltage. For the semiconductor devices protection, a shunt diode
is used to channel the overvoltage. For extra safety, optoisolator can be used.

63

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/relay_c_2.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=717773&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_relay.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

! .

*fi. i

Figure 76: Solenoid.

A
N
5V VNV g
Arduino D5 o
Uno
GND

Figure 77: Arduino Uno and solenoid schematics.

The example code:

#define solenoidPin 4 //Define the solenoid pin

void setup ()
{
Serial.begin (9600);
nMode (solenoidPin, OUTPUT); /

digitalWrite (solenoidPin,0);
Serial.println("Solenoid ON");

delay(2000); . 2 seconds
digitalWrite (solenoidPin, 1) ; //Turns solenoid off
Serial.println("Solenoid OFF");
delay (2000) ;
}
Speaker

Speakers are electroacoustic devices that convert the electrical signal into sound waves.
A speaker uses a permanent magnet and a coil attached to the membrane. Sound signal,
flowing through the coil, creates the electromagnetic field with variable strength, coil
attracts to magnet according to the strength of the field, thus making a membrane
to vibrate and creating a sound wave. Other widely used speaker technology, called
Piezo speaker, uses piezoelectric materials instead of magnets. Speakers are used to
creating an audible sound for human perception and ultrasonic sound for sensors and

measurement equipment.

64

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/solenoid_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=b59883&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_solenoid.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4.3. Arduino Overview

|

A

a

Figure 78: Speaker 8 Q 0.5 W.

Arduino DS
Uno GND

Figure 79: Arduino Uno and piezzo buzzer schematics.

const int speakerPin = 9; //Define the buzzer pin
void setup ()
{

pinMode (speakerPin, OUTPUT); //Set buzzer

}

tone (speakerrPin, 1000);

delay(1000);
noTone (speakerPin) ; nd
delay(1000); //For 1 s

DC Motor (One Direction)

An electric motor is an electro-technical device which can turn electrical energy into
mechanical energy; motor turns because of the electricity that flows in its winding.
Electric motors have seen many technical solutions over the year from which the simplest
is the permanent-magnet DC motor.

DC motor is a device which converts direct current into the mechanical rotation. DC
motor consists of permanent magnets in stator and coils in the rotor. By applying the
current to coils, the electromagnetic field is created, and the rotor tries to align itself to
the magnetic field. Each coil is connected to a commutator, which in turns supplies coils
with current, thus ensuring continuous rotation. DC motors are widely used in power
tools, toys, electric cars, robots, etc.

o

Figure 80: A DC motorwith gearbox 50 : 1.

65

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/speaker_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=e40285&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_piezo_buzzer.png
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/dc_motor_c.jpg?id=en%3Abook

4. IoT Hardware Overview

-
~J
5v M
Arduino
Uno DS
GND

Figure 81: Arduino Uno and DC motor schematics.

n the mc

#define motON digitalWrite (5,HIGH)
‘'The function for turning off the motor is defined

#define motOFF digitalWrite (5,LOW)
}
void loop ()
{

motON; //Turn on the motor
}

DC Motor With H-Bridge

The H-bridge has earned its name because of its resemblance to the capital *H’ wherein
all the corners there are switches and in the middle - the electric motor. This bridge
is usually used for operating permanent-magnet DC motor, electromagnets and other
similar elements, because it allows operating with significantly bigger current devices,
using a small current. By switching the switches, it is possible to change the motor
direction. It is important to keep in mind that the switches need to be turned on and off
in pairs.

When all of the switches are turned off, the engine is in the free movement. To slow
down faster, the H-bridge is turned on in the opposite direction.

+5\ +5V +5V

l?l?ll(F

\ E AN
Z_x i o A |
+(M)= [+ M)=

1 Iy
Figure 82: The flow of currents in the H-bridge.

If both positive or both negative switches are turned on at the top or at the bottom,
then the engine stops, not allowing to have a free rotation - it is slowed down. The
management can be reflected in Table 10.

When all of the switches are turned off, the engine is in the free movement. Not always it
is enough for robotics, so sometimes the H-bridge is turned on in the opposite direction
to slow the motor down faster - the opposite direction is turned on rapidly.

