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Annotation

The present work is devoted to the numerical modelling of silicon crys-
tal growth with pedestal process – a cost-effective alternative to floating
zone process. In the considered version of the pedestal process, heating is
realized with high-frequency inductor (on top of the pedestal) and middle-
frequency inductor (around the side surface of the pedestal). The present
work describes modelling of heat transfer and phase boundaries in axially
symmetrical approximation, neglecting the melt flow in most cases. For
the case with small crystal diameter (seed crystal), the melt flow is mod-
elled and its influence on melting interface shape is analyzed. The shape
of high-frequency inductor was optimized, using the algorithm of gradient
descent. The distance between the centers of melting and crystallization
interfaces was used as a target function to prevent melt center freezing.
For crystal diameter of 100 mm, the optimal high-frequency inductor shape
was obtained and an algorithm of the change of heating power during the
cone phase was proposed.

Keywords: silicon, crystal growth, pedestal method, numerical mod-
elling.
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List of abbreviations and variables

Si silicon
FZ floating zone [method]
HF high-frequency
MF middle-frequency
PM pedestal method
EM electromagnetic
CZ Czochralski

ETP external triple point
ITP internal triple point
PID proportional-integral-derivative [control]

FS free surface
HD hydrodynamics
HM melt height

DC , RC crystal diameter, radius
DP , RP pedestal diameter, radius

HP pedestal height
HQ heating region height
zQ distance from the heating region to ETP
ft target function

αETP the angle between the free surface and the vertical at ETP
zmax zone height
Rind internal radius of the inductor
Hind inductor height above the pedestal rim
r, z radial and vertical coordinates
T temperature
v⃗ velocity
q heat flux density
Q integral heat flux
I inductor current
f inductor frequency

inductor slice parameters (see. Fig. 2.3):
rind, zind radial and vertical coordinates

cind curvature radius
kind length
αind inclination angle
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1 Introduction

Man had admired crystals for long,
as he had appreciated their beauty

B. Subashini and M. Geetha

1.1 Preface

For the modern semiconductor device industry, silicon crystals are vir-
tually irreplaceable. Due to very large – up to several billion dollars [1] in
2020 – global market size, even minor improvements in silicon production
process are receiving researchers’ attention.

The importance of numerical modelling

Crystal growth experiments, that are used for the development of
growth equipment, are rather costly and technically challenging. The
experimental results are of limited quality and sometimes are not even
able to give insight into all principal features of the growth process. For
example, the shape of the crystallization interface can be experimentally
determined by lateral photovoltage scanning method [2]. One of the nu-
merous examples of this method in Si crystal characterization is the study
from A. Lüdge et. al. [3]. It gives a valuable insight into the crystal ro-
tation influence on the crystallization interface shape (see Fig. 1.1), and
the evolution of the interface shape in time can be traced. However, this
experiment does not show, and is unable to show, the changes in tempera-
ture gradients, shape of the free surface, melt flow, and other aspects that
lead to the depicted result. To fully understand the demonstrated effect
and employ it for process development, comprehension of temperature field
inside the molten zone is necessary.

To get this kind of insight into crystal growth processes, numerical
modeling is widely used. It allows not only to reduce the number of
expensive experiments, but also to supplement existing experiments by
describing process features that are very hard to measure. Examples in-
clude distributions of physical fields inside solid, melt and surrounding
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atmosphere: temperature, velocity, electromagnetic field, dopant concen-
tration, thermal stresses etc.

Numerical modelling is customarily used for the development of indus-
trial purposes, even for minor improvements of crystal growth equipment.
It is therefore utterly necessary to use numerical modelling for the develop-
ment of a novel industrial process. The present work describes numerical
modeling of silicon crystal growth with pedestal method, with a
focus on making the growth of large diameter crystals possible.

Figure 1.1. Lateral photovoltage scanning measurement of the axial cut of
the grown crystal [3]. Region 1 corresponds to the process stage with crystal
rotation rate of 5 rpm, region 2 – the process stage without rotation.

Brief overview of crystal growth methods

Depending on the used material and intended applications, different
crystal growth methods are used. All existing methods can be roughly
classified in four categories [4], which are described in the subsections
below, along with comments on their applicability for silicon single crystals.

Solid growth

The solid-state growth method is based on atomic diffusion, which is
usually very slow. Examples of these methods are annealing, heat treat-
ment, polymorphic phase transitions, etc., which are mainly used in metal-
lurgical processes. Recently some of these methods, such as grain boundary
migration, have been investigated for single crystals with complex chemical
composition or incongruent melting behavior [5]. Anyway, the solid-state
growth techniques are not considered for silicon single crystals, because
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other techniques are simpler, faster and more well-established, as it will
be shown further.

Solution growth

This is the oldest and probably the most well-known category of growth
methods – crystallization of ionic salts, like NaCl, from aqueous solutions
is even sometimes used in primary schools. Its advantages are simplicity
of equipment and high degree of crystal perfection (the crystals grow at
temperatures well below their melting point). However, the methods from
this category are ill-suited for silicon: it does not dissolve in water and
requires unusual solvents [6].

From vapor phase

The growth from vapor, where the atoms or molecules of substance are
introduced into the reactor by a suitable carrier gas, is now widely used
to grow thin films and epitaxial (i.e., specifically oriented with respect
to substrate) layers. These techniques primarily involves three stages:
vaporization, transport, and deposition. In the case of silicon, however,
chemical vapor deposition is used mainly to [7]:

• grow thin silicon films,

• obtain the high-purity polycrystalline, which then needs to be remelted
and regrown into single crystals.

The chemical vapor deposition is the main method for the production
of semiconductor grade polycrystalline Si [8], yet the deposition of single
crystals is not cost-effective due to long process times [9]. The usage of
very toxic compounds [10] – mainly trichlorosilane SiHCl3 and silane SiH4

– may be considered as another drawback of growth from vapor [11].

From melt

More than half of the crystals that are used in technology are grown
from melt [4]. This technique requires that the material melts without
decomposition, exhibits low chemical activity and has relatively low va-
por pressure. Silicon fulfills those requirements [12]. There are several
methods, how crystals can be grown from melt:

• Bridgman – the material is melted in a closed container, and then
is cooled by slowly moving the container from high-temperature zone
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(usually the top part of the furnace) to low-temperature zone (bot-
tom part) [13]. A variation of this technique that uses elongated
open container with short walls is known as Horizontal Direct Crys-
tallization or the Bagdasarov method [14].

• Directional solidification – another modification of the Bridgman
method, where the container and furnace system is held stationary,
and the temperature change is ensured by a multiple-zone furnace
system [15].

• Czochralski – polycrystalline material is melted in a crucible, a seed
crystal is introduced in the center of the free surface, and then pulled
upwards from the melt. This technique helped to grow dislocation-
free1 silicon crystal in 1958 [16], and now it is the main method for
commercial Si single crystal growth due to its high speed and low
cost [17].

• Granulate crucible – the method is similar to the Czochralski
method, except that in the beginning of the process the quartz cru-
cible is filled with Si granules, and the heating is applied from above.
It ensures that a part of the granulate is not molten and separates
liquid Si from crucible walls [18]. Heating is realized with high-
frequency inductor, thus graphite heaters are avoided and lower con-
tent of impurities is reached [19].

• Floating zone – the method is crucible-free, i.e. molten material
does not touch other system parts, and the molten zone “floats”
between the feed rod (supplied from above the melt) and grown
single crystal (located below the melt). Heating can be provided by
high-frequency inductor or by optical devices [20]. First applications
of this method were realized for Si in 1953 [21], when the crystal
with diameter of 5 mm was grown. Since then the maximal possible
crystal diameter has been increased 40-fold [22]. This method is the
second most widely used single crystal growth method for silicon [17].

• Pedestal – this method is similar to the floating zone method, only
with the feed rod located at the bottom and the crystal pulled from
the top [23]. The method will be described in more details in the
next subsection.

1A dislocation is a linear defect in the crystal lattice, i.e., a line where periodical
structure abruptly changes.
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Crucible-free crystal growth from melt

Some of the existing crystal growth methods (e.g. Czochralski method
or directional solidification method) require a crucible to hold the molten
material. However, there are applications for which quality requirements
are so high and allowable impurity content is so low that crucible-free
methods should be used. Some examples of such applications for Si single
crystals are high-power semiconductor devices and detectors. Another ap-
plication is remelting of a part of polycrystalline Si rod and recrystallizing
it in form of single crystal, for its characterization by Fourier-transform
infrared (FTIR) spectroscopy [24].

Probably the most well-known crucible-free crystal growth method is
the floating zone (FZ) method, where melting is realized by high-frequency
(HF) electromagnetic (EM) one-turn inductor. In FZ method, the feed rod
is located above the inductor, and melting occurs at the bottom part of
feed rod (see Fig. 1.2(a) and Fig. 1.3(a)). This boundary – open melting
front – where feed material is melting and flowing downwards, requires
high feed rod quality and complicates the control of the growth process.
This increases the costs of feed rod preparation.

feed rod

 
open melting front

melting 
interface

 
free melt surface

crystallization 
interface

single crystal

melt

HF inductor

crystal pulling
direction

needle-eye
technique

(a) Floating zone method

feed rod (pedestal)

melting 

interface

 
free melt surface

crystallization interface

single
crystal

melt

HF inductor

crystal pulling
direction

relatively large
inner radius

ITP

ETP
HM

(b) Pedestal method

Figure 1.2. Axially symmetrical sketches of the floating zone method and the
pedestal method.

