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ABSTRACT

Conductivity is a very broad term, used to describe a material's capacity

to transport various objects � electrons, holes, ions, atoms, deformations,

excitations, � through itself via some mechanism. It is an intrinsic property

of any material and is a�ected by the material's composition and structure.

Subtle changes in either can have a profound impact on conductivity and

understanding this causality is vital to material design.

In this thesis two multifunctional materials, cerium dioxide (CeO2)

and zinc oxide (ZnO) are studied with density functional theory (DFT)

methods. Both materials are known for their response to point defects,

such as the formation of vacancies, or introduction of substitution defects:

CeO2 is a model material for small polaron conductivity, which is heavily

impacted by oxygen vacancy formation, while ZnO is a well-known n-type

semiconductor, with possibly untapped potential for p-type conductivity.

At the root of this thesis is the development of robust, traceable, trans-

parent computational models for tracking changes in local structure and

electronic localization, and assessing their e�ects on the conductivities of

these materials.

The work presented in this thesis shows how to build a causal link

between experimentally observed data and computed properties of CeO2

and ZnO. It is shown how to apply symmetry analysis in order to get all

possible electronic localization solutions. An example of statistical ther-

modynamics coupled with DFT calculations is shown to yield predictions

of dopant solubility. The ability to create experimentally grounded models

such as those shown in this thesis is an important aspect of the material

design process.
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1. INTRODUCTION

1.1 General introduction and motivation

Conductivity, colloquially and broadly, is a material's innate abil-

ity to transport charge carriers. In solids speci�cally, charge carriers can

be ions, electrons, or holes (a hole is a quasiparticle associated with the

absence of an electron where it would normally be in an atom or atomic

lattice). Material's dominant conducting mechanism de�nes its utility and

application limits. Thus, materials with very high electronic conductivity

are best suited for transmitting power or signals in the form of electrical

�ow, materials with very low electrical conductivity are best at separating

the �ow of electrical power from places it is not supposed to reach, materi-

als whose conductivity depends on external conditions such as temperature

or potential, are optimal for controlling the �ow of energy, and materials

with ionic conductivity mechanisms are suited for energy conversion.

Being an innate ability of the material, conductivity is a�ected by

its composition and structure. For instance, pure water does not conduct

electricity, but the addition of table salt makes it conductive, and carbon

nanotubes, while having the same atomic constitution, may or may not

conduct electrical current depending on their geometry [1]. This work is de-

voted to predicting the behaviour of point defects from the �rst-principles

calculations.

Point defects are crystallographic defects that occur only at or around

a single lattice point. While crystals are in�nitely periodical in all direc-

tions, point defects do not extend in either dimension. In this work, three

types of defects are investigated:

• vacancy defects, which are lattice sites that are normally occu-

pied, but are empty;

• substitution defects, i.e. atoms of di�erent chemical species (im-

purity or a dopant) occupying a regular lattice site;
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1.1. GENERAL INTRODUCTION AND MOTIVATION

• interstitial defects, or atoms that occupy a regular lattice position

which is normally vacant.

Formation of these defects changes the distribution of electronic den-

sity and introduces distortions to the crystalline structure such as changes

in bond lengths and atomic positions. Crucially, these changes do not prop-

agate inde�nitely in the crystalline structure, and as such their description

can be contained to a relatively small-radius region (in comparison to the

in�nite crystal), i.e. to a local structure of the defect. This work explores

point defects and their impact on conductivity in two materials with dif-

ferent conductivity modes and di�erent applications.

The �rst material is cerium dioxide, CeO2 (chapter 3), which is a

wide-gap semiconductor, but also an ionic conductor, whose ionic conduc-

tivity depends on the energetics of oxygen vacancy formation. This work

explores symmetry aspects of this defect and its e�ect on the material's

surroundings, speci�cally, the localization of electrons and the associated

magnetic properties, and provides a theoretical background for the ob-

served small polaron formation. Another principal defect of interest is the

cerium-substituting terbium (Tb) ion. Not only are lanthanides known

to improve electronic and ionic conductivities of CeO2 (see section 2.6),

but Tb speci�cally has very promising solubility thermodynamics (see sec-

tion 3.2.5). Tb's presence drastically lowers energetics of oxygen vacancy

formation (section 3.2.6), thus improving CeO2's ionic conductivity.

Lanthanide doping generally improves performance of ceria-based

materials (section 2.6). Ionic conductivity in Ce1−cTbcO2−δ increases with

Tb content, and this system's electronic conductivity (p-type) reaches no-

ticeably high values at 50% Tb. However, utility of some lanthanides

is limited by their solubility. For instance, calculated phase diagrams of

Ce1−cGdcO2−c/2 [2, 3] show that the phase separation into Gd2O3 and

CeO2 occurs below certain transition temperature that weakly depends on

Gd concentration.

Experiments on solid solutions with Tb content up to 60% [4] do

not indicate a second phase formation. On the other hand, the electron
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1.2. AIM AND OBJECTIVES OF THE WORK

energy loss spectroscopy and transmission electron microscopy measure-

ments [5] demonstrated the formation of domains containing Tb3+ and

oxygen vacancies, in the range of Tb concentration from 0 to 50% with

a secondary phase formation observed in x-ray di�raction spectra for Tb

concentrations higher than 80% [6]. Thus, understanding solubility data of

Tb+4 is missing as well and may be important for the use of Ce1�cTbcO2

for oxygen separation, because, as was observed in [7], the increase in Tb

content leads to an increase in the oxygen uptake.

The second material of interest is zinc oxide, ZnO (chapter 4), also

a wide-gap semiconductor, and a very promising material for transparent

electronics, among its numerous other applications (section 2.7). This work

explores whether the presence of Ir�O complexes may cause a measurable

p-type conductivity in this material, and what are the associated structural

changes when these complexes are created in ZnO.

The primary motivation for this investigation is the work by M	artin
,
²

Zubkins and his colleagues [8, 9]. They have shown that ZnO thin �lms,

when doped with Ir, tend to become amorphous upon reaching a critical

Ir concentration. Near this threshold, above 7 % Ir, the samples become

amorphous in x-ray di�raction and EXAFS spectra, while computation-

ally �tted structures of EXAFS spectra show the presence of 6-coordinated

iridium ions [10]. Simultaneously, the samples start having a measurable

electrical conductivity, and a sign change of the Seebeck coe�cient is ob-

served.

1.2 Aim and objectives of the work

The aim of this study is to explore and explain, using �rst-principles

quantum chemistry calculations, the relationship between local and elec-

tronic structures of point defects in wide-gap materials such as CeO2 and

ZnO, and their conductivities�ionic, in the case of CeO2, and electronic in

the case of ZnO.
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1.3. THE SCIENTIFIC NOVELTY OF THE WORK

The objectives of the study are

• to develop robust, valid, and experimentally grounded computa-

tional models for analysing point defects in CeO2 and ZnO;

• to perform calculations and gather data on point defects in CeO2

and ZnO;

• to analyse the obtained data to interpret how changes in structure

impact electronic distribution in the studied materials;

• to put forward a model that explains the emergence of observed

properties in the studied materials.

1.3 The scienti�c novelty of the work

The results of research presented in this thesis are of scienti�c nov-

elty and have been published in several international journals.

This study is among the �rst to use a site-symmetry approach to

model polaronic and magnetically ordered point defects in CeO2.

The solubility of Tb in CeO2 for the entire range of Tb concentration

has been predicted for the �rst time.

It was demonstrated that the computationally cost-e�ective PBE+U

approach allows for exploring the localization of electronic defects and de-

scribing reduced lanthanide cations in a highly ionic environment.

A theoretical model for the phenomenon of emergent p-type con-

ductivity in Ir-doped ZnO has been proposed.

1.4 Author's contribution

Data acquisition and analysis using a range of computational tools

was performed by the Author at the Institute of Solid State Physics, Uni-

versity of Latvia (ISSP, UL). First-principles calculations have been carried

out by the Author with the computational resources provided by LASC

(Riga, Latvia), HPC centre of Max Planck Institute for solid state research

(Stuttgart, Germany), and PDC Center for High Performance Computing

at KTH (Stockholm, Sweden). Interpretation of the obtained results was
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2. THEORY

2.1 Crystallography fundamentals

By a textbook de�nition, a crystal is periodic structure created by in�nitely

repeating identical groups of atoms [11] across some lattice. One way to

de�ne a lattice in three dimensions is by three vectors a1, a2, a3 such that

the arrangement of atoms does not change when an arbitrary point r is

translated by an arbitrary integral multiple of these vectors:

r′ = r + u1a1 + u2a2 + u3a3 (2.1)

All possible integer values of ui de�ne the set r′ , or the lattice. Equally,

a crystal is invariant under any translation T of the form

T = u1a1 + u2a2 + u3a3, (2.2)

and so are all the local physical properties of the crystal, such as the charge

concentration, average electron density, or magnetic moment density. Vec-

tors a1, a2, a3 form the crystallographic basis of the direct lattice. These

primitive translations T form an invariant subgroup of every crystallo-

graphic space group. This group is of utmost importance, because from it

the Brillouin zone is derived, which determines crystalline energy levels.

A parallelepiped built on the vectors a1, a2, a3 is the unit cell of a

crystal. The International Union of Crystallography distinguishes in the

International Tables for Crystallography [12] the unit cell, the conventional

cell, and a primitive cell.

Figure 2.1 shows di�erence between the primitive and conventional

cell using CeO2 as an example. CeO2 crystal has �uorite structure (space

group No. 225, Fm3̄m, face-centred cubic lattice), and its conventional

cell is also face-centred cubic. It has 4 lattice points, and as such it has

4 Ce atoms, and 8 O atoms. The primitive cell, on the other hand, is

10



2.1. CRYSTALLOGRAPHY FUNDAMENTALS

Figure 2.1: Primitive (a) and conventional (b) cells of CeO2. Primitive cell
has 1 Ce atom and 2 oxygen atoms. Conventional cell has 4 symmetrically
equivalent Ce atoms (all occupying the same Wycko� position with multi-
plicity 4), and 8 symmetrically equivalent O atoms (occupying a Wycko�
position with multiplicity 8, di�erent numbers are for clarity)

trigonal (sometimes called rhombohedral): each pair of its basis vectors

forms a 60◦ angle, and all vectors have the same length. Figure 2.2 shows

a way for constructing a primitive cell from the CeO2's conventional cell.

The �nite list of all symmetry operations which leave the given point

invariant taken together make up another group, which is known as the site

symmetry group of that point. By de�nition, all points with the same site

symmetry group (or a site symmetry group in the same conjugacy class)

are assigned the same Wycko� position [12]. A related but not strictly

synonymous concept is that of crystallographic orbit, which is a set of all

points generated from any given point in space by action of the space group.

Two crystallographic orbits of a given space group belong to the same

Wycko� position if and only if the site-symmetry groups of any two points

from the �rst and the second orbit are conjugate subgroups of the space

group. By convention, each Wycko� positon of a space group is labelled by

a letter which is called the Wycko� letter. Letters closer to beginning of

the alphabet correspond to positions with higher site symmetry. In case of

the group P1 the only position a is the general position, and in the case of

11



2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

Figure 2.2: Relation between CeO2's conventional cell (with a, b, c basis)
and a primitive cell (with pa, pb, pc basis). All red spheres represent
oxygen atoms, with labelled atoms belonging to the primitive cell; all other
spheres represent Ce atoms, with larger ones belonging to the primitive
cell

Pmmm the 27th position (also the general position) is assigned the letter

A [12, 13].

2.2 Supercell model and splitting of Wycko� positions

Supercell model is an excellent tool for modelling point defects in crys-

talline solids. A point defect cannot be introduced into the unit cell be-

cause then the concentration of the defect will be too high, at which point

it will no longer be a point defect, but an entirely new material, or some

exotic phase. The concept of a supercell has been introduced in a work

by A. M. Dobrotvorskii and R. A. Evarestov [14, 15], and initially was

named the quasi-molecular large unit cell model. In a nutshell, the idea

of this approach is to expand the motif, e�ectively replacing the unit cell

with a larger fragment of the crystal, corresponding to a practical con-

centration of the studied defect. This larger fragment, created with the

same translational symmetry as the parent crystal, is the supercell, which,

when combined with periodic boundary conditions, represents the entire

12



2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

crystal with its defects. A later work by Evarestov and Smirnov [16] lists

for each crystal class transformations that generate the most symmetrical

supercells with regards to both direct and inverse lattices.

Atoms of the same chemical species in the supercell are not nec-

essarily identical by symmetry, even though they originate from identical

atoms of the unit cell. Consider an example of CeO2 (�gure 2.3). Two

transformations of its basis vectors keep the full symmetry of its space

group [16], one is isotropic expansion:n 0 0

0 n 0

0 0 n

 , (2.1)

and the other is a transformation from face-centred cubic cell to primitive

cubic cell with an isotropic expansion:−n n n

n −n n

n n −n

 . (2.2)

Both transformations yield cells with the same number of symmetry oper-

ations, yet divide all Ce atoms into those with high point symmetries (in

the �g. 2.3 b&c these are positions a and b, belonging to the Oh point

group), and those with low symmetry (in the same �gure, positions d and

c, with point groups D2h and D4h respectively). O atoms have a di�erent

splitting pattern: in the same space group (�g. 2.3 b) oxygens are split

into two groups, each belonging to the Wycko� position f (point group

C3v), while in a di�erent space group (�g. 2.3 c) all oxygens belong to the

same Wycko� position g (point group C3v).

This loss of symmetry equivalence is called splitting of symmetry

orbits, and it is governed by group-subgroup relations. Several papers by

Wondratschek et al. provide mathematical foundation to this phenomenon

[17, 18]. They describe a generalized case of group-subgroup relations that

may occur as a result of structural changes in crystals caused by chemical
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2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

interactions or continuous phase transitions.

In the realm of supercell model, because creation of a supercell re-

places the primitive crystallographic motif with a larger one, the crystallo-

graphic pattern is distorted. By de�nition, the symmetry group of a crys-

tal pattern is its space group, so the symmetry group of a di�erent crystal

pattern (supercell) is some subgroup of the parent space group. Practi-

cally it means that supercells cannot have more symmetry operations than

the primitive cell, but they can have fewer symmetry operations. Conse-

quently, since creation of a supercell can change the point group of the

space group (�gure 2.3 C), points of the new supercell can also have fewer

associated symmetry operations, and hence may be assigned new Wycko�

positions.