66

https://home.roboticlab.eu/lib/exe/fetch.php?tok=fb244f&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_dcmotor.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=adb2a3&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fhbridge.png

4.3. Arduino Overview

Table 10: The Management of the H-Bridge Switches

Upper left Upper right Lower left Lower right Motor work mode

Oon Off Off Oon Turns in one direction

Off On On Off Turns in another direction
On On Off Off Braking

Off Off On On Braking

Remember! Neither of these braking mechanisms is good for the H-bridge or the power
source. That is why this action is unacceptable without a particular reason because it can
damage the switches or the power source.

The complicated part is the realisation of switches - if the switches don’t work usually
relays or appropriate power transistors are used. The biggest drawback for relays is that
they can only turn the engine on or off. If the rotation speed needs to be regulated using
the impulse width modulation, then transistors have to be used. MOSFET type transistors
should be used for ensuring a large amount of power. Nowadays, the stable operation
of the bridge is ensured by adding extra elements. The manufactured bridges have one
body, for example, the one that is included in the constructor - L293D.

1— en |~ [+sv}—16
1 2— 1A 1A —15
g 3—] 1y 1Y —14
4 4—GND[o |eNDF—13
5 5 —{GND @ GND|—12
6 6 —] 1Y 1Y —11
7 7—] 1A 1A —10
8 8 —|vce ENF—09

Figure 83: The L293D microchip and its representation in the circuit.

The L293D microchip consists of two H-bridges and is made for managing two motors.
Each pin of the microchip has its function; that is why it is very important not to mix them
up; otherwise, the microchip can be damaged. All pins of the microchip have assigned
a number. The enumeration begins with the special mark on the body: a split, a dot,
a cracked edge, etc., and continues counter-clockwise. When creating a scheme, it is
important to take into account pin numbers and the ones shown in the scheme. If some
additional information about the microchip is necessary, it can be found in the datasheet
of the microchip. Remember that the datasheet can be found by writing the number of
the device (written on the body) and adding the word “datasheet” in the browser.

5V —d LOEN +5V (D
1A 1A
D2 p— | gw Wg

D3

Arduino
Uno

500
222

oo

QO
aZzZ
<00
0O

D4

GND —l O Vee ENO —‘

Figure 84: Arduino Uno and L293D H-bridge schematics.

0
>
s
o

The example code:

67

https://home.roboticlab.eu/lib/exe/fetch.php?tok=b195dc&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fhbridge1.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=50c5fa&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_hbridge.png

4. IoT Hardware Overview

int dirPinl = 7;
int dirPin2 = 8;
int speedPin = 5;

void setup ()
{
ode (dirPinl,OUTPUT) ;
e (dirPin2, OUTPUT)
(speedPin, OUTPUT

)i

logWrite (speedPin, 100);

lue can be frc

0

rite(dirPinl, LOW) ;
ite(dirPin2,HIGH) ;

Stepper Motor

Stepper motors are motors, that can be moved by a certain angle or step. Full rotation
of the motor is divided into small, equal steps. Stepper motor has many individually
controlled electromagnets, by turning them on or off, a motor shaft rotates by one step.
Changing switching speed or direction can precisely control turn angle, direction or full
rotation speed. Because of exact control ability, they are used in CNC machines, 3D
printers, scanners, hard drives etc. Example of use can be found in the source [47].

Figure 85: A stepper motor.

68

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/stepper_c.jpg?id=en%3Abook

4.3. Arduino Overview

5\ +5v D J

Lo 1A 1A
Arduino Do = —
D12

Uno
D11 !

D10
GND_1

Figure 86: Arduino Uno and stepper motor schematics.

The example code:

#include <Stepper.h> //Include library for stepper motor

int inlPin = 12;
int in2Pin = 11;
int in3Pin = 10;
int in4Pin = 9;

OUTPUT
OUTPUT
OUTPUT
OUTPUT

;

)
)i
)
)

;

;

Serial.begin (9600);
motor.setSpeed (20) ;
}

void loop ()

{

motor.step(5);

}

Servomotor

Unlike the simple DC motor, the servomotor is a particular management chain which
allows effortless control over the speed or position of the motor. The management of
the engine is realised using three connections - positive (usually red) and negative
connection (brown or black) of the current as well as the connection for management
(orange or yellow).