Another option is to use a recently proposed method of growth from the
granulate crucible. An advantage of this method, in comparison to FZ, is
bypassing of time-consuming and expensive production of feed rod [26], be-
cause the granulate can be manufactured directly from trichlorosilane [27].
However, this method is novel and thus has not been widely adopted yet
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(a) Floating zone method (b) Pedestal method

Figure 1.3. Photographs of crystal growth processes, M. Wünscher et. al. [25].

due to lack of experience.

The pedestal method (PM), firstly proposed by Dash [23], is a simpler
alternative to FZ method. It lacks such complicated feature as open melt-
ing front, because the molten Si resides at the top surface of the feed rod
(pedestal), see Fig. 1.2(b). Therefore, process control can be simpler, and
feed rod requirements can be lower in PM, than in FZ.

However, PM has a limitation on inductor shape: “needle-eye” induc-
tors (with inner diameter that is smaller than the single crystal diameter,
see Fig. 1.2(a)) that are used in FZ method cannot be used in PM. In
combination with 11° meniscus angle requirement [28], it leads to a risk of
melt center freezing, because inductor is far from the center of the melt.
Complications may arise also during the melting of pedestal upper surface
at the beginning of the process (see more information in Section 3.3.1).

Technological context of the pedestal method

It was proposed in a patent from 1988 that the cost issues of feed
rod production for FZ process could be solved by using feed rods grown
by Czochralski (CZ) method [29]. Nevertheless, HF induction heating
problems (e.g. generator construction or high chamber pressure for the
prevention of arching due to high voltage) and high feed rod requirements
(the necessity of low oxygen content that is hard to ensure in CZ) still
remain [30]. Therefore, even while CZ method allows to grow high-quality
feed rods with diameters up to 300 mm, the information about FZ crystals
that exceed 200 mm diameter is still absent.
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These circumstances motivate to investigate the applicability of PM for
Si single crystal growth. Pedestal can be heated not only by HF (1–3 MHz)
inductor, but also additional heating by electron beam or middle-frequency
inductor [31] can be used to avoid multiple problems like electrical break-
down near the main HF inductor and generator construction issues [32].
Another benefit of PM is the possibility of pill-doping through axial holes
in the pedestal. Due to larger (in comparison to FZ) melt volume, the melt
in PM can store more doping material and thus ensure more homogeneous
axial distribution of dopant atoms [33].

PM is especially promising in the light of the availability of large diam-
eter high-purity polycrystalline silicon rods [34]. This condition is fulfilled
in KEPP EU company [34, 35], where these rods are obtained with the
method similar to Czochralski method: the growth from a melt located
in its own skull (solidified layer of Si on the crucible walls) using electron
beam heating [36]. The electron beam heating allows to achieve lower en-
ergy consumption and lower impurity content [30] in comparison to CZ
method [37], thanks to the intensive use of numerical modelling for the
optimization of electron gun [38].

1.2 Motivation

As shown in the subsection above, the pedestal method can be consid-
ered as an alternative to the floating zone method. In some aspects, the
pedestal method is simpler than the floating zone method – e.g., in process
control, raw material requirements. As the KEPP EU factory produces
large diameter polycrystalline rods (diameters up to 300 mm), the imple-
mentation of PM in the same factory can be a significant technological
advantage.

However, large diameter silicon single crystals have not yet been grown
by the pedestal method (see literature review below), therefore numerical
modelling is needed to develop this growth process. This is one of the
reasons why this thesis is important in the context of industrial silicon
crystal growth in Latvia.

The Semiconductor Technology Laboratory, which is a part of the
Institute of Numerical Modelling, University of Latvia, has accumulated
extensive experience in Si crystal growth simulations by modelling FZ
and CZ processes. The existing developments and the experience of the
Institute’s staff facilitate the creation of the PM numerical model, thus
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improving the chances of achieving the goal of this thesis.

1.3 Literature review

The brief overview of crystal growth methods is provided in Sec. 1.1.
This section, in turn, describes the pedestal method in more details and
presents the overview of the development of numerical modelling for crucible-
free Si crystal growth.

Pedestal method

The first mention of PM for silicon crystal growth is found in 1958,
in the paper from William C. Dash [23]. He demonstrated a possibility
of growing crystals with diameters about 12 mm from the pedestal with
similar diameter. The pedestal was slotted, because its increased surface
area simplifies its melting by HF coil. He also showed that dislocation-free
crystals can be grown: if the growth begins with high pulling speed, and
crystal diameter is small at the beginning of the process, then dislocations
propagate to the surface and are eliminated [39]2. A change of pedestal
shape from cylindrical to conical allowed Dash to improve the process
stability and to grow longer crystals of diameter 12 mm (Si) or 6 mm
(Ge) [40].

Figure 1.4. The scheme of the pedestal method (A) and melt shape during the
growth process (B). The illustration from the Dash’s article, that mentions the
pedestal method for the first time in scientific literature [23].

2Rather surprisingly, the so-called ”Dash neck” method, which is now very widely
used in CZ crystal growth, was first published for the pedestal method!
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Pedestal-grown silicon crystals, that were since then reported in lit-
erature, are very small by the modern market standards. For example,
historical use of PM includes 4–5 mm for investigations with x-ray topog-
raphy [41] and 9 mm diameter [42] for silicon bicrystals (grown from a
seed with a grain boundary), as well as for substrates for chemical vapor
deposition [43]. And even smaller diameters – below 2 mm – are some-
times used in Si crystal growth for photovoltaics [44]. The reports of such
small sizes may be explained by the fact that PM is more convenient for
crucible-free growth of small crystals in comparison to FZ: the upper part
of the feed rod is easier to melt, and then to touch by a small seed crystal,
than the bottom part.

According to von Ammon et. al., in PM crystal diameter can reach
only 20 mm, because maintaining the zone shape is difficult [45]. Riemann
et. al. also reported growing 15–20 mm crystals [33]. However, there is
a modification of PM by T. F. Ciszek that employs heating with electron
beam, and this modification allowed to reach diameters up to 40 mm [46],
growing form 100 mm pedestal. The electron beam impact zone was fixed
relative to the crystal. An important feature of Ciszek’s approach was
the eccentric position of the grown crystal – its axis was shifted from the
pedestal axis by 20 mm. In the eccentric setup, the pedestal was moving
through the electron beam impact zone during the rotation, and thus ex-
posing the whole upper surface; unlike the axially symmetric setup, where
the electron beam impact zone did not reach outer parts of the pedestal.
Therefore, the eccentric configuration allowed to heat the pedestal more
homogeneously.

Due to aforementioned limitations of crystal diameter, FZ process was
characterized by W. Zulehner and D. Huber as the ”only serious competitor
to Czochralski crystal pulling” [47], while PM was mentioned only for small
crystal production, e.g. for seed crystals. Despite such modest description
of PM, the goal of the present work is to demonstrate the possibility of
large crystal growth from pedestal. In order to achieve this goal, numerical
modelling is very useful.

Numerical modelling of crucible-free Si crystal growth

Mathematical modelling has been used to improve and develop differ-
ent crucible-free crystal growth methods since at least 1970s. For exam-
ple, molten zone shape in FZ was modelled numerically by Coriell and
Cordes [48], who neglected the influence of melt flow. However, the devel-
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opment of models was very rapid, and already in 1978 convection patterns
in FZ melt were analyzed [49], then the simulations of Marangoni force [50]
and EM force [51] influence were also performed. All these effects (melt
convection, Marangoni force, EM force) were coupled with simulations of
molten zone shape in 1995, and the unsteady velocity oscillations were
described [52]. Following the increase of computers’ capabilities, the in-
troduction of 3D models (instead of previously used axially symmetric
ones) for EM field was made in early 1990s [53], and for the melt flow – in
2000 [54].

All aforementioned research regarded FZ method, as it is the most
popular method of crucible-free Si crystal growth. However, there are
studies that demonstrate the usefulness of numerical modelling for other
methods as well. For example, the development of silicon growth from
granulate crucible (the method itself has been patented in 2011 [18]) was
intensively supported by numerical modelling. Simulation results had been
published even before the first experimental results:

• Axially symmetrical model of EM field and silicon temperature was
for the first time described in 2014 [55].

• The model was improved by comparison between different solvers,
supplemented by 3D geometry and validated by comparison with
simple cases (analytical solution, experimentally measured magnetic
field generated by an inductor without load) in 2017 [56].

• The growth of crystals with diameter of 60 mm was reported and
the image of experimental apparatus was published in 2018 [57].

• Impurities and defects were studied in a grown 60 mm crystal in
2020 [19]. In the same year, a model of process control has been
developed and experiments conducted to determine unknown model
parameters [58].

Numerical modelling of the pedestal method

In contrast with FZ and granulate crucible methods, there are virtually
no mentions of the numerical modelling of PM for silicon in scientific liter-
ature. The only exception is a short mention of FEMAG/FZ software [59]
potential to model PM, which was tested with a proof-of-concept simula-
tion and without any input from the experimental system, see Fig. 1.5. In
this example, molten zone height and free surface shape are imposed as
simulation input parameter rather than calculated.
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Figure 1.5. A proof-of-concept calculations of pedestal method: temperature
field in silicon, obtained with FEMAG/FZ software [25].

Moreover, if laser-heating pedestal growth (which is mainly suited for
thin oxide fibers with diameters less than 1 mm [60]) is not considered,
there are no publications about the modelling of PM for any material,
except the article by M. Wünscher et. al, which describes the modelling
of germanium crystal pulling [61]. The article shows that FEMAG/FZ
software was adapted for PM, thus the coordinates of the free surface are
not calculated, but measured from an experiment photograph and passed
as a simulation input.