As a result, within the supercell model, creation of a supercell may

move the same atomic species to di�erent Wycko� positions, making them

symmetrically inequivalent. This has huge implications for modeling point

defects, especially substitution defects, because, if accounted for, local

site symmetry in�uences the distribution of electronic density, e�ectively

allowing or disallowing certain localisation of electrons, a�ecting possible

magnetic orientations, etc. Speci�cally, results obtained in chapter 3 rely

heavily on this concept.
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2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

Figure 2.3: Splitting of Wycko� positions in some CeO2 supercells.
a: primitive cell.
b: 2 × 2 × 2 (L8) supercell. Light green sites are high-symmetry Ce sites
(Wycko� positions a and b), dark green sites are low-symmetry Ce sites
(Wycko� position d), red and blue spheres represent symmetrically in-
equivalent O sites belonging to the doubly degenerate Wycko� position f.
c: mapping of the primitive cell to the conventional 1 × 1 × 1 (L1) cell,
or, equivalently, mapping of the space group No. 225 to the space group
No. 221 (Fm3̄m → Pm3̄m); light green spheres are high-symmetry Ce
sites (Wycko� position a), dark green spheres are low-symmetry Ce sites
(Wycko� position c), red spheres are oxygen sites (Wycko� position g)
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2.3. BASICS OF DFT APPROXIMATION

2.3 Basics of DFT approximation

In this work, the electronic structure is calculated from �rst principles by

using the fundamental Schrödinger equation along with a set of approx-

imations. Unless speci�ed otherwise, the principal approximation is the

use of Density Functional Theory (DFT). Dozens of books as well as every

other thesis�bachelor's, master's and doctor's,�cover theoretical foun-

dations of DFT from every possible angle. For a brief summary, in the

Kohn-Sham (KS) formulation of DFT, the total energy is given by

EKS−DFT
tot =

− 1

2

∑
i

∫
ψ∗
i (r)∇2ψi(r)d

3r non-interacting electrons' (e−) kinetic energy

−
∑
A

∫
ZA

|r−RA|
n(r)d3r electrons-nuclei attraction energy

+
1

2

∫∫
n(r)n(r′ )

|r− r′ |
d3rd3r′ classical Coulomb e−�e− repulsive energy

+ Exc exchange-correlation energy

+
1

2

∑
A̸=B

ZAZB

|RA −RB |
nuclei-nuclei repulsion energy.

(2.1)

The orbitals ψi and the electron density n =
∑

i |ψi|2 that are used to

evaluate Etot are obtained by solving self-consistently the KS equations

(
−1

2
∇2 −

∑
A

ZA

|r−RA|
+

∫
n(r′ )

|r− r′ |
d3rd3r′ + vxc(r)

)
ψi(r) =

ϵiψi(r) (2.2)

The only terms in Etot and in the KS equations that are not known exactly

are the exchange-correlation energy functional Exc and potential vxc =

∂Exc/∂n(r). Therefore, the accuracy of the calculated properties depends

mainly on the approximation used for Exc and vxc.

In this text, the focus is on the practical aspects of using this ap-
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2.4. THEORETICAL BACKGROUND OF VASP CALCULATIONS

proximation � as implemented in the Vienna Ab Initio Simulation Package

(vasp), and in Crystal17 by University of Torino. The principal di�er-

ence between these two implementations is in the way they expand the

single particle wave functions. In the former, central quantities, like the

one-electron orbitals, the electronic charge density, and the local poten-

tial are expressed in plane-wave basis sets, an idea that naturally arises

when analysing wave equation of electron in a periodic potential [11]. In

Crystal17, each "crystalline orbital" (single particle wave function) is

expanded as a linear combination of Bloch functions de�ned in terms of

local functions (or atomic orbitals), which, in turn, are linear combinations

of Gaussian type functions [19].

2.4 Theoretical background of vasp calculations

In vasp, central quantities, like the one-electron orbitals, the electronic

charge density, and the local potential are expressed in plane-wave basis

sets. The interactions between the electrons and ions are described using

norm-conserving or ultrasoft pseudopotentials, or the projector-augmented-

wave method. According to its manual, vasp is a complex package for

performing ab-initio quantum-mechanical molecular dynamics (MD) sim-

ulations. The approach implemented in vasp is based on the (�nite-

temperature) approximation with the free energy as variational quantity

and an exact evaluation of the instantaneous electronic ground state at

each MD time step. vasp uses e�cient matrix diagonalisation schemes

and an e�cient Pulay/Broyden charge density mixing. Forces and the full

stress tensor can be calculated with vasp and used to relax atoms into

their instantaneous ground-state.

2.4.1 Electronic groundstate in vasp

Most of the algorithms implemented in vasp use an iterative matrix-

diagonalization scheme: the used algorithms are based on the conjugate

gradient scheme [20, 21], block Davidson scheme [22], or a residual mini-

mization scheme � direct inversion in the iterative subspace (RMM-DIIS)

[23, 24]. For the mixing of the charge density an e�cient Broyden/Pulay
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

mixing scheme[24, 25] is used by default, although other approaches are

also available. Input charge density (ρin) and wavefunctions (ϕn) are in-

dependent quantities (at start-up of a calculation these quantities are set

according to user settings, with initial KS orbitals being random (unless

precomputed ones are available), and with initial charge density being a

superposition of atomic charge densities, unless a precomputed one is avail-

able). Within each selfconsistency loop the charge density is used to set

up the Hamiltonian, then the wavefunctions are optimized iteratively so

that they get closer to the exact wavefunctions of this Hamiltonian. From

the optimized wavefunctions a new charge density is calculated, which is

then mixed with the old input-charge density.

The accuracy of calculation in general is controlled by several pa-

rameters: the maximal kinetic energy of plane wave included in the basis

set (largely depends on the pseudopotentials used); grid sizes used for rep-

resentation of the pseudo orbitals and for localized augmentation charges

(in more precise calculations, those are two separate grids de�ned along

lattice vectors, with the augmentation grid being much �ner); and by accu-

racy of projector's representation in real space (the number of grid points

within the integration sphere around each ion). The precision of calcu-

lation is determined by the self-consistency loop, which is broken when

either consistency is reached (relaxation of the electronic degrees of free-

dom stops if the total energy change and the band-structure-energy change

between two steps are both smaller than a speci�ed threshold), or when a

speci�ed number of SCF cycles has passed.

2.5 Theoretical background of crystal calculations

In crystal, each �crystalline orbital� (CO, a single particle wave function)

is expanded as a linear combination of Bloch functions:

ψi(r;k) =
∑
µ

aµ,i(k)ϕµ(r;k), (2.1)
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

de�ned in terms of local functions (or atomic orbitals, AO):

ϕµ(r;k) =
∑
g

φµ(r−Aµ − g) eik·g. (2.2)

AOs, in turn, are linear combinations of Gaussian type functions

(GTF, see below). This approximation is inspired by the Slater-type or-

bitals (which are analytical solutions of the stationary Schrödinger equa-

tion of hydrogen-like atoms), but uses GTFs, which ensures that a two-

centre distribution can be replaced by a one-centre distribution, simplify-

ing integration. Although combination of GTFs increases the number of

functions and integrals in the calculation, the integrals involving Gaussian

functions are quicker to compute than Slater-type orbitals, so there is a

net gain in the e�ciency of the calculation.

2.5.1 Construction of atomic orbitals in crystal

Eqs 2.1 and 2.2 show how crystal constructs COs from AOs. The latter

are expressed as linear combination of a certain number of Gaussian type

functions (GTF):

φµ(r−Aµ − g) =

nG∑
j

dj G(αj ; r−Aµ − g), (2.3)

where the sum over µ is limited to the number of basis functions; A is the

centre (de�ned by atomic coordinates), r is the coordinate of an electron,

g is the direct lattice vector (the sum over g in eq. 2.2 is extended to

all lattice vectors of (periodic) direct lattice), k is lattice vector de�ning

a point in the reciprocal lattice. Coe�cients a, d and α are constants

de�ned in the basis set. Coe�cients a (eq. 2.1) are variational coe�cients

for multiplying Bloch functions; d are coe�cients of the primitive gaussians

in the contraction, �xed for a given basis set (the sum over j is limited

to the number of functions in the contraction), and α are the exponents.

Large values of α are used to construct narrow GTOs (in the limit of in�nite

α a GTO approximates the Dirac delta function), i.e. it restricts electron

to a small region around the centre (atomic nucleus), while small values
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

of α generate di�use (spread out) functions, and can describe electrons in

chemical bonds (far from the nucleus).

The AOs belonging to a given atom are grouped into shells. The

shell can contain either all AOs with the same quantum numbers, n and

l (for instance 3s, 2p, 3d shells), or all the AOs with the same principal

quantum number n and di�erent l (sp shells; exponents of s and p gaussians

are the same, but their coe�cients are di�erent).

Each shell, depending on its type, and regardless of n, is used to

generate a �xed number of AOs: s shells generate 1 AO, sp � 4 AOs, p �

3, d � 5, and f � 7. The formal shell electronic charge is the number of

electrons attributed to each shell as initial electronic con�guration. The

electronic con�guration of the atoms is used in the calculation of the atomic

wave function only (and only when the guess for SCF is a superposition of

atomic densities). The formal charge may correspond to a neutral atom

or to an ion.

2.5.2 Boltzmann transport equation in crystal

With crystal it is possible to post-process DFT wavefunctions for evalu-

ating the electron transport properties by solving the Boltzmann equation

in the relaxation time approximation. Classically, it has the following form

[11]:
∂f

∂t
+ α · gradvf + v · gradrf = −f − f0

τ
, (2.4)

where r are Cartesian coordinates, v is velocity, α is acceleration dv/dt,

f(r, v) is a distribution function, such that

f(r, v)drdv = number of particles in drdv,

τ(r, v) is relaxation time, de�ned by the equation(
∂f

∂t

)
coll

= −(f − f0)/τ, (2.5)

where f0 is the distribution function in thermal equilibrium.

Solution of the classical Boltzmann transport equation provides the
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

classical distribution function that describes positions and velocities of

classical particles. In crystal, the semiclassical Boltzmann transport

theory is used. Solution of the semiclassical transport equation yields a

distribution function that describes electrons in an energy band. From the

distribution function macroscopic quantities of interest, such as Seebeck

coe�cient and electronic conductivity, are derived [26].

At the core of the equations coded into crystal for obtaining trans-

port coe�cients is the transport distribution function, cast as the energy

projected tensor:

Ξqr(E) = τ
∑
k

1

Nk

1

V

∑
i,j

vi,q(k)δ(E − Ei(k)), (2.6)

where Nk is the number of k -points used in sampling the reciprocal space,

vi,q(k) is the velocity of the ith (jth) band, calculated along the direction

q(r), and de�ned as the derivative of the band energies E(i,k) w.r.t. a

reciprocal space vector kq:

vi,q(k) =
∂Ei(k)

∂kq
. (2.7)

In eq. 2.6, δ is an approximation to Dirac's delta function, and

τ is the electronic relaxation time, which is assumed to be not depen-

dent on k (constant relaxation time approximation). Relaxation time is

temperature-dependent and cannot be obtained from �rst-principles cal-

culations, and, therefore, must be either �tted or obtained experimentally

[19, 27].

By integrating conductivity distributions written with tensors of eq.

2.6, it is possible for crystal to obtain conductivity tensors, for instance,

the electrical conductivity σ:

σqr(T ;µ) = e2
∫
dE

(
−∂f0
∂E

)
Ξqr(E), (2.8)

where µ is the chemical potential or Fermi level, E is the energy, f0 is
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2.6. CERIUM DIOXIDE

the Fermi-Dirac distribution, and T is the temperature. Thermoelectric

coe�cient σS, where S is the Seebeck coe�cient, is cast as:

[σS]qr(T ;µ) =
e

T

∫
dE

(
∂f0
∂E

)
(E − µ)Ξqr(E). (2.9)

From eqs 2.9 and 2.8, the Seebeck coe�cient is then calculated for

each value of µ. Computationally, precision of these calculations is de-

termined, mainly, by the pre-computed wavefunctions. Accuracy depends

on the density of k-points: too few points results in sparse evaluation of

vi,q(k), which yields a coarse transport distribution function.

2.6 Cerium dioxide

Cerium dioxide (CeO2, ceria) is a material whose utility stems from its

ionic and polaronic conductivities. Thus, it is not surprising that the

polaron properties of ceria were the subject of numerous experimental and

theoretical studies [28�32]. The applications based on these properties

of CeO2 include the use of it as an electrolyte in solid oxide fuel cells

[33], membranes for oxygen separation [34, 35], oxygen sensors [35, 36],

it has a high electrostriction coe�cient, making it useful in micro-electro-

mechanics and other electromechanical applications [37, 38], and it is a

well-known catalyst [39]. This work focuses on interaction between oxygen

vacancies and the lattice of CeO2, including other point defects that may

be present in the material.

Usually,CeO2 exists in a �uorite structure (space group No. 225,

Fm3̄m, face-centred cubic lattice) with Ce+4 occupying a high-symmetry

position, neighboured by eight O2� ions. Pure ceria has a characteristically

low small polaron conductivity [40]. In this material, polarons are created

when electrons re-localize to distinct Ce+3 ions, a�ected by formation of

oxygen vacancies.

Conductivity of ceria is improved when CeO2 is doped with lan-

thanide ions. For example, Gd- or Tb-doped CeO2 demonstrates higher

electrical conductivity relative to undoped samples [41, 42]. Trivalent rare
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2.7. ZINC OXIDE

earth dopants, e.g. Gd+3, Sm+3, and Pr+3 promote oxygen vacancy for-

mation and, thus, enable ionic conductivity [43�47].

Tb ions are particularly e�ective enhancers of ionic conductivity,

therefore ceria doped with Tb is a prospective material for mixed-conductive

membranes for oxygen separation; in addition, this material is distin-

guished by fast transport of oxygen ions, favourable redox catalytic prop-

erties and pronounced chemical compatibility with water and carbon diox-

ide at high temperatures [34, 48]. In contrast to other trivalent dopants,

speci�cally, Gd+3 with limited solubility in ceria [2], Tb is much more com-

patible with the lattice of CeO2, which results in much better solubility

(section 3.2.5).

2.7 Zinc oxide

Zinc oxide (ZnO) is a multi-functional material. Despite more than two

decades of intensive research, the capabilities of ZnO are still not ex-

hausted, and new insights for materials science can still be learned by

studying this compound and its defects. The form of ZnO is no less ver-

satile than its function: zinc oxide can be grown as large single crystals of

high purity, deposited as thin �lms, or made amorphous [49�51]. It has a

3.4 eV wide band gap, strong room temperature luminescence, high elec-

tron mobility, high thermal conductivity and large exciton binding energy

[52].

This material has found uses in a large variety of applications, in-

cluding but not limited to: thin �lm transistors, solar cells, diodes, dis-

plays [53�56], transparent conductors, sensors/emitters of blue and UV

light, and to functional coatings [52, 57]; ZnO also has pigmental, (photo)

catalytic, piezoelectric, antibacterial, and varistor properties [58�60] that

are being explored for their application across many �elds of industry.

A shared fundamental aspect for these application is the fact that

creating an n-type semiconductor from ZnO is a relatively straightforward

task because, among its intrinsic defects, oxygen vacancies are the most

stable [61�64]. This, combined with its large band gap, electron mobil-
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2.7. ZINC OXIDE

ity, and dopant-induced n-type conductivity [65�67] make it a very good

material for transparent electronics.

Still novel applications emerge in various domains but they often

require the preliminary stabilization of a p-type ZnO counterpart to the

natural n-type ZnO to be stimulated. Obtaining p-type ZnO thin �lms

would be an important milestone in transparent electronics, allowing the

production of wide band gap p�n homo-junctions [68�70], opening doors

to revolutionary technologies in light emitting diodes, lasers, etc. [57, 71,

72]. Unfortunately the lack of p-type ZnO slows down the launch of this

promising new market activity.

Because of its considerable technological interest, a lot of research

was made on the formation of local and extended defects in ZnO that

might be able to produce p-type conductivity [58, 73]. In summary, all

experiments and �rst-principle calculations carried out on ZnO bulk agree

that large amount of Zn vacancies, an intrinsic p-type defect, are di�cult

to stabilize [74�76], even though such defects and their complexes are ex-

pected to play a pivotal role in the generation of p-type charge carriers

[73].