For the management, the pulse width technique is used.

69

https://home.roboticlab.eu/lib/exe/fetch.php?tok=2806d3&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_stepper.png
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

20 ms
5V

ov || || || | | | —>

e
1,0t02,0ms
Figure 87: The pulse width modulated signal for the management of servomotor.

From the image, it can be seen that the length of the servomotor impulse cycle is 20
ms, but the impulse length itself is 1 ms or 2 ms. These signal characteristics are true
for the most enthusiast level servomotors, but it should be verified for each module in
the manufacturer specification. Servomotor management chain meets the impulse every
20 ms, but the width of the pulse shows the position that the servomotor has to reach.
For example, 1 ms corresponds to the 0° position but 2 ms - to 180° position against
the starting point. When entering the defined position, the servomotor will keep it and
resist any outer forces that are trying to change the current position. The graphical
representation is in the following image.

1,0 ms

SV - 0°
ov

L | | L | - —

1,5ms

5V - - 90° @
ov

N K Y S Y S A .

2,0ms

5V - - 180°®
ov >

Figure 88: The pulse width modulated signal for different positions of servomotor.

Just like other motors, servomotors have different parameters, where the most
important one is the time of performance - the time that is necessary to change the
position to the defined position. The best enthusiast level servomotors do a 60° turn in
0.09 s. There are three types of servomotors:

= positional rotation servomotor - most widely used type of servomotor. With the
help of a management signal, it can determine the position of the rotation axis from
its starting position;

continuous rotation servomotor - this type of motor allows setting the speed and
direction of the rotation using the management signal. If the position is less than
90°, it turns in one direction, but if more than 90° it turns in the opposite direction.
The speed is determined by the difference in value from 90°; 0° or 180° will turn the
motor at its maximum speed while 91° or 89° at its minimum rate;

= linear servomotor - with the help of additional transfers it allows moving forward
or backward; it doesn't rotate.

Unfortunately, using Arduino, the servomotor is not as easily manageable as DC motor.
For this purpose, a special servomotor management library Servo.h has been created.

70

https://home.roboticlab.eu/lib/exe/fetch.php?tok=4f6ecd&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fservo2.png
https://home.roboticlab.eu/lib/exe/fetch.php?tok=9834d5&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fservo1.png

4.3. Arduino Overview

Figure 89: A servomotor.

Uno FOGND

5V (o
Ardui \Y[ele}
rduino D4 I:P-O

GND

Figure 90: Arduino Uno and servomotor schematics.

The example code:

#include <Servo.h> //Include Servo library
Servo servo; D Servo object

void setup ()

{
servo.attach(6); //Connect servo object to pin D6
servolLeft.write (90); //Set position of servo to 90°
Serial.begin (9600);

}

void loop ()

{
servoLeft.write (
delay(200); /walt
servoLeft.wr
delay(200);

}

4.3.12. IoT Application Example Projects

Many IoT projects developed using an Arduino board can be found in the official Arduino
Project Hub [48]. Here are stored multiple projects that are developed by Arduino
enthusiasts. In many of the following examples, the Arduino Yun board is used, because
it is easy to use a controller that contains the WiFi connection that is necessary for IoT
solutions. Additionally, the Amazon services are used for storing and handling the sensor
data.

One of the IoT projects available at the Arduino Project Hub is the Arduino Home
Controller Activated by Alexa [49] (Alexa is the Amazon Echo dot [50]. Natural
language voice commands are interpreted using Amazon Skill and a Lambda Function in
the AWS. The developed system gives an opportunity to control four lights installed in
the room, garage, kitchen and living room, temperature and humidity, buzzer alarm and
WebCam that takes a security photo and sends it by e-mail.