Despite the long time since the invention of PM, its numerical models
are hardly described in the scientific literature. This can be explained by
the relatively low popularity of PM compared to FZ and CZ methods,
especially in the case of silicon crystal growth. Since the FZ method has
been invented earlier and also allows the use of an inductor with a small
inner diameter (i.e. smaller than the diameter of the grown crystal), it has
developed faster and now is more relevant than PM for industrial processes.
Consequently, another aspect that makes the modelling of PM difficult is
the lack of experimental data. Therefore, the pedestal method almost has
not gotten any attention of numerical modellers so far.
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1.4 Novelty of the thesis and author’s contribution

From the previous subsection it can be concluded that the phase
boundary calculations included in this thesis are essentially the first simu-
lations of their kind: silicon growth by the pedestal method is numerically
modelled for the first time. For the first time, the shape of the free sur-
face in a pedestal system is calculated numerically rather than provided
as input data. The melt flow simulations and the high-frequency inductor
optimization calculations are also novel: studies of this kind for pedestal
systems are not found in the literature.

The author of the thesis improved and modified the main PM mod-
elling software (originally written by colleagues Gundars Ratnieks and An-
dis Rudevičš for FZ, then supplemented by Andrejs Sabanskis, Armands
Krauze, Matīss Plāte), and used this software for parameter studies. The
author wrote scripts for simplified estimations (see Sections 3.1 and 3.3.1),
created a new solver using OpenFOAM C++ library implementing vol-
ume of fluid method for moving the melting interface (see Section 2.4.1),
and created the inductor optimization program using Python (see Sec-
tion 2.5). The author also communicated with industry partners (Anatoly
Kravtsov from KEPP EU, Mašīnbūves Kompetences centrs) about system
parameters, project results and practical aims of the work. All numerical
simulations that are presented below were run by the author.

Based on the obtained results, the author of the thesis wrote four sci-
entific papers as a main author: [Dis1], [Dis2], [Dis3], [Dis4], and a part
of another paper as a contributing author [Dis5]. The results were pre-
sented at internetational conferences [Conf1], [Conf2], [Conf3], [Conf4],
[Conf5], and the conferences of University of Latvia [Conf6], [Conf7],
[Conf8], [Conf9].

The present thesis was created during and after the doctoral studies
at University of Latvia, Riga, 2015–2023.
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1.5 The goal and the tasks of the work

The literature review showed that some publications mention a limit
of 20 mm [33, 45] or 40 mm [46] on the diameter of crystals grown by the
pedestal method. However, nowadays the demand in the silicon crystal
market exists mainly for large diameters3, starting with 100 mm. The
pedestal method has not been modelled earlier due to its low popular-
ity, and also due to the advantages of floating zone method for the large
diameter silicon crystal growth.

The goal of the work is to demonstrate (using numerical mod-
elling) the possibility of large diameter (100 mm) silicon crystal
growth with pedestal method, and to provide practical advises
for the design of the corresponding experimental apparatus and
process realization. This goal was reached by performing the following
tasks:

1. Create the software for the modelling of PM, which is based on the
software for FZ simulations, previously developed in the Institute of
Numerical Modelling.

2. Test the software and improve it in accordance with the development
of experimental setup by industrial partner KEPP EU.

3. Verify the software by comparing simulation results to the available
experiments.

4. Optimize the shape of high-frequency inductor for the growth of
crystals with 100 mm diameter.

1.6 Thesis

The modelling results affirm that it is possible to grow large (100 mm
in diameter) silicon crystals, if advancements of pedestal process are made.

1.7 Approbation of results

Author’s publications

[Dis1] K. Surovovs, A. Kravtsov, and J. Virbulis, “Numerical Modelling
for the Diameter Increase of Silicon Crystals Grown with the

3The larger crystal diameter is, the more microschemes can be simultaneously pro-
duced from one crystal wafer.
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Pedestal Method,” Journal of Crystal Growth, vol. 563, p. 126095,
2021.

[Dis2] K. Surovovs, A. Kravtsov, and J. Virbulis, “Modelling of the
Pedestal Growth of Silicon Crystals,” Lithuanian Journal of
Physics, vol. 61, no. 3, pp. 151–156, 2021.

[Dis3] K. Surovovs, A. Kravtsov, and J. Virbulis, “Optimization of the
Shape of High-Frequency Inductor for the Pedestal Growth of Sili-
con Crystals,” Magnetohydrodynamics, vol. 55, no. 3, pp. 353–366,
2019.

[Dis4] K. Surovovs, M. Plāte, and J. Virbulis, “Modelling of Phase Bound-
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2 Mathematical models

The detailed description of calculation procedures is published in [62]
and [63], therefore the previously developed models are only briefly sum-
marized, and the newly introduced ones (Sec. 2.2, 2.4.1, 2.5) are described
in more details. EM field simulations are coupled with the phase boundary
simulations and consist of two different parts: high-frequency (HF, typi-
cally 1–3 MHz) and middle-frequency (MF, typically 50–100 kHz) fields.

2.1 High-frequency EM field

Small skin layer δ (δ = 1.4 mm in the solid near the Si melting point
for the HF inductor frequency fHF = 2.6 MHz) allows to use HF ap-
proximation for the main inductor EM field calculations. The model is
implemented using the boundary element method and published in [54].
An example of calculated magnetic field and induced heat density is shown
in Fig. 2.1.

Figure 2.1. Induced EM heat surface density on silicon surfaces qHF and mag-
netic field B that is created by the high-frequency inductor. A simulation ex-
ample with crystal diameter DC = 36 mm and pedestal diameter DP = 75 mm.
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2.2 Middle-frequency EM field

For the MF field calculations, GetDP program is used [64]. It solves the
equation for vector potential A⃗ in all volumes (including the gas domain,
disregarding chamber walls due to assumption that they are sufficiently
far away):

∇×∇× A⃗ = µ0σ(−iωA⃗) + µ0J⃗ , (2.1)

where µ0 = 4π · 10−7 H/m, ω = 2πfMF is the angular frequency, J⃗ –
current density in the MF inductor, and σ – the electrical conductivity of
silicon: 1.2 · 106 S/m for liquid phase and temperature-dependent conduc-
tivity with 3.3 · 104 S/m at the melting point for solid phase [65]. Due
to the axial symmetry, A⃗ has only azimuthal component: Aφ. Boundary
conditions are Aφ = 0 on the system axis and zero normal gradient of Aφ

on the boundaries of gas domain. The induced heat source density is being
calculated as

qMF =
j2

2σ
=

σE2

2
=

σ

2
ω2A2, (2.2)

where j, E,A are magnitudes of induced current density, electric field, and
vector potential. An example of MF magnetic field and induced heat,
calculated with fMF = 100 kHz, is shown in Fig. 2.2.

2.3 Heat transfer and phase boundaries

For the temperature field T , the steady heat transport equation is
solved, using MF and HF induced heat sources. Despite the crystal pulling,
the process can be considered quasi-stationary (i.e., phase boundaries do
not move in the laboratory reference frame) during the cylindrical phase,
when crystal diameter does not change in time, and the temperature dis-
tribution remains steady. By default, melt motion has not been taken into
account, and only later was analyzed with a specific program (Sec. 2.4.1).
The shape of phase boundaries is calculated in the following way:

• Melting and crystallization interfaces are being moved according to
heat balance at nodes (in other words, locally using a 1D solution
of the Stefan problem), until quasi-stationary shape of phase bound-
aries is reached.

• The shape of the free melt surface is obtained such that it equilibrates
hydrostatic pressure, EM induced pressure and surface tension.
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(a) Middle-frequency magnetic field, real
part

(b) Induced heat density in silicon

Figure 2.2. An example of the results of middle-frequency EM field modelling
for crystal diameter DC = 36 mm and pedestal diameter DP = 75 mm.

• The outer surfaces of crystal and pedestal are not being moved,
only “prolonged” until intersection with the melting or crystalliza-
tion front.

The value of inductor current, that ensures user-prescribed height of the
external triple point (ETP, see Fig. 1.2), is found by the proportional-
integral-derivative (PID) algorithm. A more detailed description of the
model for heat transfer and phase boundaries (in the case of FZ method)
is presented in [62].

2.4 Melt flow

The first model of melt flow considers fixed phase boundaries. It im-
poses incompressible laminar Navier-Stokes equation for the melt velocity,
with Boussinesq approach for the thermal convection. Marangoni force
density, using Marangoni coefficient M = 2 · 10−4 N/m·K, and EM force
density are considered on the free surface. Standard convection-diffusion
equation is used for the simulation of melt temperature, with EM induced
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heat and radiation as boundary conditions. This model is implemented us-
ing OpenFOAM software library and described (in the case of FZ method)
in [63].

2.4.1 Non-stationary melting interface

To take Si melting into account, in some cases the second melt flow
model is used: the first model is complemented with phase variable fc,
that changes from 0 (melt) to 1 (solid Si), as shown in Eq. (2.3), where
T0 = 1687 K is Si melting temperature. The solidification is modelled by
increasing melt viscosity, as well as decreasing its density and heat con-
ductivity, for high fc. The latent heat is taken into account as a heat
source ρL

∂fc
∂T

∂T

∂t
in the convection-diffusion equation for the silicon tem-

perature T (where ρ is silicon density, L – specific latent heat of silicon
melting and t – time). “Smearing interval” ∆T , where fc changes linearly
depending on T , was decreased, until the solution was not dependent on
it. In this way, ∆T = 0.5 K was obtained.

fc(T ) =


0, for T > T0 +

∆T
2

1
∆T (T0 +

∆T
2 − T ), for T0 − ∆T

2 < T < T0 +
∆T
2

1, for T < T0 − ∆T
2

(2.3)

The presence of the crystal was modelled by setting constant tem-
perature gradient of 5 K/mm at the center of the upper surface of the
calculation domain, which consisted of pedestal (where fc = 1) and melt
(where fc = 0). On the other surfaces of the domain, radiative heat losses
and EM induced heat sources were set.