At the same time, p-type doping in ZnO thin �lms is hindered by

a self-compensation e�ect from native donor defects (VO and Zni) and/or

hydrogen incorporation and mostly requires elevated growth temperatures

[77]. The conductivity of p-type ZnO thin �lms is substantially lower

compared to n-type ZnO. The cause of lower conductivity is the large

e�ective mass and thus the low mobility of the holes in the valence band,

which is mainly composed of p-orbital levels of oxygen. A new approach

to obtain p-type ZnO instead of doping is to produce a signi�cant number

of Zn vacancies and their complexes in order to generate p-type charge

carriers [78, 79].

Among other di�culties related to achieving p-type conductivity

through doping, is a strange behaviour of oxygen-substituting nitrogen.

Extensive theoretical investigations clearly stipulate that nitrogen, that

is considered so far as the most natural substituent for oxygen to trigger
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the appearance of p-typeness in ZnO, cannot lead to p-type conductiv-

ity at ambient conditions because of too deep acceptor levels [52, 80�82].

These assertions clearly point out the recurring problem in engendering

p-type ZnO in a reproducible way. In that context, a recent discovery

of nitrogen-doped zinc-de�cient ZnO nanoparticles that clearly exhibit p-

type properties for periods longer than 2 years and half on samples stored

at ambient conditions is very surprising [83].

As a result of advances in growing methods, current research on

p-type conductivity in ZnO-related topics is shifting towards complex ma-

terials such as In-Ga-Zn-O thin �lms [84�88], In-Zn-Sn-O [89], mixes of

oxides or spinels [73, 90�92], and to amorphous phases of ZnO and related

materials [67, 70, 93�96].
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3. THE CASE OF CERIUM DIOXIDE

3.1 Oxygen vacancy in undoped CeO2

In this work the investigated system is reduced ceria, i.e. cerium dioxide

with oxygen vacancies. To model this system, a supercell of CeO2 is cre-

ated, from which one oxygen atom is then extracted, together with its 8

electrons. Ce ions adjacent to the vacancy become reduced (they no longer

have to share some of their electrons with the extracted oxygen, so they

gain them back). This work explores how relaxation of such system with

DFT methods depends on the choice of supercell (local symmetry of the

defect), and which mode of electronic (de)localization is more probable in

such system.

Small polaron conductivity is typical for undoped CeO2 [40, 97].

Ceria intrinsically forms oxygen vacancies that are modelled here as pos-

itively charged w.r.t. undisturbed system (a region of space where an

oxygen atom used to be, when vacant, has a lower electronic density),

and, to compensate this charge, Ce3+ ions are formed.

3.1.1 Supercell selection

An argument stated in section 2.2 poses that by varying the size of a

supercell one can obtain cells with symmetrically di�erent positions orig-

inating from the same source (the so called Wycko� positions' splitting).

It follows then, that for any given material there are electronic solutions

incompatible with the space group symmetry, e.g. if all metal ions in a

cell are symmetrically equivalent, an antiferromagnetic alignment of their

electronic spins will have to break this symmetry.

Because introduction of a point defect nulli�es the �inner� transla-

tions of the supercell (combinations of the host crystal primitive transla-

tions), the point group of the defective crystal is de�ned by the site sym-

metry group of the defect. Fig. 3.1 illustrates this point with a 96-atom

supercell of CeO2, created with eq. 2.2, where n = 2.
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

Figure 3.1: Distribution of symmetry orbits in a 96-atom CeO2 supercell.
Cationic sites are labelled. Colours and labels represent orbits of the same
symmetry, see text and tables 3.1 � 3.2

If all atoms belonging to the same symmetry orbit (same colour) are

substituted with a di�erent atomic species, the entire symmetry of the su-

percell remains intact, including �inner� translations that exist only within

this symmetry orbit and do not coincide with lattice translations. How-

ever, if the substitution is partial, changing only some atoms in the orbit,

then the �inner� translations are violated and the number of symmetry op-

erations is reduced. In e�ect, all possible symmetry-compatible solutions

to electron localization depend on the choice of the defect placement.

In the following sections, a symbol LV (A) will be used to identify

supercells. L marks the type of Lattice (F for face-centred cubic, P for

primitive), V is Volume expansion factor (determinant of the transforma-

tion matrix, the number of unit cells in a supercell), and A is Atom count.

For instance, F64(192) means �a face-centred cubic supercell consisting of

64 unit cells, totalling 192 atoms�. It also means that eq. 2.1 with n = 4

was used to create this supercell. P32(96) means a supercell created with

eq. 2.2, where n = 2.
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Using the programWYCKSPLIT [98] of the Bilbao Crystallographic

Server1 [99], it is possible to identify all symmetry-allowed splittings of

Wycko� positions. Tables 3.1 and 3.2 list distribution of oxygen and cerium

atoms over the symmetry orbits for reasonably small supercells (under 200

atoms).

Table 3.1: Oxygen site symmetry in di�erent supercells
F1(3) F8(24) F27(81) F64(192) P1(12) P32(96)

Td(S24)i 2×C3v(S6) Cs(S2);
C2v(S4);
2×C3v(S6);
Td(S24)

4× Cs(S2);
4×C3v(S6)

C3v(S6) 2× Cs(S2);
2×C3v(S6)

i. SN is the number of point symmetry operations in a given orbit
in the supercell

Table 3.2: Cerium site symmetry in di�erent supercells
F1(3) F8(24) F27(81) F64(192) P1(12) P32(96)

Oh(S48) D2h(S8);
2×Oh(S48)

C2v(S4);
C3v(S6);
C4v(S8);
Oh(S48)

Cs(S2);
2×C2v(S4);
D2h(S8);
C4v(S8);
Td(S24);
2×Oh(S48)

D4h(S16);
Oh(S48)

2×C2v(S4);
2×
D4h(S16);
2×Oh

(S48)

Based on this initial symmetry assessment for the purpose of mod-

elling oxygen vacancy, not only is F27(81) the smallest supercell with a

low-symmetry Cs position, it is also the most inclusive supercell, represent-

ing all possible point symmetries an oxygen position can have. Therefore,

this supercell has been used in all the following calculations. As an ad-

ditional note, Cs is the lowest-symmetry point group of the Fm3̄m space

group, which further solidi�es the choice of F27(81).

1https://www.cryst.ehu.es
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3.1.2 Computational details

All calculations were made using crystal [19]. Tolerance factors of 8,

8, 8, 8, and 20 for the Coulomb and exchange integrals were used. The

SCF convergence threshold for the total electron energy was set to 10−9

Hartree, and the threshold for change in energy between consecutive ge-

ometry optimization steps was set to 10−8 Hartree.

Two hybrid exchange-correlation functionals were tested: PBE0

[100] and HSE06 [101, 102]. Hybrid DFT functionals with the selected

basis sets generally outperform LDA and GGA(+U) functionals, yielding

results that are, on average, more consistent with experimentally observed

properties of CeO2. Both functionals reproduce basic properties of bulk

ceria reasonably well, and, while HSE06 better reproduces the band gap

of this material in comparison to PBE0, the latter is computationally less

demanding, and produces more accurate vibrational frequencies. For these

reasons the calculations for F27(81) supercells with oxygen vacancy were

performed exclusively with PBE0 functional.

All calculations of defective cells were spin-polarized. The reciprocal

space was sampled with Monkhorst-Pack [103] k -point grids of varying

densities: 2× 2× 2 for all calculations of the F27(81) supercell; 3× 3× 3

for calculations of the primitive cell, and 32×32×32 for calculating elastic

constants with the primitive cell.

Basis sets were adopted from literature. Oxygen atoms were repre-

sented with a basis set taken from Bredow et al. [104], and for Ce atoms a

basis with quasi-relativistic e�ective-core pseudopotential with 28 core and

30 valence electrons was adopted from [105]. Prior to the main calculations

both basis sets were partially modi�ed using the program OPTBAS [106]

and HSE06 functional.

Oxygen vacancies were introduced in supercells by removing oxy-

gen atoms from various lattice positions. Oxygen-rich conditions were

assumed, as these are the operational conditions that CeO2 is subject to

as electrolyte in solid oxide fuel cells and in oxygen-separating membranes,

and it is under these conditions that bulk di�usion of oxide ions is rate
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

limiting. Therefore, formation energy of a V +2
O in a neutral supercell was

calculated as

EF = E
V +2
O

tot − Ep
tot + µO, (3.1)

where superscripts p and V +2
O respectively denote a perfect supercell, and

a supercell with one oxygen vacancy; EX
tot is the total electron energy, and

µO is the chemical potential of an oxygen atom, calculated as half of the

total electron energy of a O2 molecule.

3.1.3 Oxygen vacancies and electronic localization

Normally, cerium dioxide is ionic enough to safely assume that all Ce ions,

having donated all their outer shell electrons (4f15d16s2), are in the 4+ ox-

idation state, and all oxygen ions are 2�. Therefore, creation of an oxygen

vacancy by removing an oxygen atom from the supercell together with its

own valence electrons, leaves behind the two donated electrons that tend

to localize in the conduction sub-band formed by Ce's 4f orbitals. One

way of modelling experimentally observed formation of small polarons [40]

is to consider the four Ce ions which are nearest neighbours to an oxygen

vacancy, and to compare di�erent modes of electronic localization over

these ions. In the text below, electrons' localization over two neighbouring

Ce ions will be considered as representation of a small polaron, and local-

ization over three and more Ce ions�a large polaron, for such localization,

together with atomic displacements w.r.t. their original positions, exceeds

the boundaries of CeO2 primitive cell, even though it is still con�ned to

the supercell.

Table 3.3 presents all possible2 con�gurations of these localizations.

The �rst column names the site symmetry of the removed oxygen ion,

and categorizes symmetry equivalence of the neighbouring Ce ions. For

instance, the label Cs(S2)/(Ce1,Ce2)(Ce3)(Ce4) means that an oxygen

vacancy at a Cs site that has two symmetry operations, is surrounded by

three distinct groups of Ce ions, one of which has two symmetrically equiv-

alent ce ions (Ce1 and Ce2). Label C3v(S6)/(Ce1)(Ce2,Ce3,Ce4) marks

an oxygen vacancy at a C3v site with 6 symmetry operations, surrounded

2Computationally viable, see text below
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

by two groups of Ce ions, one of which has three symmetrically equivalent

Ce's. For each allowed magnetic con�guration, all symmetrically equiv-

alent Ce ions must have the same spin projection, either 1/2, −1/2, or

0.

Columns 2-4 of table 3.3 describe the magnetic properties of each

solution. Second column lists the total projected spin (Sz) for each starting

magnetic con�guration, as well as the distribution of electrons: '+' marks

a Ce ion with a non-zero net magnetic moment (some degree of electronic

localization), and '�' marks a Ce ion without an associated magnetic mo-

ment. In the 3rd column, N is the number of displaced Ce ions with a

non-zero magnetic moment. The next column lists values of the magnetic

moments (µ) of these ions after relaxation (signs denote spin orientation).

Columns 5-6 list bond lengths between displaced Ce ions and their

closest O [d(Ce�O)], and relative displacements of all V +2
O -encircling Ce

ions with respect to their distances in a perfect crystal (positive sign of

∆d(Ce�Ce) means an outward motion). For N = 2 (S2 and S4) there are

3 values: the change in distance between the Ce ions closest to the V +2
O ,

the change of distance between the other two Ce ions, and the change

of distance between these two pairs of ions. For N = 3 (S2) these three

values are: distance change in the closest pair, distance change for the next

closest ion, and distance change between Ce with non-zero µ, same as for

N = 4 (S4), except all values refer to pairs of ions. For S6 two values

are given: changes of distances between the three equivalent ions, and the

distance change between the other ion and the three equivalent ones. For

S24 there is only one value, the distance change between the 4 equivalent

ions.

Formation energies according to eq. 3.1 are in the 7th column, and

are given with respect to solution with the lowest energy (�rst row of the

table, Cs(S2) with Sz = 0, and EF = 4.10 eV). The last column lists

volumes of the relaxed supercells.
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Table 3.3: All magnetic con�gurations allowed by point symmetries in the F27(81) supercell

Cs(S2)/

(Ce1,Ce2)

(Ce3)(Ce4)

0

(�,�)

(+)(+)

2 0.96

-0.96

2× 2.30 0.17

0.23

0.30

0 1068.07

1/2

(+,+)

(�)(+)

3 2×−0.49

0.96

2× 2.24

2.30

0.20

0.22

0.20

306 1067.47

1

(�,�)

(+)(+)

2 2× 0.96 2× 2.30 0.17

0.23

0.30

0.2 1068.06

3/2

(+,+)

(�)(+)

3 2× 0.50

0.96

2.25

2.25

2.31

0.21

0.23

0.21

338 1067.27

C2v(S4)/

(Ce1,Ce2)

(Ce3,Ce4)

0

(+,+)(+,+)

4 2×+0.49

2×−0.49

2× 2.25 0.22

0.22

0.23

610 1066.56

Site symmetry/

symmetry equivalence

of Ce atoms

Spin

projection

(Sz)

N µ, µB d(Ce�O)i,

Å

∆d(Ce�Ce)ii,

Å

∆EF
iii,

meV

Volumeiv,

Å3

Continued on next page
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Table 3.3: All magnetic con�gurations allowed by point symmetries in the F27(81) supercell (Continued)

1

(�,�)

(+,+)

2 2× 0.96 2× 2.30 0.17

0.23

0.30

0.2 1068.08

2

(+,+)

(+,+)

4 4× 0.49 4× 2.25 0.22

0.22

0.23

611 1066.50

C3v(S6)/

(Ce1)

(Ce2,Ce3,Ce4)

1

(+)

(+,+,+)

4 -0.95

3× 0.35

2.30

3× 2.23

0.21

0.24

432 1066.67

3/2

(�)

(+,+,+)

3 3× 0.65 3× 2.27 0.22

0.26

396 1067.82

2

(+)

(+,+,+)

4 0.97

3× 0.35

2.30

3× 2.23

0.21

0.24

431 1066.82

Site symmetry/

symmetry equivalence

of Ce atoms

Spin

projection

(Sz)

N µ, µB d(Ce�O)i,

Å

∆d(Ce�Ce)ii,

Å

∆EF
iii,

meV

Volumeiv,

Å3

Continued on next page
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Table 3.3: All magnetic con�gurations allowed by point symmetries in the F27(81) supercell (Continued)

Td(S24)/

(Ce1,Ce2,Ce3,Ce4)

2

(+,+,+,+)

4 4× 0.49 4× 2.24 0.25 768 1066.71

Site symmetry/

symmetry equivalence

of Ce atoms

Spin

projection

(Sz)

N µ, µB d(Ce�O)i,

Å

∆d(Ce�Ce)ii,

Å

∆EF
iii,

meV

Volumeiv,

Å3

i 2.34 Å in the perfect crystal
ii 3.82 Å in the perfect crystal
iiiAs calculated by eq. 3.1, w.r.t. the �rst row of this table with EF = 4.10 eV
iv 1059.19 Å3 for the perfect crystal34



3.1. OXYGEN VACANCY IN UNDOPED CEO2

Table 3.3 clearly demonstrates that exploiting symmetry is neces-

sary for exploring all possible magnetic con�gurations. At the time of pub-

lishing [107], this has been a novel approach to modelling point defects in

symmetric supercells. Another symmetry-related conclusion is that sym-

metry reduction is necessary to obtain a solution with the lowest energy:

the highest vacancy formation energies correspond to the most symmetri-

cal solutions, where the two leftover electrons are delocalized over the four

neighbouring Ce cations, forming a large polaron.