The Home Security Model [51] is another example to monitor the security status in the
real-time using sensors and internet connection. The system data can be accessed and
controlled remotely using a smart device or a PC. In this project, the Arduino Yun and

71

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/servo_c.jpg?id=en%3Abook
https://home.roboticlab.eu/lib/exe/fetch.php?tok=371a8e&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fgetting_familiar_with_your_hardware_rtu_itmo_sut%2Farduino_and_arduino_101_intel_curie%2Fsch_apz_shemas_servomotor.png
http://www.opengroup.org/onlinepubs/009695399/functions/servo.html
http://www.opengroup.org/onlinepubs/009695399/functions/serial.html

4. IoT Hardware Overview

Arduino Mega controllers are used. The AWS IoT services are used for connecting the
devices around the home. The system includes temperature and humidity, gas, water,
vibration, current and ultrasonic sensors, and it controls the light in multiple rooms and
a buzzer.

The project Plant Monitoring System uses AWS IoT [52] is used for sending
notification informative e-mails about the status of the sensor measurements.

Here is another IoT project about the home automation system, called Arduino based
Amazon Echo using 1Sheeld [53].

Few of the Arduino IoT related projects are also provided on the hackster.io website [54].

The first project that is viewed is the Harry Potter Weasleys' Clock using Bolt IoT
[55]. The idea of this project is taken from the Harry Potter movie where the wall clock
indicated the location of family members. In this modern IoT project, using Arduino Uno
microcontroller, servomotor and Bolt WiFi Module, the clock that using arrow represents
the location of the person that has a smartphone has been developed. The clock and the
tracked smartphone are connected to the Bolt cloud server [56].

4.3.13. Setting Up Development/Experimenting Environment

Using Breadboard

The breadboard is a mechanical base for electronics prototyping. Originally for this
purpose was used the wooden board for cutting bread, that is why the name used now
is the “breadboard”, also know as a solderless breadboard. It is because an electrical
connection on this board can be made without soldering. Thus components can be
reused, and changes to the circuit can be made easily.

Figure 91: 400 point Breadboard.
On the front surface of the breadboard, many small holes are connected on the back of

72

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard2.jpg

4.3. Arduino Overview

the board in a specific pattern using metal clips. These clips hold component leg or wire
in place when they are put into the hole.

As the example, the circuit that contains the LED and resistance is taken.

e
N

Figure 92: The example schematics.

Following the schematics, all the necessary components are connected in the right way
using the breadboard.

| ==nA'Bateery .‘
p
- hianieg vy |_|I

Two side columns of the breadboard are made easily accessible from the rest of the
breadboard and are commonly used for connecting the power to the circuit. Almost any
DC (direct current) power source can be used to power the circuit, like batteries, Arduino
board power pins, AC/DC regulators etc.

Two columns of 5 hole rows are used for connecting components. Extra connections can
be made using wires. The gap in the middle allows using DIP (dual in-line package)
circuits.

More information on breadboards can be found in the SparkFun webpage [57].

Soldering

Soldering is one of the essential skills in the world of electronics. The basic of electronics
can also be a learner without the knowledge of how to solder; however, the soldering
allows to work on more exciting projects and to join a wide range of electronics
enthusiasts. This skill is essential because nowadays the electronic and electrical
equipment is being used more often. The essential element of the knowledge about
electronics is not only the ability to understand the working principles of the electronics
but also the skill to build, repair and supplement the electronic devices.

73

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard_circuit.png?id=en%3Abook
https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/breadboard_fritzing.png?id=en%3Abook

4. IoT Hardware Overview

Materials

The main soldering material is a solder. As the name of the material indicates, it is a
compound of various soft metals and consumable materials, which is usually similar to a
wire, wrapped in a reel or other easy-to-use packaging.

Figure 94: Different packaging of solder.

Different types of solder vary in diameter of the wire and the chemical composition.
The type of solder that is used depends on the task.

According to the chemical composition, the solder is divided into two types: solder
containing lead and lead-free solder. Historically, lead (Pb) is used in combination with
tin (Sn) to ensure lower melting temperatures and better flow, which is essential for good
contact between the parts.

Since 2006, many countries have forbidden using lead-containing solder, caring for the
protection of nature and human health. When lead accumulates in the human body in
significant amounts, it can cause poisoning. For this reason, it is important to remember
- after using lead-containing solder, you should carefully wash your hands.

To avoid the risk of getting lead in the human body, the alternative is to use lead-free
solder. Nevertheless few things need to be taken into account - the melting temperature
of lead-free solder is higher and grip with other materials is lower. For improving the
grip, flux can be used. Some solders already have flux in the core of the wire, so it is not
necessary to buy them separately.