2.5 Optimization of high-frequency inductor

During the phase boundary calculations (see Sec. 2.3), the inductor
current is automatically adjusted to maintain a prescribed ETP height. In
other words, the current value is being fitted to ensure that the pedestal
melts at the rate required for a quasi-stationary process. The inductor
frequency is kept constant during all iteration of the optimization algo-
rithm because it is determined by experimental considerations such as the
generator design. Therefore, only the geometrical parameters of the HF
inductor are optimized in this work.

The HF inductor is assumed to be axially symmetrical, and its shape
is parameterized as shown in Fig. 2.3: rind, zind are radial and axial coor-
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dinates of the center of inductor cross-section, 2kind – cross-section length,
cind – curvature radius, and αind is the cross-section inclination angle.

rind r

z

zind
kind αind

cind

Figure 2.3. Scheme of the high-frequency inductor cross-section parameters,
that were used for its optimization.

The target function is selected to be melt height HM (see Fig. 1.2(b)).
Such selection ensures maximal molten region between solid rods, which
helps to mitigate one of the main issues when large crystals are grown
– melt center freezing [46]. The optimization was performed with the
gradient method. The optimization algorithm considered the direction of
HM increase, denoted by ∇HM , in the inductor parameter phase space
(rind, zind, cind, kind, αind). Optimization algorithm steps are listed below:

1. using the program for the modelling of phase boundaries, compute
HM with some set of inductor parameters (i.e., a point in the pa-
rameter space) p⃗ = (rind, zind, cind, kind, αind), further denoted by
HM (p⃗); if a calculation diverges, assume that HM = 0;

2. compute five values of HM for five sets of parameters: p⃗r, p⃗z, p⃗c, p⃗k,
p⃗α, that are shifted from p⃗ by distance d = 0.01 mm, each in the
corresponding direction;

3. calculate ∇HM =
∑
i

HM (p⃗i)−HM (p⃗)

d
e⃗i, where i is a coordinate

from the set {rind , zind, cind, kind, αind} and e⃗i – corresponding base
vector in the phase space;

4. calculate the step s⃗ = s0
∇HM

|∇HM |
, where s0 is step magnitude (user-

defined before the start of the algorithm, usually in order of 1 mm);

5. compute HM with the parameter set (p⃗+ s⃗); if HM (p⃗+ s⃗) < HM (p⃗),
then decrease s0 twice and repeat from step 4.;

6. change the position in the parameter space from p⃗ to p⃗+ s⃗;

7. repeat from step 1. until the convergence criterion is reached.
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3 Simulation results

3.1 Free surface shape estimations

A simplified estimations of the shape of the free melt surface and its
comparison to FZ case has been performed1 in [Dis3]. In these estimations,
only surface tension and gravitational forces were taken into account. The
surface shape can be described in cylindrical coordinates r and z by the
Laplace–Young equation in a specific form [48]:

r′(s) = sinϕ(s), (3.1)

z′(s) = cosϕ(s), (3.2)

ϕ′(s) =
cosϕ(s)
r(s)

+
ρg(z(s)− z0)

γ
, (3.3)

where s is the arc length: ds =
√

dr2 + dz2, ϕ is the angle between the free
surface and the vertical, ρ = 2580 kg/m3 is silicon density, g = 9.81 m/s2
is the acceleration of gravity, γ = 0.88 N/m is silicon surface tension, and
z0 is a melt volume controlling parameter (this parameter is not known,
i.e., melt volume can be different; therefore z0 was iteratively adjusted
to maximize zone height). To model cylindrical crystal growth, ϕ = 11◦

angle [28] was imposed at the internal triple point (ITP) for PM (see the
scheme in Fig. 1.2), and the external triple point (ETP) for FZ systems.
Do to stabilizing effect of EM pressure [66], which is neglected in this esti-
mation, the obtained zone shapes (see Fig. 3.1(a)) are worst-case estimates
of possible zone height zmax (large zmax reduces the risk of melt freezing).

The main conclusion is that the maximum zone height – 17 mm for
FZ, 15 mm for PM – can be reached if the ratio of ETP and ITP radii is at
least 2. It is also shown that zmax = 0 (and therefore the growth process
is not possible) when rETP = rITP in PM.

3.2 The system without side heating: reflector instead of heater

3.2.1 Shape of phase boundaries

At the beginning of the research, the necessity of the side heater was
not known, and copper reflector was used instead of the later used MF side

1Here and further, figures and text fragments from author’s publications are used.
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Figure 3.1. The results of free surface shape estimations: calculated free surface
shape and zone height in the floating zone system (solid lines) and the pedestal
system (dotted lines). The corresponding calculations from the left image are
marked with squares on the right image. The radii of the external triple point
and internal triple point are denoted with rETP and rITP.

heater (see Fig. 3.2(a)). For the first simulations, crystal diameter DC =

12 mm and pedestal diameter DP = 85 mm were selected. The (b) side of
the figure shows the phase boundaries, calculated with different inductor
frequencies fHF from 440 to 2640 kHz. Distance between inductor and
melt increases for lower fHF due to the increase in EM pressure. The upper
surface of the pedestal is not completely melted, because the cylindrical
growth had not been considered at that stage. These boundaries were
used to generate meshes for the melt flow calculations, described in the
next section.

3.2.2 Melt flow

Stationary shape of phase boundaries

The melt flow model (i.e., the hydrodynamic model, the first model
from Sec. 2.4) demonstrated that higher frequencies lead to smaller melt
velocity (Fig. 3.3(b)) and thus higher temperature maximum (Fig. 3.3(a)).
The azimuthal component of velocity is negligible, because crystal and
pedestal were not rotating in this case. The more detailed analysis of the
frequency influence is shown in Fig. 3.4. Due to smaller inductor cur-
rent (Fig. 3.4(a)) and melt velocity (b), higher fHF are more favorable
for the system. However, the voltage is higher (c), and the generator is
more expensive, for higher frequency. Maximal temperature in the cal-
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(a) (b)

Figure 3.2. (a) – photographs of the system without side heating (reflector
instead of side heater) with seed crystal 1, high-frequency inductor 2, pedestal
3, and reflector 4. (b) – the shape of phase boundaries, calculated with different
inductor frequencies f and inductor currents I.

culations with melt flow ((d), yellow lines) is much lower, than without
it (i.e., obtained with the heat transfer and phase boundary model only,
described in Sec. 2.3). The influence of melt flow is so large because inten-
sive convection, both thermal and electromagnetically created, is present
in the system. This convection radically increases maximal heat flux at
the melting front (e), therefore it is necessary to investigate the melt flow
influence on the shape of the melting interface.

Non-stationary melting interface

The induced convective heat transfer is 2-3 times more intensive than
the conductive heat transfer (see Fig. 3.4(e)). It means that the melt flow
can have significant effect on phase boundaries. Therefore, the melt flow
model with non-stationary melting interface was created using volume-of-
fluid method, as described in Sec. 2.4.1. This model allowed to describe
transient features of the melt motion, including the initial melting of the
pedestal, see Fig. 3.5. Melt motion rapidly develops and is very chaotic, the
vortex can even change its direction from clockwise to counter-clockwise,
e.g. at t = 110 s. However, this test demonstrated that the pedestal height
HP = 40 mm is too small, because the pedestal bottom can probably
melt due to intensive jet of hot Si. A longer pedestal (HP = 60 mm)
was selected for the next calculations, in order to prevent the melting of
pedestal bottom surface.
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Figure 3.3. Melt temperature T (a) and velocity v (b), calculated using the
inductor frequencies fHF = 440 kHz (top) and fHF = 2640 kHz (bottom), with
crystal diameter DC = 12 mm and pedestal diameter DP = 85 mm.

The calculated silicon temperature and velocity are shown in
Fig. 3.6(a). In the experimental growth it is beneficial to have large height
of the molten region, to prevent the freezing of its central part. However,
the molten region height HM cannot be observed directly. Correlation be-
tween temperatures at different points on the pedestal surface and molten
region size was analyzed, because it could aid the control of the growth
experiment. It was concluded that the temperature of the point located
40 mm below the pedestal rim is the best proxy for evaluating HM , see
Fig. 3.6(b).

PID control

The previously described simulations were performed with fixed value
of electric current I in the HF inductor (Fig. 3.5), or with manual stepwise
change of I (Fig. 3.6). However, in the cylindrical stage of real crystal
growth processes heating power is usually being controlled to ensure that
a particular geometric parameter is unchanged (i.e. zone height in FZ
process). In the case of the pedestal method, ETP vertical coordinate
zETP was selected as a controlled parameter, with a user-defined target
zETP, 0. A proportional–integral–derivative (PID) controller was used:

e(t) = zETP(t)− zETP, 0(t), (3.4)

∆I(t) = Kp

(
e(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt

)
, (3.5)
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Figure 3.4. The influence of inductor frequency fHF in simulations without
hydrodynamics (blue color) and with hydrodynamics (yellow color), obtained
with crystal diameter DC = 12 mm and pedestal diameter DP = 85 mm.

where e(t) is the difference between the actual ETP coordinate and ETP
coordinate target, ∆I is the change of inductor current, and (Kp, Ki, Kd)

are controller coefficients. The convergence of inductor current is shown
in Fig. 3.7, and it shows that it is necessary to use all three parts of the
controller: the integral part helps to reach the target ETP height faster, the
derivative part dampens oscillations. The optimal values that ensure rapid
convergence to quasi-stationary solution were found to be Kp = 80 A/mm,
Ki = 0.1 1/s, Kd = 10 s.