In contrast, for symmetry con�gurations with 2 Ce ions neither of

which is symmetrically equivalent to either of two remaining cations, it is

possible to obtain a small polaron, with vacancy electrons localizing on

2 Ce cations. Three such solutions that are listed in table 3.3 as Cs(S2)

with Sz = 0, Cs(S2) with Sz = 1, and C2v(S4) with Sz = 1, have low

vacancy formation energies, with the �rst one, corresponding to opposite-

spin solution, being the lowest. Crucially, the opposite-spin solution is only

available for the Cs(S2) con�guration, in which the 4 Ce atoms are split

into 3 symmetry orbits. Small energy di�erences between spin-aligned and

opposite-spin solutions are consistent with previous results [31].

Structural changes are consistent across the entirety of results: Ce

ions move away from the vacancy and closer to the other O ions, while

volume of the supercell increases, with largest expansion corresponding to

small polaron-like solutions. This result corresponds well to experimental

data: Marrocchelli et al. [108, 109] has attributed volume increase in CeO2

to chemical expansion caused by larger cation size of reduced Ce ions.

Results presented in this section are published in [A1] . The author

has performed basis optimisation calculations for Ce and O, calculations

of CeO2 (both with- and without oxygen vacancy), has gathered the data

and has contributed his writing to the paper.
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3.2. TB IN CEO2

3.2 Tb in CeO2

3.2.1 Supercell selection

Four structures were used to analyse Tb solubility in CeO2: two unit cells

for the cases of pure CeO2 and TbO2 in �uorite structure, representing

a +4 oxidation state of either ion. The other two are superstructures

(ordered solid solutions), representing two di�erent (absolutely ordered)

Tb distribution modes at 50% substitution. The �rst superstructure is

a primitive cell, P1(12), with Tb layers ordered in the [001] direction,

�g. 3.2(a). The second superstructure is a 8-fold isotropic expansion of

the face-centred cubic cell, F8(24), with Tb layers ordered in the [111]

direction, �g. 3.2(b).

Figure 3.2: Two superstructures, representing di�erent orderings in
Ce0.5Tb0.5O2 solutions, corresponding to (a): P1(12), and (b): F8(24)
supercells, adopted from [110]

A detailed analysis of Tb properties in CeO2 matrix, including Tb's

e�ect on oxygen vacancy formation and the associated electronic localiza-

tion, was performed using a 96-atom supercell P32(96). The choice of this

supercell is motivated by a balance between reasonable concentration (ca.

3 at.%), relatively small size, and a good variety of sites for Tb placement,

see tables 3.1 and 3.2.
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3.2. TB IN CEO2

3.2.2 Computational details

At the time of conducting this research, no reliable, un-ionized, gaussian-

type orbital basis set was available for Tb, therefore, a plane-wave basis set

was used in this part of the study. DFT calculations were performed using

vasp 5 with PBE PAW potentials generated by Georg Kresse, following

methods suggested by Peter Blöchl [111, 112]. PBE exchange-correlation

functional [102] was used with an on site +U correction, as formulated

by Dudarev et al. [113]. U values were chosen based on available data in

literature: for Ce 4f electrons, U=5.0 was used [31, 114], while U=6.0 was

applied to Tb 4f electrons [115]. Both values were applied simultaneously.

Plane-wave cuto� energy was set to 520 eV, all calculations were spin-

polarized, convergence threshold for di�erence in total energy was set to

10−6 eV. Integration in the reciprocal space was done using the following

Γ-centred Monkhorst-Pack meshes of k-points: 4× 4× 4 for primitive cells

and P1(12) supercell (�g. 3.2(a)), 3×3×3 for F8(24) supercell (�g. 3.2(b)),

and 2× 2× 2 for P32(96) supercell. Charges of ions were calculated using

Bader's space-partitioning scheme [116, 117].

3.2.3 The method of concentration waves

To use DFT results in the analysis of the relative stability of phases at

T ̸= 0 K, Concentration Waves method (CW), as formulated in refs. [118,

119] was used. In CW approach the distribution of B atoms in a binary

A�B alloy is described by a single occupation probability function, n(R⃗).

This function gives the probability to �nd the atom B (Tb, in this case)

at the site R⃗ of the lattice. Such approximation is based on the treatment

of ordered phases in the crystalline structure of solid solution which are

stable with respect to the formation of antiphase domains. The choice

of these ordered structures does not depend on the type of interatomic

interactions and is dictated only by symmetry considerations [120, 121].

In CW method the structure determination problem is formulated

in terms of the reciprocal lattice through the analysis of CW amplitudes

which can be interpreted as both structure amplitudes of the superlattice

re�ections and as long-range order (LRO) parameters. The occupation
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3.2. TB IN CEO2

probability n(R⃗) for atoms at position R⃗ can be represented in a Fourier

series by linear superpositions of static concentration waves:

n(R⃗) = c+
1

2

∑
j

[Q(kj) exp(ikjR⃗) +Q∗(kj) exp(−1kjR⃗)] (3.1)

A static CW is represented as exp(ikjR⃗), where kj is a non-zero wave

vector de�ned in the �rst Brillouin zone of the disordered alloy, R⃗ is a

site vector of the lattice, and the index j denotes the wave vectors in the

Brillouin zone. Q(kj) is amplitude of a static CW, and c is the atomic

fraction of the alloying element. The star set of wave vectors kj is formed

by several interpenetrating Bravais lattices that can be brought in coinci-

dence with each other by the superlattice rotation and re�ection symmetry

operations. Usually, the term refers only to sublattice sites that form the

Bravais lattice.

The concentration waves are eigenfunctions of the matrix formed

by pairwise interatomic energies Ṽpq(R⃗, R⃗′). In an AB binary system,

Ṽ (R⃗, R⃗′) is the interaction energy for atoms at lattice sites R⃗ and R⃗′ [118,
119, 122]:

Ṽ
(
R⃗, R⃗′

)
= VAA

(
R⃗, R⃗′

)
+ VBB

(
R⃗, R⃗′

)
− 2VAB

(
R⃗, R⃗′

)
. (3.2)

3.2.4 Formation energy

Gibbs formation energy for oxygen vacancy in Tb-doped CeO2 was calcu-

lated as

∆G
V +2
O

F = ETb,VO

tot − ETb
tot + µO(T, pO2

), (3.3)

where ETb,VO

tot , ETb
tot are total electronic energies of supercells, with, respec-

tively, co-presence of Tb and V +2
O , and that which only has a Tb ion. Oxy-

gen chemical potential µO(T, pO2
) was calculated according to a method

published in [123], which casts it as
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3.2. TB IN CEO2

µO(T, pO2
) = µ0

O(T ) +
1

2
kBT ln

pO2

p0
=

EAO
tot − EA

tot −∆GAO(T 0) + ∆µO(T ) +
1

2
kBT ln

pO2

p0
, (3.4)

where µO(T ) is the standard chemical potential, superscripts AO

and A denote, respectively, a reference oxide, and its metal; ∆GAO(T 0) is

the oxide's standard heat of formation, taken from a database of experi-

mentally obtained values [124]. ∆µO(T ) is di�erence between chemical po-

tential at a temperature T and that in the standard state (T 0 = 298.15 K),

which is also taken from the database. kB is the Boltzmann constant, pO2

and p0 are partial oxygen pressure and start pressure, respectively.

Values of EAO
tot and EA

tot were calculated with DFT method; compu-

tational treatment of oxides included van der Waals correction by Grimme

et al. [125], since inclusion of these corrections yielded more precise values

of lattice constants (especially for lighter metal oxides), and produced a

smaller root mean square deviation for the whole dataset. The �nal value

of µO(T, pO2
) was obtained by averaging the values computed for di�erent

oxides.

3.2.5 Tb solubility in CeO2

The e�ective interatomic mixing potential is expressed in the form

Ṽ
(
R⃗, R⃗′

)
= VCeCe

(
R⃗, R⃗′

)
+ VTbTb

(
R⃗, R⃗′

)
− 2VCeTb

(
R⃗, R⃗′

)
, (3.5)

where VCeCe

(
R⃗, R⃗′

)
, VTbTb

(
R⃗, R⃗′

)
, and VCeTb

(
R⃗, R⃗′

)
are e�ective pair-

wise interatomic potentials, and R⃗, R⃗′ are sites in the cationic sub-lattice.

Con�gurational part of the free energy for a solid solution (neglecting the

phonon contribution) in CW approach is given in [118] as:
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3.2. TB IN CEO2

F =
1

2

∑
R⃗,R⃗′

R⃗ ̸=R⃗′

Ṽ
(
R⃗, R⃗′

)
n
(
R⃗
)
n
(
R⃗′
)

+ kT
∑
R⃗

[
n
(
R⃗
)
ln
(
n
(
R⃗
))

+
(
1− n

(
R⃗
))

ln
(
1− n

(
R⃗
))]

− µ
∑
R⃗

n(R⃗).

(3.6)

Summation in eq. 3.6 runs over sites of the Ising lattice (fcc in this

case), with Ce and Tb atoms distributed in it. The �rst term in eq. 3.6

corresponds to the internal energy, the second one is entropy term (-TS),

and µ is chemical potential (strictly, inde�nite multiplier of Lagrange).

The function n
(
R⃗
)
that determines the distribution of solute atoms in

the ordered superstructures that are stable with respect to the formation

of antiphase domains may be expanded into the Fourier series:

n
(
R⃗
)
= c+

1

2

∑
s

ηs
∑
js

[
γs

(
js

)
exp
(
ik⃗jsR⃗

)
+γ∗s exp

(
−ik⃗jsR⃗

)]
, (3.7)

where k⃗js are vectors of the reciprocal lattice belonging to the star s, js
numerates vectors of the star s, and γs(js) are coe�cients that determine

symmetry of the function n
(
R⃗
)
with respect to re�ection and rotation

operations. n
(
R⃗
)
linearly depends on the long range order (LRO) pa-

rameters (ηs) of the superstructures that may be formed on the basis of

the Ising lattice of the disordered solid solution. The LRO parameters

are de�ned in such a way that they are equal to unity in a completely

ordered state, where the occupation probabilities n
(
R⃗
)
on all the lattice

sites
{
R⃗
}
are either unity or zero. To determine the LRO parameters, an

additional normalization condition for γs(js) should be used:∑
js

γs(js) = 1 (3.8)
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For the disordered state all ηs are equal to zero. Substitution of

eq. 3.7 into eq. 3.6 allows casting the free energy of formation of solid

solution in terms of Fourier transforms of the e�ective interatomic mixing

potential, Ṽ
(
k⃗js

)
:

Ṽ
(
k⃗js

)
=
∑
a

Ṽ
(
R⃗a

)
· exp

(
ik⃗jsR⃗a

)
. (3.9)

The two superstructures (�g. 3.2) used here to represent (Ce1−cTbc)O2

solid solution are characterized by their k⃗js vectors: k⃗1 = 2π
a (0, 0, 1) for

P1(12), and k⃗1 = 2π
a ( 12 ,

1
2 ,

1
2 ) for F8(24), where a is the cubic lattice param-

eter. Substituting these vectors in eq. 3.7 yields the following occupation

probabilities for each superstructure:

n1

(
R⃗
)
= c+ η1γ1 exp(2πiz) (3.10)

n2

(
R⃗
)
= c+ η2γ2 exp (iπ(x+ y + z)) . (3.11)

For both superstructures in this analysis c = 0.5, and LRO parameters are

unitary, thus γ1 = γ2 = 1/2.

Substituting eqs 3.10 and 3.11 into eq. 3.5, free energies of formation

for the superstructure 1 and 2 (per site of fcc sub-lattice), respectively, are

obtained:

F1 =
1

2
Ṽ (0)c(c− 1) +

1

8
Ṽ
(
k⃗1

)
η21

+ kT

[(
c+

1

2
η1

)
ln

(
c+

1

2
η1

)
+

(
1− c− 1

2
η1

)
ln

(
1− c− 1

2
η1

)]
(3.12)

F2 =
1

2
Ṽ (0)c(c− 1) +

1

8
Ṽ
(
k⃗2

)
η22

+ kT

[(
c+

1

2
η2

)
ln

(
c+

1

2
η2

)
+

(
1− c− 1

2
η2

)
ln

(
1− c− 1

2
η2

)]
,

(3.13)

where Ṽ (0) is is the Fourier transform of the e�ective interatomic mixing

potential for k = 0. In these eqs the �rst two terms are structures' mixing
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3.2. TB IN CEO2

energies, and the last term is con�gurational entropy of mixing. These free

energies Fi show energy (dis)advantage of the structures with respect to a

standard state that is the mixture of their constituents, CeO2 and TbO2,

which has the energy

Estand = ECeO2 · (1− c) + ETbO2 · c, (3.14)

where ECeO2
and ETbO2

are the total energies of these compounds, ob-

tained from DFT+U calculations at T = 0 K. For absolutely ordered

structures at T = 0 K, cst = 1/2, and η1,2 = 1, mixing energies are

∆E1 =
1

8
Ṽ (0) +

1

8
Ṽ
(
k⃗1

)
(3.15)

∆E1 =
1

8
Ṽ (0) +

1

8
Ṽ
(
k⃗2

)
, (3.16)

and may be obtained from DFT calculations as di�erence between the

total energies of corresponding superstructures and the total energy of the

mixture of constituents given by eq. 3.14. From eq. 3.9 it follows that

Ṽ
(
k⃗1

)
= −4Ṽ

(
R⃗1

)
+ 6Ṽ

(
R⃗2

)
− 8Ṽ

(
R⃗3

)
+ . . . , (3.17)

Ṽ
(
k⃗2

)
= −6Ṽ

(
R⃗2

)
+ 12Ṽ

(
R⃗4

)
+ . . . , (3.18)

Ṽ (0) = 12Ṽ
(
R⃗1

)
+ 6Ṽ

(
R⃗2

)
+ . . . (3.19)

With the approximation of interactions in the two nearest neighbours on

the Ce/Tb sub-lattice this yields

∆E1 = Ṽ
(
R⃗1

)
+

3

2
Ṽ
(
R⃗2

)
(3.20)

∆E2 =
3

2
Ṽ
(
R⃗1

)
. (3.21)

Calculated values of ∆E1 and ∆E2 are 0.228 eV and 0.056 eV re-

spectively. Their positive sign means that both superstructures are ener-
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3.2. TB IN CEO2

getically unfavourable in comparison with a mixture of constituents, CeO2

and TbO2, and do not exist. with these values obtained, however, it is

possible to calculate Ṽ (0), which is responsible for the behaviour of disor-

dered Ce/Tb lattice. Solving eqs 3.20 � 3.21, and substituting the result

into eq. 3.19, a value for Ṽ (0) = 1.210 eV is obtained.

Eqs 3.12 and 3.13, for a case of absolutely disordered structures

(η1 = 0, η2 = 0), are similar to a model of regular solid solution used for

construction of phase diagrams in [126]. In this model, the free energy of

mixing for the disordered solid solution is cast as ∆Fmix = ∆E − T∆S,

where ∆S is the con�gurational entropy of mixing, and the mixing energy

is ∆E = L · c · (1− c). Here, L = − 1
2 Ṽ (0).