The diameter of the solder wire depends on the size of details that need to be soldered.
The bigger the detail, the bigger the diameter of the solder wire.

Tools

Tools used for soldering are a soldering iron, stand for soldering iron, as well as different
tools for removing solder and keeping parts together.

A soldering iron is an electrical heater that is used for heating the solder to it's
melting temperature. As with all of the electrical devices, the instructions provided by
the manufacturer should be followed when using the soldering iron. For specific tasks,
there are also hot air and gas soldering irons. In this section, only the electric ones will
be described.

There are different types of soldering irons so that they can be effectively used for
diverse tasks. Soldering irons can vary in a shape of the tip, electrical capacity, heating
temperature and control options. However, the primary indicator is the convenience of
use. If the chosen soldering iron is too big, it will be difficult to solder small details. If it
is too small, details probably will not get enough of the heat, and the solder will not stick

74

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/soldering_solder.png?id=en%3Abook

4.3. Arduino Overview

properly to them. For beginners, it is advisable to use a soldering iron with a conical tip.

Figure 95: A soldering iron with the conical tip.
In addition to the soldering iron, there are several useful tools for soldering.

= Solder wick - used for desoldering, removes the extra solder out of the board
or details, it absorbs the melted solder. The solder wick consists of multiple fine,
interlaced lead threads.

S
%
% 1

=

Figure 96: Solder wick.

= Solder vacuum - used for desoldering, removes the extra solder utilising a vacuum.

Figure 97: Solder vacuum.

= Third-hand - a holder of details or other parts. It is especially useful for beginners.

75

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/solder_hammer.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/copper_bride.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/solder_sucker.jpg

4. IoT Hardware Overview

Figure 98: Third hand with the magnifying glass.

Process of Soldering

It is not easy to describe the process of soldering in words, because it is connected with

the

kinesthetic skills of people and the paid attention. However, it is essential to follow

several pieces of advice for good soldering.

10.

Be careful with the hot soldering iron!

The working place should always be clean; it is advisable not to take a meal at the
working place (because of the poisonous nature of the lead in the solder).

It is advisable to use the third hand when it is possible.
If possible, the temperature of the soldering iron should always be around 350 °C.

If there is smoke coming from the soldering iron, the temperature should be
decreased, or it should be turned off completely.

Before soldering, a special soldering iron cleaner (wet sponge or special paste for
cleaning the tip) should be used.

The side of the soldering iron tip should be used when soldering rather than the very
tip of it.

The good contact can be ensured when heating simultaneously both components
that are soldered.

When the detail has been soldered, first the solder wire should be taken off and only
then - the soldering iron.

Good soldering of the detail with the board looks like a tip of the volcano rather than
a ball or messy pile of solder.

In the Figure 99, the correct and incorrect soldering techniques are indicated.

76

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/helping_hand.jpg

4.3. Arduino Overview

*.ﬁ.

g E o’ b e o B . el Excrwecig s i s B e g
Sl B B 0 Y

D L G Oy O O D
e the wddw of b of B o, ™ T Sweet Sl
c aa) Corwacion o @ & cimear 1 B0k e 3)

i o Bt i k.

)

+ Ty T WY 10 T DOnEDaant g 80 Wil) 4t D B ot gy 0 B iy
e—— o P, e
Fa T E ¢ T e i e ey — -
f B | 1Y D Wl caniming o b B on in okt wilh the ing ad L“ T
1 w 4 e ring. P saked i e pont

SOoXK K K A
Dt [t e wicher smighl cario e ime ard by o aggly e 3 5 I

! r it e I H I I
i ey i

w1 g b haam g o whw e 2k updosban

k H | i e H H H
\ ' h u e o]

Figure 99: A visualization of the soldering technique [58].