Inductor optimization: successive method

Inductor optimization requires a very large amount of calculations.
Each iteration of the algorithm requires several phase boundary simula-
tions to obtain the melt height for different inductor changes. These sim-
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Figure 3.5. Silicon temperature T and velocity v at different time instants
(time from the beginning of the process, inductor power assumed to be constant).
Pedestal height HP = 40 mm and diameter DP = 80 mm.

ulations have to be repeated in each subsequent iteration, and the total
number of simulations is several dozens for one system and several hun-
dreds for all the systems considered in this work. An even larger number of
simulations were carried out for other project tasks and are not included in
this thesis. Therefore, despite the large influence of melt flow, melt motion
is not considered in this section and all subsequent sections, in order to
increase the computation speed and to allow for more extensive parametric
studies.

The present subsection and the two next subsections describe the sim-
ulations of the system with the following parameters: crystal diameter
DC = 36 mm, pedestal diameter DP = 75 mm (it was selected based
on simplified estimation of optimal diameter ratio from Sec. 3.1), crystal
pulling velocity vp = 2 mm/min, HF inductor frequency fHF = 2.64 MHz.

Designation of inductor parameters is provided in Fig. 2.3. The
method consisted of adjusting rind and zind (for fixed cind, kind, αind), then
finding optimal value of cind (while other parameters are fixed), and finally
adjust kind and αind (while other parameters are fixed). The advantages
of the successive method (in comparison with the gradient method) are
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(a) Silicon temperature and velocity at
a selected time moment, melting front
shapes from other moments shown with
gray lines

(b) The connection between molten region
height HM and silicon temperatures at dif-
ferent points of pedestal side surface

Figure 3.6. Non-stationary modelling of melting interface, pedestal height
HP = 60 mm and diameter DP = 80 mm.
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zETP (bottom) with different parameters of PID controler, see Eq. (3.5).

simplicity and possibility to cover a large range of parameters.
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First simulations were run with kind = αind = 0, cind = 4 mm, and
different rind, zind (see Fig. 3.8(a)), however only part of them converged
(10 of 64), and only few of the converged simulations are shown for conve-
nience. The other simulations diverged either because of the melt freezing
(when the inductor radius rind was too big) or because of the melt spilling
over the pedestal edge (when the inductor was located too far from the
ETP). The range that was covered by cross-sections of the considered in-
ductor shapes is colored in gray.

The next step of the successive method was to select the case with the
largest HM and to optimize other inductor parameters. A wide range of
cind was tested, and the converged simulation showed no visible influence,
see Fig. 3.8(b). Then different kind and αind were used, and few of them are
shown in Fig. 3.8(c). It can be concluded the increase of kind increases HM

sensitivity on αind. The largest HM obtained by the successive method
was 12.0 mm, which corresponded to horizontal (αind = 0) and elongated
(kind = 2 mm) inductor cross-section. However, this method does not
ensure that even local maximum of HM is reached.

Inductor optimization: gradient method

The gradient method is described in Sec. 2.5. This method has con-
verged (see Fig. 3.9) and performed slightly better than the successive
method, leading to HM = 12.2 mm. Unfortunately, despite successful
convergence of all simulations, the changes of the inductor coordinates
suggested by the gradient method were smaller than 1 mm, and inductor
cross-sections covered much smaller parameter range than in the succes-
sive method. It illustrates the fact that only the local maximum of HM

can be found with the gradient method, thus the final inductor shape de-
pends strongly on the initial inductor parameters (more comments on this
dependence are made in the next section). The comparison of these re-
sults to the previously calculated phase boundaries, shown in Fig. 3.8, also
demonstrates that the algorithm has not considered wide enough range of
parameters, e.g. kind has not increased significantly, and the cross-section
remained circular.

The optimization was performed also for two other systems: with
DC = 60 mm and DC = 90 mm [Dis3], however these results are not
shown here for the sake of brevity, because analogous results are included
in the next section, where the full crystal growth system is considered.
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Figure 3.8. Phase boundaries obtained during the inductor optimization with
successive method.

3.3 The system with simplified pedestal side heating

In the first experiments, KEPP EU company used a copper reflector
placed around an 85 mm diameter pedestal, see Fig. 3.2. These experi-
ments demonstrated that the heat induced by the HF inductor was not
sufficient: the top surface of the pedestal was not completely melted. Un-
like the numerical model, where the power of the HF inductor was not
limited, the high-frequency generator [32] used in the experiment could
not provide the required current value. Given that the numerical model
also predicted difficulties in melting the upper surface of larger pedestals,
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Figure 3.9. The convergence of phase boundaries (a) and inductor parameters
(b, c) during the gradient method, where j is the method iteration number.

we concluded that pedestal side heating was necessary.

3.3.1 Evaluation of optimal side heater position

In the beginning of the project, the side heating was modelled in a sim-
plified way, by setting uniform heat flux density at the pedestal side. The
main goal was to find the approximate position and power of the heater,
that is the most suitable for transferring heat to the pedestal center (be-
cause it was experimentally shown that the power induced by HF inductor
is not enough [32]). The system was assumed to be axially symmetric.
Heating region has height HQ mm, which is located zQ mm from the ETP
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(see Fig. 3.10(a)).

The parameters of the standard calculation case are given in Tab. 3.1.
The thermal dependence of thermal conductivity and silicon emissivity is
neglected for simplicity, as the main region of interest is near the top of
the pedestal.

Table 3.1. Summary of the geometrical parameters and material properties,
used for the optimal side heater position evaluation.

Pedestal height HP 240 mm
Pedestal radius RP 40..100 mm

Heating region height HQ 30 mm
Heating region distance to ETP zQ 10..100 mm

Integral heat flux Q 2 kW
Ambient temperature Tamb 1000 K

Silicon emissivity ε 0.6
Thermal conductivity λ 26W/m·K

Constant heat flux q = λ
∂T

∂r
=

Q

SQ
=

Q

2πRPHQ
, where SQ is the

heating region area and RP is the pedestal radius, was set at the heating
region. At the bottom pedestal surface, fixed temperature boundary con-
dition T = 1000 K was used to ensure calculation convergence. On the
other boundaries, radiation boundary conditions were set. The standard
temperature diffusion equation ∇2T = 0 was solved, FEMM program with
the Mathematica interface [67] was used. Some examples of calculation re-
sults, showing temperature field in the pedestal, are shown in Fig. 3.10(b).

Temperatures at the center of the pedestal upper surface and at its
rim (Tcen and Trim) depended on the heated region position zQ in different
ways, as shown in Fig. 3.11(a). The rim temperature decreased faster than
the center temperature, because the heating was applied at the pedestal
side, i.e. closer to the ETP than to the pedestal center. Due to different
rates of temperature decrease, dependence of ∆T = Tcen − Trim is not
monotonous, see Fig. 3.11(b).

As the goal of this study was to increase center heating, the systems
with the maximal ∆T are the most beneficial. It can be concluded that
the optimal distance zQ should be ∼ 30 mm for the pedestal with 40 mm
radius. This distance increases to ∼ 50 mm for RP = 60 mm and to
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Figure 3.10. (a) – the scheme of the used geometry and boundary conditions
(vertical size is not shown in full scale). (b) – calculation examples for pedestal
radius RP = 40 mm, Q = 2 kW, and different positions of heated area zQ.

80..100 mm for RP = 100 mm. These results were used to start initial
parameter studies for the systems with simplified side heating, described
in Sec. 3.3. The model is not suitable for the later developed MF inductor
(Sec. 2.2), though, because its induced power is distributed inside the
pedestal, not only on its surface.

3.3.2 Phase boundaries and HF inductor optimization

The side heating was firstly included in the model in a simplified way:
constant heat flux density was set on 30 mm thick stripe of the pedestal
side surface, 20 mm below the ETP. The application of total Q = 1 kW
heating power significantly increased pedestal temperature, and it made
melt height much larger, see Fig. 3.12. As large part of the heat needed to
melt the pedestal is supplied from its side, the HF inductor does not have
to maintain the same current as without the side heating, and its current
decreases by 20%. Therefore, less heat is induced on the free surface, and
the maximal melt temperature is lower in the case of the side heating.
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Figure 3.11. Simplified temperature field simulation results from FEMM pro-
gram, plotted over the heating region position zQ.

Figure 3.12. Mesh and silicon temperature, obtained with simplistically de-
scribed side heating Q = 0 (a) and Q = 1 kW (b). Crystal diameter DC = 36 mm
and pedestal diameter DP = 75 mm.

Larger melt height stabilized the system and allowed to use larger
initial optimization step, than was previously used without the side heating
(2 mm instead of 0.3 mm), and therefore to cover larger range of inductor
parameter space, see Fig. 3.13. As a result, melt height was increased to
HM = 25.2 mm – twice higher than in the previous simulations without
the side heating.
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It should be noticed that the selection of the initial inductor shape
has been done manually – by computing the shape of phase boundaries
for multiple inductor shapes. Many of them diverged, especially for larger
crystal diameters, which are described in the next section. The best per-
forming shape was then selected and used as an initial shape in the gradient
method. This is the reason why initial shapes are not the same in differ-
ent figures, and the influence of initial conditions is discussed in the next
section.
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3.4 Full system: side heating with middle-frequency inductor

In the present section, simulation results for different crystal and
pedestal diameters are described. The crystal was pulled with a rate of
2 mm/min. Due to the advances of experimental system, simulation setup
was refined by adding the copper shield and the precise shape of middle-
frequency (MF) inductor, see Fig. 3.14. The main system parameters are
given in Tab. 3.2. In the following subsections, the results of inductor
optimization for crystal diameters 36, 60 and 100 mm.