This shows that a model which assumes that a mixture of CeO2

and TbO2 will have a �uorite structure with Ce/Tb atoms distributed

over fcc sub-lattice, requires only two calculations of absolutely ordered

structures to compute energy parameter that determines mixing energy

of an absolutely disordered (Ce1−cTbc)O2 solid solution. A second im-

portant assumption that allows to calculate the free energy of mixing,

and to predict solubility at di�erent temperatures and concentrations,

c, is based on a work by P. A. �guns et al. [3], in which a decompo-

sition of (Ce1−cGdc)O2−c/2 solid solutions was studied, using a cluster

expansion method. Their �nding is that cluster interaction parameters

VAA,VBB, andVAB do not depend on the dopant concentration. There-

fore, it is reasonable to assume that for k⃗s = 0 (i.e. no vector in the

reciprocal space can be symmetrized with respect to dopant distribution

in the lattice), Ṽ (0) is also concentration-independent, and that L = const

for the whole range of concentration.

Fig. 3.3 presents mixing energy (∆E), con�guration entropy of

mixing term (−T∆S), and the free energy of mixing ∆Fmix as functions

of Tb concentration at T = 1000 K. The function of ∆Fmix is concave

in the entire concentration range, thus at temperature(s) where �uoride

structures of both CeO2 and TbO2 exist, an unlimited solubility of Tb in

CeO2 should be observed.
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According to binary Tb�O and Ce�O phase diagrams, this temperature

region is above ca. 700 ◦C.

Figure 3.3: Thermodynamic parameters of CeO2/TbO2 mixture as func-
tions of Tb concentration at T = 1000 K, adopted from [110]

3.2.6 Reduced Tb and oxygen vacancy in CeO2

Not only is Tb absolutely soluble in CeO2, it can also exist in either

+3 or +4 oxidation state. Both solutions require Tb to be located at

a low-symmetry site, and in these calculations their energy di�erence is

only 0.07 eV/cell in favour of the +4 oxidation state. This assertion of

mixed OS coexistence is consistent with an experimental observation that

in Ce1−cTbcO2−δ, lattice constant's dependence on c is nicely approxi-

mated by averaging theoretically obtained dependencies for cases of pure

Tb3+ and Tb4+ [4].

Naturally, Tb +3 has to be compensated by an electronic hole. In

these calculations, its complementary hole is delocalized over the entire

supercell, leading to an enhanced Fermi energy occupation by O 2p states,

and, thus, enhanced hole conductivity. Increased hole conductivity is also

consistent with the electrical conductivity measurements from the litera-

ture [4].

It was shown in the previous section (3.1) that in case of undoped
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CeO2−δ, localization of two electrons on 4f orbitals of two nearest Ce

cations, corresponding to formation of a small polaron, is the most favourable

case w.r.t. the defect formation energy, about 0.61 eV lower in energy

than the large radius polaron with localization on all four Ce ions. So,

the minimum energy state was observed for Sz = 1 at low symmetri-

cal Cs(or, alternatively, at C2v-position) of V +2
O in the 81-atom supercell,

with ∆G
V +2
O

F = 4.10 eV at 0 K (table 3.3). Repeating this calculation with

PBE+U functional, a PW basis set, µO as de�ned in eq. 3.3 and shown

in �g. 3.4, and with pO2 yielded ∆G
V +2
O

F = 3.10 eV (all at T = 0 K). At

T = 400 K in undoped CeO2−δ ∆G
V +2
O

F = 2.64 eV.

Figure 3.4: (a) oxygen chemical potential, as de�ned by eq. 3.4, calculated

from metal oxides; and (b) formation energy of ∆GV +2
O

F for the lowest-
energy case, presented as functions of temperature; adopted from [127]

In Tb-doped CeO2 formation of V +2
O complicates electronic inter-

actions, but it also simpli�es behaviour of Tb ion. Tables 3.4 and 3.5

summarise these results. In both tables distance between an ion and a

vacancy refers to an unrelaxed �uorite structure with lattice constant 5.41

Å. Distance between metal ions is measured after a full structure relax-

ation, Sz is the spin projection, µ is the magnetic moment, q is the atomic

charge, and ∆G
V +2
O

F is the Gibbs formation energy of an oxygen vacancy,
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3.2. TB IN CEO2

calculated w.r.t. the chemical potential of oxygen µO at T = 400 K, and

pO2
= p0 (eq. 3.3, and �g. 3.4). Table 3.4 lists results for systems, in which

V +2
O is among the nearest neighbours of Tb (d(Tb−VO) = 2.34 Å). Table

3.5 lists results for the next nearest neighbours (d(Tb−VO) = 4.49 Å),

all of which have the same site symmetry, Cs.

First important conclusion drawn from this data is that presence of

Tb ion lowers the ∆G
V +2
O

F by a factor of 4: 0.66 eV (the most favourable

case, table 3.4) vs. 2.64 eV for an undoped system. Second, the key factor

determining the magnitude of ∆GV +2
O

F is Tb oxidation state. All solutions

with µTb > 6.2 µB (Tb +4) have very high formation energies, regardless

of distances, spin orientation, and vacancy�ion distance. Third, localiza-

tion on next-nearest Ce ions w.r.t. oxygen vacancy is more favourable than

on the nearest neighbours or more remote metal ions.

The most favourable solution corresponds to a system in which oxy-

gen vacancy is located next to Tb, and residual electrons localize on Tb

and on a Ce ion from O's 3rd coordination sphere in an antiferromagnetic

alignment.
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Table 3.4: E�ect of local symmetry and electronic localization on the energetics of oxygen vacancy formation near
Tb ion †

Point
symmetry

d(Ce+3-VO),
Å

Sz d(Tb-Ce+3),
Å

µTb, µB qTb, e µCe, µB qCe, e ∆G
V +2
O

F ,
eV

Cs 4.59 1 6.76 6.06 2.09 -0.93 2.13 0.66

Cs 2× 4.59 −1/2 2× 6.76 6.06 2.09 2×−0.51 2.31 1.00

C3v 2.34 2 4.17 6.04 2.17 3× 0.37 2.3 1.10

Cs 2.34 1 4.13 6.03 2.09 -0.93 2.09 1.16

C3v 3× 2.34 -1 3× 4.18 6.07 2.08 3×−0.35 2.32 1.28

C3v � 1/2 � 6.05 2.09 � � 1.49

Cs 2× 4.56 1 2× 5.60 6.24 2.16 2× 1.00 2.14 2.19

C3v 3× 4.56 3/2 3× 5.60 6.24 2.17 3× 0.70 2.28 2.43

C3v 3× 2.34 3/2 4.18 6.25 2.17 3× 0.71 2.22 2.58

C3v 3× 4.49 −3/2 3× 6.92 6.35 2.20 3×−0.47 2.33 2.74

† d(Tb−VO) = 2.34 Å
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Table 3.5: Energetics of oxygen vacancy formation at the next nearest site
w.r.t. Tb ion †

d(Ce+3-
VO),
Å

Sz d(Tb+3-
Ce+3),
Å

µTb,
µB

qTb, e µCe,
µB

qCe, e ∆G
V +2
O

F ,
eV

5.87 1 4.12 6.12 2.09 0.97 2.09 0.84

4.49 1 7.79 6.05 2.12 -0.97 2.14 0.95

2.34 1 6.76 6.05 2.12 -0.88 2.12 1.04

2.34 1 5.43 6.05 2.12 0.93 2.12 1.16

2× 4.58 -1 2× 6.75 6.05 2.12 2×
−0.51

2× 2.31 1.21

2× 4.49 3/2 2× 6.74 6.05 2.12 2× 0.52 2× 2.31 1.25

3× 2.34 -1 3× 4.18 6.07 2.08 3×
−0.35

3× 2.32 1.27

† d(Tb−VO) = 4.49 Å; Cs symmetry

Results presented in this section are published in [A2] and [A3] .

The author has performed most calculations of cerium and terbium oxides,

all calculations on Tb-doped CeO2, has conducted all calculations related

to parametrisation and validation of the model, has gathered the data, has

contributed texts and �gures to papers.
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4. THE CASE OF ZINC OXIDE

4.1 Supercell selection

ZnO crystallizes in the wurtzite structure (space group No.186, P63mc),

making it impossible to embed an experimentally observed six-coordinated

Ir in a ZnO matrix by simply placing Ir atom in a regular lattice site or

by substituting a Zn atom. Therefore, a model of a six-coordinated Ir

requires presence of interstitial oxygen atoms in the wurtzite structure.

The inclusion of interstitial atoms disrupts the crystalline structure and

is not compatible with symmetry operations of the space group to which

wurtzite structure belongs. Ultimately, two supercells were chosen, P4(16),

and P48(192), representing Ir concentrations of 12.5% and 1.04%, respec-

tively. Concentration in P4(16) supercell corresponds to the amorphiza-

tion/conductivity threshold described in [9], whereas low concentration of

P48(192) is chosen as a control sample for validating the model.

4.2 Computational details

4.2.1 DFT parameters

All calculations were made using public release of crystal17 ver. 1.0.2

[19]. Tolerance factors of 7, 7, 7, 9, and 30 for the Coulomb and exchange

integrals were used. The SCF convergence threshold for the total electron

energy was set to 10−7 Hartree, and the threshold for change in energy

between consecutive geometry optimization steps was set to 10−7 Hartree.

All calculations of defective structures in the neutral supercells were spin-

polarized and did not include the spin�orbit e�ects; the use of symmetry

operations was explicitly omitted.

PBE0 exchange-correlation functional was used, as the employed

basis sets were optimized for and have been used on the compounds of

interest with this functional [128, 129]. Basis set for Zn from Gryaznov

et al. [129] has been re-optimized with optbas utility [106] for use with

other basis sets. For calculating vibrational frequencies the frozen phonon
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4.2. COMPUTATIONAL DETAILS

method (direct method) [130, 131] was used, and the SCF convergence

threshold for the total electron energy was adjusted to 10−9 Hartree. In all

calculations, reciprocal space was sampled with the following Monkhorst-

Pack k -point grids: 4 × 4 × 4 for P4(16) supercells, and 2 × 2 × 2 for

P48(192).

4.2.2 O incorporation

This study's principal object of interest is a six-coordinated Ir�O com-

plex embedded in ZnO matrix. However, since it is impossible to obtain a

six-coordinated Ir by simply placing it anywhere in ZnO structure, a pres-

ence of interstitial O atoms is necessary. Relaxation of atomic positions is

highly sensitive to initial placement of atoms, and may lead to various sta-

ble solutions. To compare obtained con�gurations of interstitial O atoms

around Ir, O incorporation energy Einc(Oi) is used:

Einc(Oi) = E(Oi)− E(Ir)− E(O2), (4.1)

where E(Oi) is is the total electronic energy of the supercell with two Oi

atoms and an Ir atom; E(Ir) is the total electronic energy of the supercell

with only Ir+2O4
1 without Oi; E(O2) is the total electronic energy of an

oxygen molecule. A negative value of Einc(Oi) means that incorporation

is energetically favourable. All total electronic energies in eq. 4.1 are

calculated using the same basis set and exchange�correlation functional.

4.2.3 Thermoelectric parameters

This study's principal quality of interest is an alleged emergence of p-type

conductivity in Ir-doped ZnO, observed as positive values of Seebeck co-

e�cient [9]. In the original experiment performed by Zubkins et al. the

electrical transport of the thin �lms was studied by measuring the DC

electrical conductivity at room temperature and as a function of temper-

ature between 90 K and 330 K. Seebeck coe�cient was determined by

controlling a temperature di�erence across the sample and measuring the

resulting voltage [9].

1Here, a +2 oxidation state of Ir is set by de�nition.
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In this work, τ = 10 fs was used in thermoelectric calculations,

which is a conservative estimate for a system leaning towards conductivity

(see section 2.5.2 and eq. 2.6). Reported values of τ , obtained from charge

carrier mobility data, range from 17 to 57.9 fs for carrier concentrations

∼ 1016cm−3 [58, 132]. As a scalar positive pre-factor, precise value of τ

does not a�ect behaviour of the transport distribution function, and only

impacts the scale of values. For convenience, in analysing results, the Fermi

level is shifted by the valence band maximum (EV BM ): µF = µ−EV BM .

One can clearly see that the calculated conductivity and Seebeck co-

e�cient are not strictly equivalent to experimentally obtained data. In an

experimental setup the Seebeck coe�cient S is calculated at zero current

density from measured thermoelectric voltage ∆V and measured temper-

ature di�erence ∆T :

S = −∆V

∆T
. (4.2)

When obtained from eqs 2.9 and 2.8, S is a tensor. Its reduction to a

scalar is described in section 4.3.

4.3 Conductivity baselines

Whereas experimentally determined electrical conductivity and Seebeck

coe�cient are scalars, when calculated from �rst principles, they are ten-

sors. Experimental values are measured for real samples, and are, e�ec-

tively, averaged over many crystalline domains. Calculated thermoelectri-

cal parameters are, e�ectively, expressed as functions of chemical potential

and direction (section 4.2.3, eqs 2.6�2.9). Here, to reduce dimensionality

of these objects to a simple function of the f(x) type, thermoelectric pa-

rameters are presented as their largest value (by absolute value) for a given

value of chemical potential µ. The results of calculations on ideal ZnO and

ZnO with intrinsic defects (Zn vacancy for a p-type defect and O vacancy

for a n-type defect) de�ne a baseline for conductivity in this material. Fig.

4.1 shows thermoelectrical properties of several idealized systems.

In intrinsic semiconductors the bands may conduct in parallel, and

the observed value and sign of the Seebeck coe�cient depends on the ma-
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jority charge carrier: positive for hole-dominated conduction and negative

for electron-dominated conduction. This results in a crossover behaviour

seen in �g. 4.1. The crossover is in the middle of band gap. Undoped ZnO

is a typical wide-gap semiconductor, and as such its conductivity diagram

is a classical 'V' shape, and its Seebeck coe�cient shows a mid-gap p-n

switching pattern, as the chemical potential increases, �g. 4.1(a).

A neutral zinc vacancy, by de�nition a p-type defect, establishes the

baseline pattern for this type of conductivity: lower absolute values of See-

beck coe�cient, an additional switching mode due to an acceptor level near

the top of valence band, and a local maximum of conductivity correspond-

ing to positive range of Seebeck coe�cient, �g. 4.1(b). On the other hand,

n-type semiconductors, as in the case of interstitial O and a complex O�

O defect, either exhibit intrinsic semiconductor behaviour, simultaneously

narrowing the band gap, 4.1(c), or have a defect level close to the bottom

of conduction band, with the conductivity maximum matching a negative

Seebeck coe�cient, �g. 4.1(d). Finally, two iridium compounds, Ir2O3(e)

and IrO2(f), represent, respectively, a non-conductive and conductive Ir

systems. A conductive system does not have a distinct conductivity well

across the entire range of chemical potential, and is characterized by low

values of Seebeck coe�cient.

To interpret results obtained with this model, it is important to

keep in mind that under real temperatures electrons in the valence band

will be thermally excited, and as a result the potential will increase with

respect to the level calculated at 0 K. In �g. 4.1 this can be seen as,

for instance, slower-than-exponential decay of conductivity in Ir2O3(e).