4.3.14. Arduino Programming Fundamentals

The following sub-chapters cover programming fundamentals in Arduino(C) C/C++,
which complies with the most C/C++ notations and have some specific Arduino
notations. Those who feel comfortable in programming will find these chapter somewhat
introductory, while for these having no or little experience, it highly recommended
covering this introduction. This chapter and its sub-chapters also target ESP and
Raspberry Pi devices on the general level partially, however, in any case, programming
environment configuration is different for every platform even, if Arduino IDE constitutes
the joint part. Refer to the chapters on ESP and Raspberry Pi hardware platforms:

“Setting Up the Programming Environment”;
“The Syntax and the Structure of the Program”;
“Data Types and Variables”;

“Program Control Structures”;

“Looping”;

“Interrupts and Sub-Programs”;

“Timing”;

“Reading GPIOs, Outputting Data and Tracing”.

This manual refers to the particular version of the software
" (here Arduino IDE and related toolkits) available at the
moment of writing of this book, thus accessing specific
features may change over time along with the evolution of
the platform. Please refer attached documentation (if any) and
browse Internet resources to find lates guidances on how to

77

https://home.roboticlab.eu/_detail/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/setting_up_development/soldering_tips.jpg?id=en%3Abook
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/setting_up_programming_environment
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/building_your_first_project
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/data_types_and_variable
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/program_control_structures
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/looping
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interrupts_and_sub-programs
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/timing
https://home.roboticlab.eu/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/interacting_with_hardware_devices_and_debugging_the_code

4. IoT Hardware Overview

L configure development platform, when in doubt.

Setting Up the Programming Environment

Before starting programming the microcontroller, it is necessary to connect it to the
computer.

Connection

Arduino Uno microcontroller is taken as a board for programming example tasks. It
can be connected to a computer, using Universal Serial Bus (USB) port, using the
appropriate USB cable. A microcontroller can be used together with a prototyping board
or a robot. In the simplest programming tasks, it can be used as an independent device.

Power

The microcontroller has to be powered via an external power supply or USB port. The
microcontroller determines the power source automatically. If external power supplies
other than USB are used, GND and VIN ports should be used to connect the power
supply. The manufacturer recommends the use of a voltage of 7-12 V to ensure a normal
operation of the microcontroller. If the voltage is exceeded, before reaching 20 V, then
the power supply circuits of the microcontroller may get overheated. If the supply voltage
is lower than 7 V, then the microcontroller may function unstable, and the result will be
unpredictable.

In addition to the above mentioned, the microcontroller can provide a small power supply
for external circuits by connecting them according to the microcontroller pins.

Table 11: The Power Pins of Arduino UNO

Pin Description

The input of a power supply when a USB port is not used, i.e., an external power

VIN .
supply is used

5V A regulated 5 V power supply, which can be provided via both USB and VIN

A 3.3 V supply voltage for external circuits. The maximum current that this
3.3V output can provide is 50 mA. If it is exceeded, the power supply circuits of the
microcontroller may be permanently damaged

GND Ground or port 0

Inputs/Outputs

Each of the 14 digital inputs/outputs (I/O) of the microcontroller can be used to send or
receive signals using the pinMode(), digitalWrite() and digitalRead() commands, which
will be more detailed discussed in the chapter about the basics of programming. All I/O
operate in the range of 0 V to 5 V. Each of the I/O is capable of receiving or sending no
more than 40 mA of current. They all have internal load resistors in the range of 20-50
kQ.

78

4.3. Arduino Overview

Descriptions of other microcontroller pin and their specific use are explained below. In
addition to these I/0, the microcontroller also provides other specific functions that will
be described below.

Table 12: Specific I/O Pins of Arduino UNO

Pin Description

Serial I/0 for serial communication. RX is used for receiving data,
and TX for sending data to external devices. For data transmitting and
receiving, the voltage must not exceed 5V

0(RX) and
1(TX)

External interrupt pins that can be used to receive an external
2and 3 interrupt in cases when the value is low, the value is changed, etc. For
this functionality the function attachInterrupt() is used

Pulse Width Modulation (PWM) pins are used to provide 8-bit PWM

PV\QM:lg’ f’l 6 signal that often can be used for motor control or other specific use
e cases. For this functionality the analogWrite() function is used
SPI: 10(SS),

11(MOSI), Pins that support Serial Peripheral Interface (SPI) communications.
12(MISO), For this feature, the SPI library is used
13(SCK)