(a) Photograph of the growth chamber

crystal

melt

pedestal

base

HF inductor

HM

z

r
rITP rETP

zmax

M
F

 inductor

shield

Rind

Hind

(b) Pedestal system scheme

Figure 3.14. A photograph of the growth apparatus (a) and the scheme of the
system (b) with the grown irregular-shaped crystal sample 1, the high-frequency
and middle-frequency inductors 2-3, copper shield 4 and the pedestal 5.

Crystal diameter of 36 mm

For the inductor optimization with 36 mm crystal, pedestal diameter
was set to DP = 75 mm. Relatively long initial inductor cross-section
(kind = 5 mm) was selected in order to increase algorithm sensitivity
on αind, as it was shown in the previous section. The gradient method
converged at melt height HM = 24 mm, see Fig. 3.15(a), where phase
boundaries are shown at several iterations. HM increased during the opti-
mization, because HF EM heat was redistributed towards the melt center
by changing inductor inclination angle αind. A similar trend was observed
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Table 3.2. Summary of the used system parameters.

Crystal length 60 mm
Pedestal height 120 mm

HF inductor frequency fHF 2.8 MHz,
Copper shield

Gap between the shield and the pedestal 4 mm
Width of the shield rim 6 mm

Vertical position ∼ ETP level
MF inductor

Tube diameter 10 mm
Distance between windings 20 mm

Distance to the shield 15 mm
Distance to the pedestal side 9 mm

Frequency fMF 100 kHz
Heating power QMF depends on DC , see Tab. 3.3

also when different initial geometry was tested (“thin” instead of “thick”,
see Fig. 3.15(b)).

The more detailed tracking of inductor parameters during the progress
of gradient method is given in Fig. 3.16. It can be concluded that rela-
tively large domain – several mm and almost 10°– of parameter space has
been covered. After diverged simulations, the algorithm returned to the
previous inductor geometry and halved the step length (as described in
Sec. 2.5), which allowed to continue until the user-defined limit of 15 iter-
ations. HM value, however, was very close to the optimum already at the
4th iteration, see Fig. 3.16(d).

The final inductor shapes for different initial geometries were rather
different, which means that the obtained final HM = 24 mm may not be
the global maximum. However, the final HM values were close enough,
therefore the optimization algorithm can be considered useful for a prac-
tical purpose: choosing an appropriate inductor in the future, for first
experiments with larger DC .

Crystal diameter of 60 mm

For the modelling of 60 mm crystal growth, DP = 150 mm was se-
lected, because in Section 3.1 the importance of DP ≥ 2DC criterion was
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Figure 3.15. Examples of phase boundaries during the inductor optimization
(j is iteration number), for different initial geometries.

demonstrated. In Fig. 3.17(a) the results of the previous, simplified side
heating model, that was described in Sec. 3.3 is shown. Due to the impre-
cision of the simplified model (constant flux density instead of MF field
simulations, the absence of the copper shield), calculations were unstable
and optimization step size was reduced to prevent calculations from di-
verging. As a result, inductor changes were very small, and melt height
HM barely exceeded 20 mm. This unsuccessful optimization attempt is
mentioned only for context, and the further text and Figures 3.17(b–d)
consider only the results obtained with the actual middle-frequency EM
field model, described in Section 2.2.

Optimization of all inductor parameters. Fig. 3.17(b) shows that
the inductor shape substantially changes during the optimization, and the
inclination αind of the cross-section increases – as well as in case with
the 36 mm crystal. However, it should be noted that the stability of the
numerical model decreased: to start the optimization algorithm, initial
inductor shape, with which process modelling is at least possible, should
be “guessed”, and this guess was harder to make for larger DC .

Optimization of all parameters except αind. The algorithm imple-
mentation makes it possible to exclude one or several inductor parameters
from optimization. For example, Fig. 3.17(c) demonstrates the shape of
phase boundaries during iterations with fixed αind. Optimal HM value is,
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Figure 3.16. The evolution of inductor slice parameters and melt height HM

during the inductor optimization for crystal diameter DC = 36 mm and pedestal
diameter DP = 75 mm. Diverged calculations are marked with ×. Solid lines –
“thick” initial inductor, dashed lines – “thin” initial inductor.

rather surprisingly, even larger than in the case of all parameter optimiza-
tion, possibly due to the complicated shape of target function in the phase
space: fixing one coordinate allows to bypass the closest local maximum.

Optimization of rind and zind only. For the convenience of inductor
manufacturing, e.g., producing several inductors from the same copper
tube, the reduced phase space – limited only to rind and zind – was tested.
In this case, as shown in Fig. 3.17(d), optimization algorithm can suggest
a solution with as large HM as it was obtained by optimizing more induc-
tor parameters. Therefore, particular inductor cross-section shape is not
important, and only basic geometrical properties matter (more detailed
analysis in Sec. 3.6.1).
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Figure 3.17. Examples of phase boundaries during the inductor optimization
(j is iteration number): crystal diameter DC = 60 mm, pedestal diameter DP =

150 mm.

Comparison of the optimization results. The optimized inductor
shapes, as well as resulting phase boundaries, are shown in Fig. 3.18.
At the left part, the results obtained from different initial conditions are
shown, 36 mm crystal diameter was used. It can be concluded that the
inductor shapes did not get closer to each other during the optimization –
they are approximately as different as the initial shapes, shown in Fig. 3.15
with blue lines. In Fig. 3.18(b), the results of inductor optimization with
different constraints are shown for the system with 60 mm crystal. The
resulting shapes and positions are rather different, however the inductor
height above the melt in the three considered cases is similar – 5.9, 6.2 and
5.2 mm, correspondingly.
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Figure 3.18. The optimized high-frequency inductor shape and the resulting
phase boundaries. The (b) part shows also the cases, where some of the inductor
parameters were not optimized: cross-section inclination angle αind, curvature
radius cind, cross-section length kind.

Crystal diameter of 100 mm

For such large crystal and pedestal (DP = 200 mm), it was very hard
to find an appropriate initial shape of the inductor. Moreover, the opti-
mization step must be very small (s = 0.4 mm in the simulations that
are described below) due to high sensitivity of the system. Thus the over-
all change of inductor shape during the optimization was minuscule, see
Fig. 3.19(a). Number of diverged calculations is larger, and the size of
considered phase space region is much smaller, than for smaller DC , see
Fig. 3.19(b). The optimal inductor parameters are very close to the pa-
rameters of the diverged cases, where the melt spilled over the ETP due
to large meniscus angle.

Target function modification

The problem of melt spilling was addressed by modifying target func-
tion of the optimization algorithm to include meniscus angle αETP (the
angle between the free surface at the ETP and z axis, defined in Fig. 3.20):

ft(HM , αETP) =

{
HM , for αETP < 0

HM ·
(
1− αETP

30◦

)
, for αETP > 0

(3.6)
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Figure 3.19. Examples of phase boundaries (a) and the evolution of inductor
cross-section center coordinates (b) during the inductor optimization with crys-
tal diameter DC = 100 mm and pedestal diameter DP = 200 mm. Diverged
calculations are marked with ×; j is the iteration number.

The usage of this formula increased the simulation stability and decreased
the number of diverged cases. The optimization results for 100 mm crystal
are shown in Fig. 3.20(a). Unlike the previous target function, with the
modified target function HM slightly decreased during the optimization.
The reason is that ft increase is now strongly determined by the decrease
of αETP, see Fig. 3.21(a); and that the decrease of αETP usually means the
redistribution of EM field away from the melt center, which decreases HM .
When HM is large enough, its minor decrease is not a problem, because
the process stability is in this case more dependent on αETP – preventing
melt spilling over the pedestal rim.

The considered inductor parameters for 100 mm crystal growth, al-
though converging, were still constrained to a very small range, as shown
in Fig. 3.21(b). However, the inductor optimization for the smaller crystal
growth (DC = 60 mm) produced large changes in the inductor shape,
that successfully increased HM while keeping αETP small enough, see
Fig. 3.20(b).

3.5 Model verification

Experimental data. The system parameters that were used for the
model verification are the same as mentioned in Tab. 3.2 with the excep-
tion of fHF = 2.64MHz. The growth chamber has been developed using
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Figure 3.21. The evolution of target function components and inductor param-
eters during the optimization, with crystal diameter DC = 100 mm and pedestal
diameter DP = 200 mm. Diverged simulations are marked with ×.

a vacuum furnace, that previously hosted another Si growth process at
KEPP EU company: a modification of Czochralski process, where the
heating was realized using an electron beam. The growth apparatus is de-
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scribed in [Dis5] in more details. A pedestal with diameter DP = 75 mm,
produced with the electron beam method, was used. Unfortunately, the
process was not stable enough to obtain a single crystal, and only poly-
crystalline rods were grown. A typical example is shown in Fig. 3.22, with
diameter varying from 15 mm to 20 mm. Other polycrystalline rods were
pulled with diameters from 9 to 22 mm, while diameter oscillation magni-
tude was limited to 3 mm in the most stable cases. The oscillations of the
rod diameter may be explained by non-optimal HF inductor power control
during the experiment.

Figure 3.22. Polycrystalline sample with varying diameter that was grown
from a pedestal with diameter of 75 mm.

Simulation results. Numerical modelling of the described system was
also challenging because of melt center freezing. A reasonable melt shape
was obtained with QMF = 1.6 kW and QHF = 2.2 kW (see Fig. 3.23, where
T0 denotes silicon melting temperature). There are no available recordings
of corresponding power values during the experiment.