A region of chemical potential where switch to pure exponential decay

(transition from a curve to a straight line) may therefore be used to assess

the position of Fermi level at a given temperature.
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Figure 4.1: Conductivity and Seebeck coe�cients of idealized systems at
T = 300 K. Dashed gray line marks 0 eV = VB top = EFermi(0 K). Solid
black lines are Seebeck coe�cients Smax(µ).
a: pure ZnO;
b: ZnO with Zn vacancy, p-type conductivity pattern;
c: ZnO with O vacancy, semiconducting pattern;
d: ZnO with O�O defect, n-type conductivity pattern;
e: pure Ir2O3, a semiconductor;
f: pure IrO2, electrically conductive
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4.4 Structural description

4.4.1 Relaxation and Ir�O complexes

It was posed in section 4.1 that the ZnO-Ir-O system is very sensitive to

the initial placement of interstitial oxygens. Table 4.1 sums up some of

the possible solutions, all obtained for the same supercell, with the same

number of atoms, with two interstitial oxygen atoms.

Table 4.1: Ir�O complexes in P4(16) supercell
Coordination

number
dIr−O,
Å

qIr,
e

µIr,
µB

dO−O,
Å

νO�O,
cm−1

Einc(Oi),
eV

6 1.893�1.972 1.325 0.514 � � -5.15

6 1.825�2.125 1.383 1.569 � � -4.95

6 1.844�2.051 1.415 1.542 � � -4.92

6 1.853�2.046 1.384 0.562 � � -4.84

6 1.850�2.085 1.366 -0.003 � � -4.82

5 1.828�2.024 1.095 0.695 1.540 810 -4.37

4 1.846�1.920 1.193 1.795 1.470 942 -3.77

5 1.854�2.186 1.282 2.236 � � -3.49

4 2.136�2.176 0.751 2.530 � � 0i

i. This is Ir+2O4, or E(Ir) from eq. 4.1, no interstitial oxygen atoms.
Ir incorporation energy is ca. +6 eV w.r.t. pure ZnO.

This table shows the breadth of possibilities that Ir has in ZnO

environment. First, negative incorporation energies show that Ir-doped

ZnO requires interstitial oxygen atoms. Second, while 6-coordinated Ir�O

complexes are energetically more favourable than lower-coordinated alter-

natives, these are not the guaranteed solution. Ir is able to change its

oxidation state and its magnetic con�guration, forming low-spin, high-

spin, and intermediate-spin complexes. This is re�ected in the �rst 6 rows

of table 4.1, where the chief di�erences in Einc(Oi) are attributed to dif-

ferent spin-states of Ir, with another factor being other atoms' electronic

localization.

54



4.4. STRUCTURAL DESCRIPTION

Figure 4.2: Ir-centred radial distribution functions of Ir�O complexes in
ZnO
a: ZnO + Ir2+O4 [12.5%];
b: 4-coordinated Ir�O with peroxide
c: 5-coordinated Ir�O with peroxide
d: groundstate 6-coordinated Ir�O

Formation of peroxide moiety was not observed for 6-coordinated

Ir�O complex (at a �xed concentration of interstitial oxygen atoms), but

other peroxide solutions are possible, yet costly. The costs associated with

formation of this defect are both energetic and structural: presence of

peroxide distorts the structure, see �g. 4.2. There, Ir-centred radial dis-

tribution functions are plotted for interstitial-oxygen-lacking Ir2+O4 (a),

4-coordinated peroxide-forming Ir�O (b), 5-coordinated Ir�O with perox-

ide (c), and lowest-energy 6-coordinated Ir�O (d).
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It is apparent that among the 4 structures, solutions without perox-

ide, �g. 4.2(a,d), are more ordered, with clear, sharp peaks. At the same

time, 6-coordinated Ir�O, �g. 4.2(d) shows clear signs of structural deterio-

ration, with broader, less resolved and lower peaks. Peroxide solutions, �g.

4.2(b,c), appear amorphous in the 3�6 Å region, with convoluted peaks in

the 2�4 Å region, indicating that Ir's next-neighbouring Zn�O bonds have

large variances.

Results presented in this section agree with experimentally observed

behaviour of this system: 6-coordinated Ir�O complex is more likely to

form in ZnO, and the incorporation of additional oxygen atoms causes sig-

ni�cant structural distortions, making the material appear XRD-amorphous.

Four structures from this section have been selected for further analysis: a

zero-interstitial system Ir+2O4, both peroxide solutions, and a groundstate

6-coordinated Ir�O.

4.4.2 Electronic structure

Even without interstitial oxygen atoms Ir produces signi�cant changes in

the electronic structure of its host material. Magnetic moment of its 4

oxygen neighbours is non-zero, same as for 6-coordinated Ir, regardless of

concentration, see �g. 4.3. Magnetic moments on oxygens hint at presence

of partially �lled electronic levels associated with Ir�O bonds.

From calculated density of states (DOS, �g. 4.4) it can be seen that

Ir+2O4 (a) and a 6-coordinated Ir�O (b) have a region extending down to

about 0.4 eV below Fermi level, consisting entirely of Ir and O states. Only

below this region projections from other atoms appear. This con�rms that

the top of valence band consists of Ir�O levels, and from �g. 4.3 it is known

that they are only partially �lled. Bottom of conduction band is also due

to Ir�O, and is much closer than that of pure ZnO, narrowing the band

gap down to 1.75�1.9 eV.

Selected Ir�O complexes were assigned the following oxidation states:

+3 for a 4-coordinated solution with peroxide fragment (Ir+3O4); +4

for 5-coordinated, peroxide-forming complex (Ir+4O5), and +4 for the

6-coordinated complex (Ir+4O6). These are also the most stable posi-

56



4.4. STRUCTURAL DESCRIPTION

Figure 4.3: Magnetic moments of Ir�O complexes in ZnO. Yellow clouds
represent charge density isosurfaces for orbitals with unpaired electrons.
a: ZnO + Ir2+O4 [12.5%];
b: ZnO + 6-coordinated Ir�O [12.5%]
c: ZnO + 6-coordinated Ir�O [1.04%], fragment

tive oxidation states of iridium, and are consistent with the ones found in

amorphous IrOx powders [133].
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Figure 4.4: DOS of ZnO:Ir. Negative values correspond to spin-down
channel.
a: ZnO + Ir+2O4 [12.5%];
b: ZnO + 6-coordinated Ir�O [12.5%]

4.5 Thermoelectric properties

Electronic conductivities and Seebeck coe�cients for selected systems are

summarized in �g. 4.5. Here, an idealized case of ZnIr2O4, �g.4.5(a),

is given as a baseline, representing a 6-coordinated Ir in a system of Zn-

O bonds. Zinc-iridium spinel is behaving like a semiconductor. When

measured experimentally, at room temperature and in polycrystalline thin

�lm samples [134], its Seebeck coe�cient is reported as 53.9 µVK−1, and

its conductivity is 2.09× 102 Ω−1m−1.

Here, taking values at thermally-adjusted Fermi level (see end of

section 4.3 for details), ZnIr2O4's Seebeck coe�cient is 92.3 µVK−1, and

its conductivity is 1.72×102 Ω−1m−1, a good agreement with experimental

results. See table 4.2 for the rest of numerical values. The importance of

this result is in showing that on its own, 6-coordinated Ir, even when
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interacting with a system of Zn-O bonds, does not necessarily lead to

emergence of p-type conductivity.

Fig. 4.5(b) represents Ir+2O4, a 4-coordinated Ir in ZnO without

interstitial oxygen atoms. The position of 0 K Fermi level and two regions

of conduction mode switching indicate presence of a strong defect level

in the electronic structure. According to DOS projections (�g. 4.4(a)),

this level is occupied and consists of Ir�O states. Non-zero spin on oxygen

atoms (�g. 4.3(a)) suggests that this level is not fully occupied, and is

therefore an acceptor level capable of p-type conductivity.

Results for Ir+3O4 and Ir+4O5 correspond to letters c and d on �g.

4.5. These systems represent solutions with a peroxide complex. In com-

parison to other Ir-O complexes at the same concentration, �g.4.5(b,e),

these are characterized with high values of Seebeck coe�cient and lower

conductivities, hinting that a peroxide complex is not the defect respon-

sible for observed p-type conductivity, in contrast to a hypothesis put

forward in [9].

Finally, 6-coordinated complex Ir+4O6 at target concentration [12.5%]

and at a low concentration [1.04%], respectively, is shown in �g.4.5(e,f).

Once again, it has a partially �lled Ir-O level near the top of valence band

(�gs. 4.4(b) and 4.3(b,c)), its conductivity peaks correspond to positive

values of Seebeck coe�cient, and bottom of the conductivity well is at

∼ 102 Ω−1m−1, showing all signs of a p-type conductive material. Its low-

concentration counterpart, while exhibiting the same qualitative traits,

quantitatively behaves much closer to pure ZnO, but still has a potential

for p-type conductivity.

In conclusion, it has been shown that Ir in ZnO creates a partially

�lled electronic acceptor level capable of producing measurable p-type

conductivity, and that this Ir-O complex induces strong local structural

changes by pulling in interstitial oxygen atoms (assuming oxygen-rich for-

mation conditions) to make energetically favourable 6-coordinated Ir-O

complexes. Results presented in this section are published in [10].
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Figure 4.5: Conductivity and Seebeck coe�cients of ZnO:Ir at T = 300 K.
Dashed grey lines mark band edges, with 0 eV = VB top = EFermi(0 K)
a: pure ZnIr2O4;
b: ZnO + Ir+2O4 [12.5%];
c: ZnO + Ir+3O4 [12.5%];
d: ZnO + Ir+4O5 [12.5%];
e: ZnO + Ir+4O6 [12.5 %];
f: ZnO + Ir+4O6 [1.04%]
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Table 4.2: Calculated thermoelectric properties at temperature-adjusted Fermi levels
Compound S, µV K−1 Sexp, µV K−1 σ,Ω−1m−1 σ,Ω−1

expm
−1

ZnO 2510 Non-conductive 6.05× 10−8 Non-conductive

ZnIr2O4 92.3 53.9i [134] 1.72× 102 2.09× 102, 3.39× 102 i [134]

IrO2 63.9 � 1.32× 106 1.15�2.90× 106 [135, 136]
0.68�1.67× 106 ii[137]
2.94× 106 iii[137]

Ir2O3 105 � 8.98× 101 �

Ir2+O4 80.1 6.8 iv[9] 2.57× 102 47.6 iv[9]

Ir3+O4 88.7 3.20× 101

Ir4+O5 89.4 4.13× 101

Ir4+O6 [12.5%] 83.8 1.62× 102

Ir4+O6 [1.04%] 2335 3.49× 10−8

i. Measured at RT; two values for σ for polycrystalline and epitaxial thin �lms whereas
the Seebeck coe�cient was measured for polycrystalline �lms only; the thin �lms prepared by
PLD between 773 and 973 K.
ii. The values are taken at RT for 100 nm �lms prepared by PLD and oxidized at 0.05-0.2 mBar
and 500 ◦C
iii. The bulk value measured at RT
iv. Ir concentration is 16.4%
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5. SUMMARY AND CONCLUSIONS

This thesis presents the results of density functional theory (DFT) calcu-

lations on cerium dioxide(CeO2) and zinc oxide (ZnO) supercells using

corrected generalized gradient approximation (GGA) and hybrid GGA

functionals. The results were obtained using massively parallel calcula-

tions on high-performance computing systems.

Model formulation and selection of simulation cells is not a trivial

task, and it was shown in this work that symmetry analysis of a simulated

object can be crucial for obtaining all possible solutions for electron local-

ization and defect distribution in the investigated system. Speci�cally, the

site-symmetry approach, as used in this thesis, was applied to the problem

of modelling small polarons in CeO2, and it was shown that:

• certain supercells and certain atomic positions within these supercells

will yield only high-symmetry, highly delocalized solutions;

• larger supercells are not necessarily better for modelling point de-

fects, as they may lack diversity of symmetry orbits;

• localized electronic solutions require lowering or loss of symmetry.

Application of the concentration waves approach (a method of statistical

thermodynamics that is also grounded in symmetry analysis) has shown

that if a mixture of CeO2 and TbO2 were to have a �uorite structure in

a temperature where either constituent also has the �uorite structure, an

unlimited solubility of Tb in CeO2 should be observed. This conclusion

is good news for high-temperature applications of Tb-doped CeO2, such

as mixed-conductive membranes for oxygen separation, because it asserts

that no phase separation should occur at the operating conditions.

The presence of Tb in membranes for oxygen separation has the

added bene�t of lowering the energy of oxygen vacancy formation even

at high partial pressure � a key parameter that enables the transport of

oxygen ions across the membrane.

It has been demonstrated in this work that in Tb-doped CeO2 the energy
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of oxygen vacancy formation is ca. 4 times lower when compared to an

undoped system.

It was con�rmed that Ir, when embedded in the ZnO matrix, is

more likely to form a 6-coordinated complex in comparison to other coor-

dination numbers. It was also shown that, while the formation of peroxide

moiety in this system is not impossible, its formation is energetically more

demanding in comparison to a peroxide-free system.

The formation of a 6-coordinated Ir-O complex in the ZnO lattice

was shown to be a probable cause for the emergence of measurable p-

type conductivity in this material. At the same time, peroxide-containing

complexes exhibit lower conductivities with higher Seebeck coe�cients.

This work also shows that well-ordered 6-coordinated Ir on its own cannot

be a p-type conductor, even in a system with Zn�O bonds: ZnIr2O4, a

compound with 6-coordinated Ir in a system of Zn�O bonds is shown

to exhibit a pure semiconductor-like behaviour. It must be concluded,

then, that the emergence of p-type conductivity in Ir-doped ZnO is a

combination of lattice distortion and electronic acceptor levels introduced

by Ir with interstitial oxygen atoms.

Main conclusions

1. The site-symmetry approach is a powerful instrument for modelling

polaronic properties in crystalline structures.

2. In CeO2 crystals (and in all materials that have the same crystalline

structure) there are supercells with both high- and low-symmetry

orbits, as well as supercells in which there are no symmetry orbits

corresponding to primitive cell symmetries.

3. The mode of electronic localization can a�ect the formation energy

of a point defect by up to ca. 1 eV in a simple binary con�guration

(such as CeO2), and by up to ca. 3 eV in a more complex con-

�guration when multiple oxidation states are possible (for instance,

Tb-doped CeO2).
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4. The mode of electronic localization can be a more important factor

a�ecting the energetics of a solution than the relative defect place-

ment.

5. Ir, when embedded in ZnO under oxygen-rich conditions, creates a

6-coordinated Ir-O complex, which distorts the lattice of ZnO, and

produces electronic acceptor levels. At high enough concentrations

of Ir these e�ects compound to such a degree that the resultant struc-

ture becomes amorphous, and starts to exhibit a p-type conductivity.

64



MAIN THESES

The results obtained in the course of this work using DFT-based modelling

techniques can be used to put forward and provide support for the following

propositions:

1. It is possible to list all symmetry-allowed atomic and magnetic con-

�gurations of a system using the site-symmetry approach without

performing an exhaustive search.

Published in [A1, A3].

2. In the CeO2 crystals, both small- and large-radius polarons are able

to form, with small polarons having lower energy of formation, and

being accompanied by a decrease in local symmetry.

Published in [A1].

3. Tb ions have unlimited solubility in CeO2 and may exist as both

Tb3+ and Tb4+. If an oxygen vacancy is formed alongside a Tb

impurity, then Tb3+ is the most stable oxidation state.

Published in [A2, A3].

4. The addition of Tb ions to CeO2 lowers the formation energy of

oxygen vacancies in the material's crystalline structure.