This pin is used to manage the built-in LED. LED can be turned on by
setting the value of pin HIGH and turned off by setting pin value LOW

Two Wire Interface (TWI) pins, Serial Data Line (SDA) and Serial
Clock Line (SCL), are the alternative of the data exchange using serial

LED: 13

A4(SDA) and

A5(SCL) communication. For supporting TWI, the Wire library should be used
It is the reference voltage for the analogue inputs. For this functionality
AREF .
analogReference() is used
Reset Gives the opportunity to reset the microcontroller by setting this pin to

LOwW

Installing the Programming Environment

To start the development of software for a microcontroller, it is necessary to install and
properly configure the development environment that consists of the program editor and
the Arduino UNO driver. Below are described all the steps that are needed to prepare the

Step 1. Preparing Arduino UNO and the USB Cable

Before installing the programming environment, it is necessary to prepare the Arduino
UNO board and the USB cable for connecting the board to the computer.

79

4. IoT Hardware Overview

Figure 100: The Arduino UNO board.

Figure 101: USB B cable for Arduino UNO.
Step 2. Downloading the Arduino Software Development Environment
The open-source Arduino Software (Integrated development environment (IDE)) can be

found in the official Arduino website [59]. The appropriate installation file depends on the
QS of the computer and the access rights of the user.

Download the Arduino IDE

Windows Installer
Windows zIP file for non admin install
ARDUINO 1.8.5 Windows app Requires Win 81 or 10

The open-source Arduino Software (IDE) makes it easy T0 Get B

write code and upload it to the board. It runs on
% v ows, Mac OS X, and Linux. The environment is MﬂC os Xm] (DG EaET
W 2N in Java and based on PVDCESSHIgi'&C other open-
source s
This software can be used with any Arduino board Linux 32 bits
Refer to the Getting Started page for Installation Linux 64 bits
instructions.

Linux ARm

Release Notes
Source Code
Checksums (shaS12)

Figure 102: Downloading the installation file for Windows QS from Arduino original
website.

80

https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/arduino_uno_top_c.jpg
https://home.roboticlab.eu/_media/en/iot-open/getting_familiar_with_your_hardware_rtu_itmo_sut/arduino_and_arduino_101_intel_curie/programming_fundamentals_rtu/usb_b.jpg
https://home.roboticlab.eu/lib/exe/fetch.php?tok=07ea1e&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Farduinoide.png

4.3. Arduino Overview

For Windows QS, the Windows Installer should be clicked, and then the file should be
saved on the computer. When the installation file has downloaded, the file should be run.
If the ZIP file was downloaded, it is necessary to unarchive it and to run the installer.
Follow the instructions of the installer. If the operating system asks for permission to
install the driver of the board - allow it.

It is also possible to use Arduino Web Editor (can be found on the same website) to work
online with the Arduino board, but this option will not be considered in this manual.

ARDUINO WEB EDITOR
St

b Ed

art coding online w

lib ort for ni uing boar Th 10
Web Editor is one of the Arduino Create platform's tools.

©. O

Try It Now
Getting Started

Figure 103: Arduino Web Editor.
Step 3. Connecting to Arduino

Using USB cable, Arduino needs to be connected to a free USB port of a computer.
The blue LED on the Arduino board starts to shine continuously. Aforementioned is the
indicator that the Arduino board is working.

The green LED will blink, and that will indicate the performance of the manufacturer test
software. In case if the green LED is not flashing, it is not an error.

Step 4. Starting Up the Programming Environment

The Arduino programming environment can be started with the double-click on the
desktop shortcut of the Arduino software. The language of the environment will respond
menu of the programming environment will also be in the English language. To change
the language preferences, it is necessary to follow the instructions in the following
webpage [60].

Step 5. Open the Example Program

In the Arduino IDE open File — Examples — 01.Basics — Blink as shown in the image
below.

81

https://home.roboticlab.eu/lib/exe/fetch.php?tok=1b356a&media=https%3A%2F%2Fhome.roboticlab.eu%2F_media%2Fen%2Fiot-open%2Fprogramming_fundamentals_rtu%2Farduinowebeditor.png

4. IoT Hardware Overview

This will open in the new window an example program for turning on and off green LED

File Edit