Figure 3.23. An example of finite element mesh (left) and calculated tempera-
ture field (right) for the system with crystal diameter DC = 20 mm and pedestal
diameter DP = 75 mm.
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After the growth of polycrystalline rod, shown in Fig. 3.22, the re-
maining pedestal was cut and the melting interface shape was detected
by bond decoration etching with potassium hydroxide, see Fig. 3.24(a).
This experimentally obtained profile is compared to the simulation result
in Fig. 3.24(b). Correspondence to the experiment was slightly improved
when the distance between the middle-frequency coil and the shield ∆zMF
was increased. This mismatch could be explained by non-symmetrical
experimental coil – as the tube bends downwards in actual 3D shape,
appropriate value of ∆zMF for axially symmetrical model decreases.

There were no Si growth experiments found in the literature that cor-
respond to the system modelled in this work. However, in another sys-
tem [46], where an electron gun was used instead of a high-frequency in-
ductor, and the crystal was positioned asymmetrically with respect to the
pedestal, a qualitatively similar shape of the melting front was observed:
with a double curvature, see Fig. 3.25.

(a) Vertical slice of the pedestal
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experiment, DC = 15-20 mm, ΔzMF≈ 15 mm

(b) Comparison between simulated and experimentally
measured melting front shapes

Figure 3.24. Experimentally measured (a) and simulated (b) melting front
shapes for the system with crystal diameter DC = 20 mm, pedestal diameter
DP = 75 mm. ∆zMF is the distance between the middle-frequency coil and the
shield.

Discussion. Even after the coil height correction, calculated interface
shape only qualitatively corresponds to the experimental one, with differ-
ences up to 4 mm. It can occur due to multiple reasons: unsteadiness
of the experiment, non-horizontal ETP line, other imprecisions of experi-
mental set-up, non-symmetry of the experimental inductor due to power
supply circuits, and the lack of melt flow in the model.

The effect of the non-symmetry of the HF inductor could manifest
as lower induced heat below the gap between current suppliers, which
decreases melting interface depth. It could explain why the experimental
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Figure 3.25. Experimentally measured melting and crystallization front shapes
in the system with electron gun and asymmetrically positioned crystal [46].

interface in Fig. 3.24(b) is shallower at the right side (r > 0). If evaluated
by analyzing a research where the main slit width was changed in FZ
system [68], this effect is unlikely to exceed 1 mm. However, unlike the FZ
crystal, the pedestal did not rotate in the considered experiment, therefore
larger non-symmetrical effects could be expected. The imprecisions of
experimentally measured interface are hard to analyze because of the non-
symmetry and the lack of statistics.

The melt flow effect has been previously investigated in a simplified
system (see Sec. 3.2.2 or [Dis4]), and rather should increase interface
deflection at r ≈ 25 mm due to the vortex created by HF EM force.
However, that research did not include MF EM force, which acts in the
direction away from the melting interface. Thus, MF EM force should
decrease interface depth at the outer part of the interface and improve
the fitting to the experiment. The order of magnitude of the melt flow
influence on a FZ system with similar proportions (DC = 100 mm) was
predicted to be several millimeters large [69].

Simulations of melt flow. The middle-frequency EM field simulations,
described in Sec. 2.2, allowed to obtain time-averaged Lorentz force density
in melt:

fMF = 0.5⃗j × B⃗,

where j⃗ is the magnitude of induced current density and B⃗ is the magnitude
of magnetic field. The obtained force density distribution is shown in
Fig. 3.26. The force is indeed directed away from the interface and has a
maximum at moderately large r. However, the melt flow calculations with
OpenFOAM , the model of which is described in Sec. 2.4, show that the
influence of MF volume force is very small in comparison with the surface
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force induced by the HF inductor. The two-vortex structure of melt flow,
shown in Fig. 3.27, remains the same, and brings hot silicon from the
free surface towards the melting interface. The Figure depicts the whole
velocity – azimuthal component of it is very small, because crystal and
pedestal were not rotating

Figure 3.26. The time-averaged Lorentz force volume density fMF induced
in melt by the MF coil in the system with crystal diameter DC = 20 mm and
pedestal diameter DP = 75 mm.

To evaluate the influence of melt flow on the shape of the melting
interface, heat flux correction was introduced. It was defined as the dif-
ference between the heat fluxes calculated with and without melt flow:
qcorr = qmelt flow − qno melt flow. Using this definition, positive values of
qcorr would mean additional crystallization (i.e., the interface shifts up-
wards), negative values – melting (the interface shifts downwards). In all
considered cases, qcorr is mostly negative, see Fig. 3.28. It means that
the simulated interface shape cannot be moved closer to the experimental
shape using fMF. The same conclusion applies for 2.3 times finer mesh,
and even when fMF was scaled twice, it was still neglectable in comparison
with HF induced force.

Model limitations. One of the main limitations of the numerical model
is that it uses the axially symmetric approximation. In the experimental
system, the HF inductor is highly asymmetric: it consists of a single loop
and there is a gap between its suppliers. Most of the melt flow calculations
were also performed in the axially symmetric approximation.

The second important constraint is that the model is quasi-stationary.
It describes the phase boundaries and the melt flow at equilibrium, which
is established for given boundary conditions. Therefore, if the experiments
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(a) Meridional (projected on a vertical
plane) melt velocity without MF force. (b) Melt temperature without MF force.

(c) Meridional (projected on a vertical
plane) melt velocity with MF force. (d) Melt temperature with MF force.
Figure 3.27. The results of melt flow calculations without (top) and with
(bottom) the force induced by the middle-frequency inductor; DC = 20 mm,
DP = 75 mm.

were carried out in a non-equilibrium state (e.g. if the melting front was
changing during the experiment), they are more difficult to use for model
verification. Another limitation is that only laminar flow is considered.
However, the resulting vortex structure is rather stable and distinct, so
the effect of melt flow on heat transfer would not change significantly if a
turbulence model were used.

Despite the differences between the experiment and simulation results,
numerical investigation about the crystal diameter increase and optimal
inductor shapes are valuable to understand approximate values of optimal
inductor parameters and their dependence on crystal diameter.

3.6 Challenges of large diameter crystal growth

3.6.1 Optimized shapes of high-frequency inductor

The summary of optimal inductor parameters for different crystal and
pedestal diameters is shown in Tab. 3.3. Middle-frequency inductor power
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Figure 3.28. The heat flux correction qcorr on the melting interface, calculated
as heat flux difference between simulations with and without melt flow.

QMF has not been optimized in the present research: QMF has been man-
ually selected for each pedestal to ensure calculation convergence with
initial HF inductor geometry and kept constant during all iterations. Ex-
clusion of some parameters from optimization algorithm has rather small
influence on the results: 1-3 mm difference in HM is not crucial for the
preventing of melt center freezing, and it is also small in the context of
the discrepancy between the experiment and the simulations. Moreover,
the required HF and MF power values are practically the same regardless
of inductor shape. These results indicate that the remaining degrees of
freedom of the inductor shape may be used in the future to optimize other
process aspects, that have not been optimized yet (e.g. melt flow intensity
or HF inductor voltage).

Fig. 3.29 shows a visual representation of several columns of Tab. 3.3.
As it follows from the pedestal method design, internal diameter of the
inductor Dind increases for larger DC . However, this increase is not linear,
and the difference between Dind and DC is the largest for DC = 60 mm:
almost 40 mm, or one third of crystal diameter. For now it is not clear
whether this behavior can be attributed to the selection of initial inductor
parameters (and in the system with 100 mm crystal the inductor shape is
far from optimal) or can be considered a feature of the pedestal method
itself. Fig. 3.29(a), also shows that the optimal distance Hind between the
inductor and the ETP is ∼ 10 mm independently of DC .

Necessary induced HF inductor power is higher than MF inductor
power (pedestal side heating) in cases with large DC , see Fig. 3.29(b).
It outlines a challenge connected with crystal diameter increase: higher
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HF inductor current increases the risk of arc discharge and intensifies melt
convection, thus destabilizing free surface and melting interface shapes. Fi-
nally, the process stability could also be an important issue: when Fig. 3.19
and Fig. 3.15 are compared, the range of possible inductor shapes is much
smaller in the case with the larger DC . It demands the precision of the in-
ductor manufacturing and growth process control. Possibly, the inclusion
of MF inductor parameter (current, frequency, distance between windings)
in the optimization algorithm could improve the stability of the molten
zone and decrease necessary HF inductor power.

Fig. 3.30 shows that in almost all inductor optimization simulations,
zone height zmax is 1–2 mm higher than the one calculated using Laplace-
Young equation in Section 3.1. It demonstrates the stabilizing effect of
EM pressure, as described in [66].
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Table 3.3. Summary of inductor optimization results and used EM power for crystal and pedestal diameters DC and DP .
The “without” keyword indicates which HF inductor parameters were excluded from the optimization. Rind is the internal
radius of the high-frequency inductor, Hind – inductor height above the pedestal rim, HM – melt height, zmax – the vertical
distance between the ITP and the ETP, QHF and QMF – the integral powers of high-frequency and middle-frequency inductor.
Target function is denoted by ft.

DC ; DP , mm case details Rind, mm Hind HM , mm zmax, mm QHF, kW QMF, kW

36; 75
“thick” initial geometry 24 8.4 24 15.8 2.1 3.0
“thin” initial geometry 26 9.1 22 16.2 2.1 3.0

60; 150
– 51 12.3 45 17.3 5.9 7.3
without αind 50 12.1 46 16.9 5.9 7.3
without cind, kind, αind 49 9.7 45 15.1 5.8 7.3
modified ft(HM , αETP) 51 11.8 43 16.4 5.8 7.3

90; 200
– 58 9.5 46 17.9 10.3 8.7
without cind, kind, αind 56 9.5 45 17.6 10.2 8.7

100; 200
– 61 9.6 30 17.9 10.0 9.4
without cind, kind, αind 60 9.5 27 17.5 9.9 9.4
modified ft(HM , αETP) 61 9.2 21 16.9 9.8 9.5
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Figure 3.30. Maximal zone height zmax for different crystal diameters DC

and pedestal diameters DP , obtained by Laplace-Young equation (lines) and in
inductor optimization simulations (points).