Published in [A3].

5. In the ZnO crystal Ir ion is likely to create a 6-coordinated complex

with the lattice and interstitial oxygen atoms. Such a complex has

lower formation energy in comparison to other possible complexes

with di�erent coordination numbers.

Published in [A4].

6. ZnO-embedded Ir complex increases the material's electronic con-

ductivity, lowers its Seebeck coe�cient, and can be a cause for mea-

surable p-type conductivity.

Published in [A4].

65



AUTHOR'S PUBLICATION LIST

Publications directly related to this thesis

[A1] A. Chesnokov, D. Gryaznov, N. V. Skorodumova, E. A. Kotomin, A.

Zitolo, M. Zubkins, A. Kuzmin, A. Anspoks, and J. Purans, �The lo-

cal atomic structure and thermoelectric properties of Ir-doped ZnO:

Hybrid DFT calculations and XAS experiments�, J. Mater. Chem.

C 9, 4948�4960 (2021).

[A2] R. A. Evarestov, D. Gryaznov, M. Arrigoni, E. A. Kotomin, A. Ches-

nokov, and J. Maier, �Use of site symmetry in supercell models of

defective crystals: Polarons in CeO2�, Phys. Chem. Chem. Phys. 19,

8340�8348 (2017).

[A3] D. Fuks, D. Gryaznov, E. Kotomin, A. Chesnokov, and J. Maier,

�Dopant solubility in ceria: Alloy thermodynamics combined with

the DFT+U calculations�, Solid State Ion 325, 258�264 (2018).

[A4] A. Chesnokov, D. Gryaznov, and E. Kotomin, �First principles cal-

culations on CeO2 doped with Tb3+ ions�, Opt. Mater. 90, 76�83

(2019).

Author's other contributions

[B1] M. F. Hoedl, A. Chesnokov, D. Gryaznov, R. Merkle, E. A. Kotomin,

and J. Maier, �Proton migration barriers in BaFeO3-δ � insights from

DFT calculations�, J. Mater. Chem. A 11, 6336�6348 (2023).

[B2] D. Zavickis, G. Zvejnieks, A. Chesnokov, and D. Gryaznov, �Single

oxygen vacancy in BaCoO3: Hybrid DFT calculations and local site

symmetry approach�, Solid State Ion 375, 115835 (2022).

[B3] D. Bocharov, A. Chesnokov, G. Chikvaidze, J. Gabrusenoks, R. Ig-

natans, R. Kalendarev, M. Krack, K. Kundzins, A. Kuzmin, N. Mironova-

Ulmane, I. Pudza, L. Puust, I. Sildos, E. Vasil'chenko, M. Zubkins,

66

https://doi.org/10.1039/D1TC00223F
https://doi.org/10.1039/D1TC00223F
https://doi.org/10.1039/C6CP08582B
https://doi.org/10.1039/C6CP08582B
https://doi.org/10.1016/j.ssi.2018.08.019
https://doi.org/10.1016/j.optmat.2019.02.016
https://doi.org/10.1016/j.optmat.2019.02.016
https://doi.org/10.1039/D2TA08664F
https://doi.org/10.1016/j.ssi.2021.115835


AUTHOR'S OTHER CONTRIBUTIONS

and J. Purans, �A comprehensive study of structure and properties of

nanocrystalline zinc peroxide�, J. Phys. Chem. Solids, 110318 (2021).

[B4] A. Ivanova, A. Chesnokov, D. Bocharov, and K. S. Exner, �A Uni-

versal Approach to Quantify Overpotential-Dependent Selectivity

Trends for the Competing Oxygen Evolution and Peroxide Forma-

tion Reactions: A Case Study on Graphene Model Electrodes�, J.

Phys. Chem. C 125, 10413�10421 (2021).

[B5] O. Lisovski, A. Chesnokov, S. Piskunov, D. Bocharov, Y. F. Zhukovskii,

M. Wessel, and E. Spohr, �Ab initio calculations of doped TiO2

anatase (101) nanotubes for photocatalytical water splitting appli-

cations�, Materials Science in Semiconductor Processing 42, 138�141

(2016).

67

https://doi.org/10.1016/j.jpcs.2021.110318
https://doi.org/10.1021/acs.jpcc.1c03323
https://doi.org/10.1021/acs.jpcc.1c03323
https://doi.org/10.1016/j.mssp.2015.09.003
https://doi.org/10.1016/j.mssp.2015.09.003


PARTICIPATION IN CONFERENCES

International conferences

1. 29.05.�02.06.2023, Spring meeting of the European Materials Re-

search Society (Strasbourg, France),

oral presentation �Atomistic insight into proton migration barriers in

BaFeO3−δ� (A. Chesnokov, M. F. Hoedl, D. Gryaznov, R. Merkle,

E. A. Kotomin, J. Maier)

2. 04.07.�06.07.2022, The joint Functional Materials and Nanotechnolo-

gies (FM&NT) and Nanotechnology and Innovation in the Baltic Sea

region (NIBS) conference, (Riga, Latvia),

oral presentation �A �rst-principles study of point defects and elec-

tronic conductivity in ZnO� (A. Chesnokov, D. Gryaznov, D. Bocharov,

A. Kuzmin, J. Purans)

3. 31.05.�03.06.2021, Spring meeting of the European Materials Re-

search Society (Online),

oral presentation �Thermoelectric properties of Ir-doped ZnO from

hybrid DFT calculations� (A. Chesnokov, D. Gryaznov, A. Kuzmin,

J. Purans, E. A. Kotomin, N. V. Skorodumova)

4. 23.11.�26.11.2020, 11th International Scienti�c Conference �Func-

tional Materials and Nanotechnologies� (Online),

oral presentation �Role of interstitial oxygens in Ir-doped ZnO� (A. Ches-

nokov, D. Gryaznov, J. Purans, E. A. Kotomin, N. V. Skorodumova)

5. 16.09.�20.09.2019, Fall meeting of the European Materials Research

Society (Warsaw, Poland),

oral presentation �Hybrid density functional calculations of Ir doped

ZnO� (A. Chesnokov, D. Gryaznov, J. Purans, E. A. Kotomin, N. V. Sko-

rodumova);

poster presentation �Defects in CeO2: DFT and site symmetry ap-

proach� (A. Chesnokov, D. Gryaznov, E. A. Kotomin)

68



AUTHOR'S OTHER CONTRIBUTIONS

6. 30.05.�01.06.2019, 118th General Assembly of the German Bunsen

Society for Physical Chemistry, Bunsentagung 2019 (Jena, Germany),

poster presentation �Calculating Tb3+-doped CeO2 from �rst princi-

ples� (A. Chesnokov, D. Gryaznov, E. A. Kotomin)

7. 24.04.�27.04.2017, 11th International Scienti�c Conference �Func-

tional Materials and Nanotechnologies� (Tartu, Estonia),

poster presentation �First principles calculations of defective CeO2:

use of site symmetry in a supercell model � (A. Chesnokov, D. Gryaznov,

R. A. Evarestov, E. A. Kotomin)

Local conferences

1. 28.02.�02.03.2023, 39th annual ISSP UL scienti�c conference (Riga),

oral presentation �Atomistic insight into proton migration barriers in

BaFeO3−δ� (A. Chesnokov, M. F. Hoedl, D. Gryaznov, R. Merkle,

E. A. Kotomin, J. Maier)

2. 22.02.�24.02.2022, 38th annual ISSP UL scienti�c conference (on-

line),

oral presentation �First-principles description of ZnO2: a compara-

tive DFT study� (A. Chesnokov, D. Gryaznov, D. Bocharov, J. Pu-

rans)

3. 23.02.�25.02.2021, 37th annual ISSP UL scienti�c conference (on-

line),

oral presentation �Local atomic structure of Ir-doped ZnO: a com-

parison between experimental results and hybrid DFT calculations�

(A. Chesnokov, D. Gryaznov, J. Purans, A. Kuzmin, E. A. Kotomin,

N. V. Skorodumova)

4. 11.02.�13.02.2020, 36th annual ISSP UL scienti�c conference (Riga),

oral presentation �ZnO-embedded IrO2: a �rst-principles approach to

electronic defects� (A. Chesnokov, D. Gryaznov, J. Purans, A. Kuzmin,

E. A. Kotomin, N. V. Skorodumova)

5. 29.03.2019, � The 77th conference of the University of Latvia (Riga),

69



AUTHOR'S OTHER CONTRIBUTIONS

oral presentation �First principles calculations on CeO2 doped with

Tb3+ ions� (A. Chesnokov, D. Gryaznov, E. A. Kotomin)

6. 20.02.�22.02.2019, � 35th annual ISSP UL scienti�c conference (Riga),

poster presentation �First principles calculations on CeO2 doped with

Tb3+ ions� (A. Chesnokov, D. Gryaznov, E. A. Kotomin);

poster presentation �Exploring structure of defective Zinc Oxide�

(A. Chesnokov, D. Gryaznov, N. V. Skorodumova)

7. 06.04.2018, The 76th conference of the University of Latvia (Riga),

oral presentation �Electron localization e�ects in Tb-doped CeO2�

(A. Chesnokov, D. Gryaznov, E. A. Kotomin)

8. 20.02.�22.02.2018, 34th annual ISSP UL scienti�c conference (Riga),

oral presentation �Electron localization e�ects in Tb-doped CeO2�

(A. Chesnokov, D. Gryaznov, E. A. Kotomin)

9. 22.02.�24.02.2017, 33rd annual ISSP UL scienti�c conference (Riga),

poster presentation �Use of site symmetry in supercell model of defec-

tive CeO2� (A. Chesnokov, D. Gryaznov, R. A. Evarestov, E. A. Ko-

tomin)

10. 17.02.�19.02.2016, 32nd annual ISSP UL scienti�c conference (Riga),

oral presentation �Calculation of pure and doped cerium dioxide prop-

erties in bulk phase� (A. Chesnokov, D. Gryaznov, M. Arrigoni,

R. A. Evarestov)

70



PARTICIPATION IN INTERNATIONAL

SCHOOLS

During the preparation of this Thesis, its Author has participated in the

following international schools:

2021. Virtual school on electronic excitations in solids and nanos-

tructures using the Yambo code, Online

2019. Advanced Electronic Structure Methods in Condensed Mat-

ter Physics, Lausanne, Switzerland, poster presentation �Use of site

symmetry in supercell model of defective CeO2�, (A. Chesnokov,

D. Gryaznov, R.A. Evarestov, E.A. Kotomin)

2018. PDC-PRACE workshop �HPC Tools for the Modern Era�,

Stockholm, Sweden

71



REFERENCES

1T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi,

and T. Thio, �Electrical conductivity of individual carbon nanotubes�,

Nature 382, 54�56 (1996).
2P. A. �guns, A. V. Ruban, and N. V. Skorodumova, �Ordering and phase

separation in Gd-doped ceria: A combined DFT, cluster expansion and

Monte Carlo study�, Phys. Chem. Chem. Phys. 19, 26606�26620 (2017).
3P. A. �guns, A. V. Ruban, and N. V. Skorodumova, �Phase diagram

and oxygen-vacancy ordering in the CeO2-Gd2O3 system: A theoretical

study�, Phys. Chem. Chem. Phys. 20, 11805�11818 (2018).
4M. Balaguer, C.-Y. Yoo, H. J. M. Bouwmeester, and J. M. Serra, �Bulk

transport and oxygen surface exchange of the mixed ionic-electronic

conductor Ce1-xTbxO2-δ (x = 0.1, 0.2, 0.5)�, J. Mater. Chem. A 1,

10234�10242 (2013).
5F. Ye, T. Mori, D. R. Ou, J. Zou, G. Auchterlonie, and J. Drennan,

�Compositional and valent state inhomogeneities and ordering of oxygen

vacancies in terbium-doped ceria�, J. Appl. Phys. 101, 113528 (2007).
6F. Ye, T. Mori, D. R. Ou, M. Takahashi, J. Zou, and J. Drennan, �Com-

positional dependence of electrical conductivity of Ce1-xTbxO2-δ (0⩽x⩽1)�,

Renew. Energy 33, 331�335 (2008).
7A. M. D'Angelo, A. C. Y. Liu, and A. L. Cha�ee, �Oxygen Uptake of

Tb�CeO2: Analysis of Ce3+ and Oxygen Vacancies�, J. Phys. Chem. C

120, 14382�14389 (2016).
8M. Zubkins, R. Kalendarev, J. Gabrusenoks, K. Smits, K. Kundzins,

K. Vilnis, A. Azens, and J. Purans, �Raman, electron microscopy and

electrical transport studies of x-Ray amorphous Zn-Ir-O thin �lms de-

posited by reactive DC magnetron sputtering�, IOP Conf. Ser.: Mater.

Sci. Eng. 77, 012035 (2015).
9M. Zubkins, R. Kalendarev, J. Gabrusenoks, A. Plaude, A. Zitolo, A.

Anspoks, K. Pudzs, K. Vilnis, A. Azens, and J. Purans, �Changes in

72

https://doi.org/10.1038/382054a0
https://doi.org/10.1039/C7CP04106C
https://doi.org/10.1039/C8CP01029C
https://doi.org/10.1039/C3TA11610G
https://doi.org/10.1039/C3TA11610G
https://doi.org/10.1063/1.2738409
https://doi.org/10.1016/j.renene.2007.05.014
https://doi.org/10.1021/acs.jpcc.6b04063
https://doi.org/10.1021/acs.jpcc.6b04063
https://doi.org/10.1088/1757-899X/77/1/012035
https://doi.org/10.1088/1757-899X/77/1/012035


REFERENCES

structure and conduction type upon addition of Ir to ZnO thin �lms�,

Thin Solid Films 636, 694�701 (2017).
10A. Chesnokov, D. Gryaznov, N. V. Skorodumova, E. A. Kotomin, A.

Zitolo, M. Zubkins, A. Kuzmin, A. Anspoks, and J. Purans, �The local

atomic structure and thermoelectric properties of Ir-doped ZnO: Hybrid

DFT calculations and XAS experiments�, J. Mater. Chem. C 9, 4948�

4960 (2021).
11C. Kittel, Introduction to solid state physics, 8th ed (Wiley, Hoboken,

NJ, 2005), 680 pp.
12M. I. Aroyo, ed., International Tables for Crystallography: Space-group

symmetry, 2nd ed., Vol. A (International Union of Crystallography,

Chester, England, Dec. 31, 2016).
13H. Wondratschek and U. Müller, eds., International Tables for Crystal-

lography: Symmetry relations between space groups, 2nd ed., Vol. A1 (In-

ternational Union of Crystallography, Chester, England, Dec. 15, 2011).
14A. M. Dobrotvorskii and E. A. Evarestov, �The Quasi-Molecular Large

Unit Cell Model in the Theory of Deep Levels in Imperfect Crystals:

Point Defects in Graphitic Boron Nitride�, Phys. Stat. Sol. (b) 66, 83�

91 (1974).
15A. H. Harker and F. P. Larkins, �A large unit cell semiempirical molec-

ular orbital approach to the properties of solids. I. General theory�, J.

Phys. C: Solid State Phys. 12, 2487�2495 (1979).
16R. A. Evarestov and V. P. Smirnov, �Symmetrical transformation of

basic translation vectors in the supercell model of imperfect crystals and

in the theory of special points of the Brillouin zone�, J. Phys. Condens.

Matter 9, 3023�3031 (1997).
17H.Wondratschek, �Splitting of Wycko� positions (orbits)�, Mineral Petrol.