3.6.2 Additional free surface heating during the cone phase

The previous section presented the results of inductor shape optimiza-
tion for different crystal diameters DC . However, it is impossible to change
the inductor during the growth process. It means that the initial pedestal
melting, crystal seeding and start cone phase (gradual increase of DC)
must be performed with the same HF inductor. The inductor that was
optimized for large DC , and thus has large inner diameter, is clearly sub-
optimal for small crystal growth, because it does not induce enough heat
in the pedestal center to compensate large heat losses from the central
part. This effect was also shown in experiments even with relatively small
pedestal of DP = 75 mm, see Fig. 3.31(a). This problem can be miti-
gated by using a third source of heat that helps to sustain large temper-
ature at the pedestal center, e.g. infrared lamps, schematically shown in
Fig. 3.31(b).

Simulations of phase boundaries. The present section describes the
calculations of phase boundaries for DP = 200 mm and different crystal
diameters (from 10 to 100 mm), performed to find appropriate proportions
of HF, MF and additional free surface (FS) heating during the cone growth.
Other system parameters correspond to Tab. 3.2.

During the study, inductor shape remained constant, and inductor
current was adjusted using a PID algorithm to keep vertical distance to
the ETP constant: Hind = 9 mm (see Fig. 3.31(b)) for all of considered
DC . In this way, total induced HF heat QHF has been obtained for each
calculation. Other integral heat fluxes were user-defined. QFS was defined
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(a) Pedestal surface photographs after un-
successful attempts to melt it without addi-
tional heat source on the free surface
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(b) System scheme, where heat sources
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ditional free surface (FS) heating

Figure 3.31. Pedestal (DP = 75 mm) surface photographs and the scheme of
the modelled system.

directly, QMF was defined indirectly – by defining MF inductor current.
Multiple values were tested, and only some of calculations converged. For
example, melt center was freezing when QMF was set too low, and part
of FS crystallized near the internal triple point (ITP) if QFS was set too
low. In this section, the calculations with the lowest possible values of
additional heat fluxes QFS and QMF are summarized, as they are beneficial
for cost-effectiveness and equipment design.

The optimal integral heat fluxes during the cone phase are given in
Fig. 3.32, indicating that the free surface heating should be gradually
decreased, and for DC > 60 mm MF heating should start to increase.
Corresponding phase boundaries and silicon temperature distributions are
presented in Fig. 3.33. Both HM value and FS meniscus angle are satisfac-
tory, i.e. do not threaten stable growth process, for all of crystal diameters.
However, HM is only 21 mm in DC = 100 mm system, which means that
further increase of DC may not be possible with current pedestal diameter
DP = 200 mm.

Fig. 3.34 demonstrates the influence of pedestal diameter increase on
phase boundaries. It stabilizes the process by increasing HM and de-
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creasing αETP, however it has its drawbacks: harder manufacturing of the
pedestal and larger heat losses, that lead to almost 50% increase in re-
quired HF inductor power. The increase of necessary HF power also puts
additional requirements on EM generator.

Figure 3.35 demonstrates the influence of QFS on phase boundaries,
while DC = 10 mm and other parameters are constant. The embedded
graph shows also the molten zone height zmax, defined as vertical distance
between the ETP and the ITP. Higher free surface heating increases zone
height and melt height HM , because melt temperature should drop for
crystallization to happen, and it happens at higher z for higher QFS.
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Analytical estimations of irradiated heat. If a crystal is sufficiently
tall and thin, radial temperature gradient can be neglected, and the tem-
perature in the crystal can be described using 1D distribution T (z), see
Fig. 3.36(a). As the crystal side surface is located far from the inductor, it
can be assumed that the only source of temperature change is radiation.
The dimensionless heat transport equation then becomes [69]:

∂2T̃

∂z̃2
= q̃rad = Bi T̃ 4, Bi = εsσSBT

3
0RC

λ
, (3.7)

where T0 is melting temperature, T̃ = T/T0 is dimensionless temperature,
z̃ = z/RC is dimensionless vertical coordinate, q̃rad is dimensionless heat
flux through the crystal side surface, Bi is Biot number, εs = 0.46 is
solid silicon emissivity, σSB = 5.67W/m2K4 is Stefan-Boltzmann constant,
and RC is crystal radius. The boundary conditions for this problem are

T̃
∣∣∣
z=0

= 1 at the crystallization interface and ∂T̃

∂z

∣∣∣∣∣
z=∞

= 0 far from the

interface. The solution to the previous equation is

T (z̃) =

(
1 + z̃

√
9

5
Bi
)− 2

3

, (3.8)

which leads to dimensionless heat flux at the crystallization interface

q̃crys =
∂T̃

∂z̃
=

√
4

5
Bi.

Therefore, the dimensional integral heat flux is

Qcrys = q̃crys ·
πR2

CλT0

RC
=

√
4

5
Bi · πRCλT0. (3.9)

The analytically obtained Qcrys is plotted in Fig. 3.36(b), with solid
blue line. It partially corresponds to the simulation results, shown with
the dashed blue line. Differences probably arise due to the increase of
crystal radius, which makes the 1D approximation less precise, because
the crystal length has been kept constant. Another possible explanation
is the change of emissivity with temperature.

One could also try to analytically estimate heat losses from the free
surface as Qfree surf. ∼ εlσSBT

4
0 · π(R2

P − R2
C) (uniform radiation from an

area equal to the difference between pedestal and crystal cross-section ar-
eas, where liquid silicon emissivity εl = 0.27). However, this simplification
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does not consider neither the presence of HF inductor nor the change of
the melt surface shape, therefore it is not useful for systems with large DC ,
as shown in Fig. 3.36 with gray lines. It means that the analytical esti-
mations are not precise enough to predict the system behavior during the
increase of DC , and numerical simulations are important for experiment
planning and realization.
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Figure 3.36. (a) – temperature field in the crystal with radius DC = 10 mm,
that justifies the 1D approximation T (z). (b) – comparison between analytical
and numerically simulated total irradiated heat from the crystal side surface
Qcrys and the melt free surface Qfree surf..

63



4 Conclusions

In this work, the phase boundaries and melt flow during the growth
of silicon crystals by the pedestal method are numerically modelled for
the first time. The conclusions of the work are presented below, sum-
marized according to the goal and the tasks of the work defined in the
subsection 1.5. The tasks of the thesis have been completed:

1. The software for the modelling of pedestal method has been devel-
oped based on the floating zone method modelling software. The
main program includes modelling of the electromagnetic field and
the shape of the phase boundaries, while melt flow calculations have
also been performed for some cases.

2. In line with the development of the experimental set-up at KEPP
EU, the modelling software has also been improved: first by adding
pedestal side heating in a simplified way (as homogeneous heat
flow on the surface), and then by creating a more accurate middle-
frequency field model.

3. Verification of the program by comparison with available experimen-
tal data has been carried out. This task was only partially com-
pleted as experimental data was only available from one growth pro-
cess. This prevents a conclusion as to whether differences of up to
4 mm between the experimentally measured and numerically sim-
ulated melting front shape are significant in comparison with the
uncertainty of the experimental data.

4. The optimization algorithm has been developed and used to adjust
the shape of the high frequency inductor using the gradient method
and to improve the melt height for different crystal diameters. The
modelling resulted in optimal inductor parameters for crystals with
diameters of 36, 60, 90 and 100 mm.

The goal of the work has been achieved: numerical models have shown
that it is possible to grow silicon crystals with a diameter of 100 mm using
the pedestal method. This is possible if pedestal side heating and addi-
tional free surface heating are used. In the framework of ERDF projects,
the industrial partners KEPP EU regularly considered the simulation re-
sults and used them for the experiment design. During the projects, the
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crystals grown by the industrial partners reached a diameter of 35 mm,
which is approaching the limits found in the literature.

Thesis: simulation results confirm that it is possible to grow
large (100 mm diameter) silicon crystals if improvements are
made to the pedestal process. The main problems are freezing of the
melt center and spilling of the melt as the free surface overhangs the edge of
the pedestal. The necessary improvements are heating of the pedestal side
with a middle-frequency inductor and additional heating of the free surface
at the beginning of the cone phase. This statement is supported by a
series of calculations. The high frequency inductor optimization algorithm,
which takes into account both the melt height and the melt meniscus angle,
allowed to obtain a stable molten zone for growing 100 mm crystals from
a 200 mm pedestal. To further improve the stability of the zone, the
diameter of the pedestal should be increased, e.g., to 250 mm.

The analysis of the results of the work also led to other conclusions:

• The calculations showed that high frequencies are more favorable
for experiments, because the inductor current is lower and the melt
motion is less intense.

• Calculations of melt flow using the volume-of-fluid method showed
that a significantly deeper melt front is obtained when melt convec-
tion is taken into account.

• The inductor optimization calculations predict that the inductor
should be horizontal or with a slight inclination “inwards”, posi-
tioned approximately 10 mm above the ETP, and its other parame-
ters are summarized in Table 3.3. If some inductor parameters were
kept constant, this did not significantly affect the optimization re-
sults.

• In order to improve the process stability and to make the growth of
100 mm crystals feasible, side heating of the pedestal is necessary.
However, even side heating is not sufficient at the very beginning
of the process and in the cone phase with small crystal diameters.
Therefore, in the part of the cone phase when the crystal diameter is
less than 60 mm, additional free surface heating (e.g. with infrared
lamps) is necessary, with a maximum value of about 500 W.
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