48, 87�96 (1993).
18H. Wondratschek, U. Mülller, M. I. Aroyo, and I. Sens, �Splitting of

Wycko� positions (orbits). II. Group-subgroup chains of index 6.1�, Z.

Kristallogr. Cryst. Mater. 210, 567�573 (1995).
19R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-

Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P.

73

https://doi.org/10.1016/j.tsf.2017.05.049
https://doi.org/10.1039/D1TC00223F
https://doi.org/10.1039/D1TC00223F
https://doi.org/10.1002/pssb.2220660108
https://doi.org/10.1002/pssb.2220660108
https://doi.org/10.1088/0022-3719/12/13/013
https://doi.org/10.1088/0022-3719/12/13/013
https://doi.org/10.1088/0953-8984/9/14/016
https://doi.org/10.1088/0953-8984/9/14/016
https://doi.org/10.1007/BF01163089
https://doi.org/10.1007/BF01163089
https://doi.org/10.1524/zkri.1995.210.8.567
https://doi.org/10.1524/zkri.1995.210.8.567


REFERENCES

D'Arco, M. Llunell, M. Causà, Y. Noël, L. Maschio, A. Erba, M. Rerat,

and S. Casassa, CRYSTAL17 User's Manual (University of Torino,

Torino, 2017).
20M. P. Teter, M. C. Payne, and D. C. Allan, �Solution of Schrödinger's

equation for large systems�, Phys. Rev. B 40, 12255�12263 (1989).
21D. M. Bylander, L. Kleinman, and S. Lee, �Self-consistent calculations

of the energy bands and bonding properties of B12C3�, Phys. Rev. B

42, 1394�1403 (1990).
22G. H. F. Diercksen and S. Wilson, eds., Methods in Computational

Molecular Physics, 1st ed., Vol. 113, NATO Advanced Study Institute

Series C (Plenum, New York, 1983), VII, 367.
23D. Wood and A. Zunger, �A new method for diagonalising large matri-

ces�, J. Phys. A 18, 1343�1359 (1985).
24P. Pulay, �Convergence acceleration of iterative sequences. the case of

scf iteration�, Chem. Phys. Lett. 73, 393�398 (1980).
25D. D. Johnson, �Modi�ed Broyden's method for accelerating conver-

gence in self-consistent calculations�, Phys. Rev. B 38, 12807�12813

(1988).
26M. Lundstrom, Fundamentals of carrier transport, 2nd ed (Cambridge

University Press, Cambridge, U.K. ; New York, 2000), 418 pp.
27G. Sansone, A. Ferretti, and L. Maschio, �Ab Initio electronic transport

and thermoelectric properties of solids from full and range-separated

hybrid functionals�, J Chem Phys 147, 114101 (2017).
28T. Zacherle, A. Schriever, R. A. De Souza, and M. Martin, �Ab Initio

analysis of the defect structure of ceria�, Phys. Rev. B 87, 134104 (2013).
29C. W. M. Castleton, A. L. Lee, J. Kullgren, and K. Hermansson, �De-

scription of polarons in ceria using Density Functional Theory�, J Phys

Conf Ser 526, 012002 (2014).
30J. J. Plata, A. M. Márquez, and J. F. Sanz, �Electron Mobility via

Polaron Hopping in Bulk Ceria: A First-Principles Study�, J. Phys.

Chem. C 117, 14502�14509 (2013).

74

https://doi.org/10.1103/PhysRevB.40.12255
https://doi.org/10.1103/PhysRevB.42.1394
https://doi.org/10.1103/PhysRevB.42.1394
https://doi.org/10.1088/0305-4470/18/9/018
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1103/PhysRevB.38.12807
https://doi.org/10.1063/1.4986398
https://doi.org/10.1103/PhysRevB.87.134104
https://doi.org/10.1088/1742-6596/526/1/012002
https://doi.org/10.1088/1742-6596/526/1/012002
https://doi.org/10.1021/jp402594x
https://doi.org/10.1021/jp402594x


REFERENCES

31P. R. L. Keating, D. O. Scanlon, B. J. Morgan, N. M. Galea, and G. W.

Watson, �Analysis of Intrinsic Defects in CeO2 Using a Koopmans-Like

GGA+U Approach�, J. Phys. Chem. C 116, 2443�2452 (2012).
32M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, �Oxygen vacan-

cies in transition metal and rare earth oxides: Current state of under-

standing and remaining challenges�, Surf Sci Rep 62, 219�270 (2007).
33J. M. Serra, V. B. Vert, M. Betz, V. A. C. Haanappel, W. A. Meulen-

berg, and F. Tietz, �Screening of A-Substitution in the System

A0.68Sr0.3Fe0.8Co0.2O3-δ for SOFC Cathodes�, J. Electrochem. Soc. 155,

B207�B214 (2008).
34J. Sunarso, S. Baumann, J. Serra, W. Meulenberg, S. Liu, Y. Lin, and J.

Diniz da Costa, �Mixed Ionic�Electronic conducting (MIEC) ceramic-

based membranes for oxygen separation�, J. Memb. Sci. 320, 13�41

(2008).
35D. R. Ou, T. Mori, F. Ye, J. Zou, G. Auchterlonie, and J. Drennan,

�Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type de-

pendence and structure model�, Phys. Rev. B 77, 024108 (2008).
36P. Jasinski, T. Suzuki, and H. U. Anderson, �Nanocrystalline undoped

ceria oxygen sensor�, Sens. Actuators B Chem. 95, 73�77 (2003).
37R. Korobko, A. Patlolla, A. Kossoy, E. Wachtel, H. L. Tuller, A. I.

Frenkel, and I. Lubomirsky, �Giant Electrostriction in Gd-Doped Ce-

ria�, Adv Mater 24, 5857�5861 (2012).
38N. Yavo, O. Yeheskel, E. Wachtel, D. Ehre, A. I. Frenkel, and I. Lubomirsky,

�Relaxation and saturation of electrostriction in 10 mol% Gd-doped ce-

ria ceramics�, Acta Mater. 144, 411�418 (2018).
39W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile,

and A. Steinfeld, �High-Flux Solar-Driven Thermochemical Dissocia-

tion of CO2 and H2O Using Nonstoichiometric Ceria�, Science 330,

1797 (2010).
40I. Naik and T. Tien, �Small-polaron mobility in nonstoichiometric cerium

dioxide�, J Phys Chem Solids 39, 311�315 (1978).

75

https://doi.org/10.1021/jp2080034
https://doi.org/10.1016/j.surfrep.2007.03.002
https://doi.org/10.1149/1.2818766
https://doi.org/10.1149/1.2818766
https://doi.org/10.1016/j.memsci.2008.03.074
https://doi.org/10.1016/j.memsci.2008.03.074
https://doi.org/10.1103/PhysRevB.77.024108
https://doi.org/10.1016/S0925-4005(03)00407-6
https://doi.org/10.1002/adma.201202270
https://doi.org/10.1016/j.actamat.2017.10.056
https://doi.org/10.1126/science.1197834
https://doi.org/10.1126/science.1197834
https://doi.org/10.1016/0022-3697(78)90059-8


REFERENCES

41S. Reis, E. Souza, and E. Muccillo, �Solid solution formation, densi�-

cation and ionic conductivity of Gd- and Sm-doped ceria�, Solid State

Ion 192, 172�175 (2011).
42H. Wang, A. Chroneos, and U. Schwingenschlögl, �Impact of doping on

the ionic conductivity of ceria: A comprehensive model�, J Chem Phys

138, 224705 (2013).
43H. Yahiro, K. Eguchi, and H. Arai, �Electrical properties and reducibili-

ties of ceria-rare earth oxide systems and their application to solid oxide

fuel cell�, Solid State Ion 36, 71�75 (1989).
44S. R. Bishop, T. S. Stefanik, and H. L. Tuller, �Electrical conductivity

and defect equilibria of Pr0.1Ce0.9O2-δ�, Phys. Chem. Chem. Phys. 13,

10165�10173 (2011).
45M. Alaydrus, M. Sakaue, S. M. Aspera, T. D. K. Wungu, T. P. T.

Linh, H. Kasai, T. Ishihara, and T. Mohri, �A �rst-principles study

on defect association and oxygen ion migration of Sm3+ and Gd3+ co-

doped ceria�, J Phys Condens Matter 25, 225401 (2013).
46F. Giannici, G. Gregori, C. Aliotta, A. Longo, J. Maier, and A. Mar-

torana, �Structure and Oxide Ion Conductivity: Local Order, Defect

Interactions and Grain Boundary E�ects in Acceptor-Doped Ceria�,

Chem. Mater. 26, 5994�6006 (2014).
47V. Venckut
e, S. Kazlauskas, E. Kazakevi£ius, A. Keºionis, R. Korobko,

and T. �alkus, �High frequency impedance spectroscopy study on Gd-

doped CeO2 thin �lms�, Ionics 24, 1153�1159 (2018).
48H. J. Park and G. M. Choi, �Oxygen permeability of gadolinium-doped

ceria at high temperature�, J. Eur. Ceram. Soc. 24, 1313�1317 (2004).
49P. Novák, T. Kozák, P. �utta, M. Kolega, and O. Bláhová, �In�uence

of Oxygen on the Resistivity of Co-Sputtered Transparent AZO Films�,

Phys Status Solidi A Appl Mater Sci 215, 1700951 (2018).
50P. Novák, J. O£ená²ek, T. Kozák, and J. Savková, �Identi�cation of

electrical properties in individual thickness layers in aluminium-doped

zinc oxide �lms sputtered at 100 °C�, Thin Solid Films 660, 471�476

(2018).

76

https://doi.org/10.1016/j.ssi.2010.06.017
https://doi.org/10.1016/j.ssi.2010.06.017
https://doi.org/10.1063/1.4809986
https://doi.org/10.1063/1.4809986
https://doi.org/10.1016/0167-2738(89)90061-1
https://doi.org/10.1039/C0CP02920C
https://doi.org/10.1039/C0CP02920C
https://doi.org/10.1088/0953-8984/25/22/225401
https://doi.org/10.1021/cm502810e
https://doi.org/10.1007/s11581-017-2259-7
https://doi.org/10.1016/S0955-2219(03)00555-7
https://doi.org/10.1002/pssa.201700951
https://doi.org/10.1016/j.tsf.2018.06.036
https://doi.org/10.1016/j.tsf.2018.06.036


REFERENCES

51J. Rezek, P. Novák, J. Hou²ka, A. Pajdarová, and T. Kozák, �High-

rate reactive high-power impulse magnetron sputtering of transparent

conductive Al-doped ZnO thin �lms prepared at ambient temperature�,

Thin Solid Films 679, 35�41 (2019).
52A. Janotti and C. G. Van de Walle, �Fundamentals of zinc oxide as a

semiconductor�, Rep Prog Phys 72, 126501 (2009).
53W. Jeong, S. Kim, and G. Park, �Preparation and characteristic of ZnO

thin �lm with high and low resistivity for an application of solar cell�,

Thin Solid Films 506�507, 180�183 (2006).
54J. Kennedy, P. Murmu, J. Leveneur, A. Markwitz, and J. Futter, �Con-

trolling preferred orientation and electrical conductivity of zinc oxide

thin �lms by post growth annealing treatment�, Appl Surf Sci 367, 52�

58 (2016).
55V. Sahu, P. Misra, R. Ajimsha, A. K. Das, and B. Singh, �E�ect of

growth temperature on diode parameters of n-ZnO/p-Si heterojuction

diodes grown by atomic layer deposition�, Mater Sci Semicond Process

54, 1�5 (2016).
56M. Ahmed, F. Taghizadeh, F. Auret, W. Meyer, and J. Nel, �The e�ect

of alpha particle irradiation on electrical properties and defects of ZnO

thin �lms prepared by sol-gel spin coating�, Mater Sci Semicond Process

101, 82�86 (2019).
57D. C. Look, B. Cla�in, Y. I. Alivov, and S. J. Park, �The future of ZnO

light emitters�, Phys Status Solidi A 201, 2203�2212 (2004).
58Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do§an,

V. Avrutin, S.-J. Cho, and H. Morkoç, �A comprehensive review of ZnO

materials and devices�, J Appl Phys 98, 041301 (2005).
59Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A.

Rodriguez, H. Konishi, and H. Xu, �Complex and oriented ZnO nanos-

tructures�, Nature Mater 2, 821�826 (2003).
60L. K. Adams, D. Y. Lyon, and P. J. Alvarez, �Comparative eco-toxicity

of nanoscale TiO2, SiO2, and ZnO water suspensions�, Water Res 40,

3527�3532 (2006).

77

https://doi.org/10.1016/j.tsf.2019.04.009
https://doi.org/10.1088/0034-4885/72/12/126501
https://doi.org/10.1016/j.tsf.2005.08.213
https://doi.org/10.1016/j.apsusc.2016.01.160
https://doi.org/10.1016/j.apsusc.2016.01.160
https://doi.org/10.1016/j.mssp.2016.06.006
https://doi.org/10.1016/j.mssp.2016.06.006
https://doi.org/10.1016/j.mssp.2019.05.029
https://doi.org/10.1016/j.mssp.2019.05.029
https://doi.org/10.1002/pssa.200404803
https://doi.org/10.1063/1.1992666
https://doi.org/10.1038/nmat1014
https://doi.org/10.1016/j.watres.2006.08.004
https://doi.org/10.1016/j.watres.2006.08.004


REFERENCES

61T. S. Bjørheim and E. Kotomin, �Ab Initio Thermodynamics of Oxygen

Vacancies and Zinc Interstitials in ZnO�, J. Phys. Chem. Lett. 5, 4238�

4242 (2014).
62S. Lany and A. Zunger, �Many-body GW calculation of the oxygen

vacancy in ZnO�, Phys Rev B 81, 113201 (2010).
63H. Li, L. K. Schirra, J. Shim, H. Cheun, B. Kippelen, O. L. A. Monti,

and J.-L. Bredas, �Zinc Oxide as a Model Transparent Conducting Ox-

ide: A Theoretical and Experimental Study of the Impact of Hydroxy-

lation, Vacancies, Interstitials, and Extrinsic Doping on the Electronic

Properties of the Polar ZnO (0002) Surface�, Chem Mater 24, 3044�

3055 (2012).
64J. Wang, R. Chen, L. Xiang, and S. Komarneni, �Synthesis, proper-

ties and applications of ZnO nanomaterials with oxygen vacancies: A

review�, Ceram. Int. 44, 7357�7377 (2018).
65K. H. Kim, K. C. Park, and D. Y. Ma, �Structural, electrical and op-

tical properties of aluminum doped zinc oxide �lms prepared by radio

frequency magnetron sputtering�, J Appl Phys 81, 7764�7772 (1997).
66V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. Costa,

and R. Martins, �In�uence of the deposition pressure on the properties

of transparent and conductive ZnO:Ga thin-�lm produced by r.f. sput-

tering at room temperature�, Thin Solid Films 427, 401�405 (2003).
67D. Ca�rey, A. Zhussupbekova, R. Vijayaraghavan, A. Ainabayev, A.

Kaisha, G. Sugurbekova, I. Shvets, and K. Fleischer, �Crystallographic

characterisation of ultra-thin, or amorphous transparent conducting

oxides-the case for Raman spectroscopy�, Mater. 13, 267 (2020).
68M. Joseph, H. Tabata, and T. Kawai, �P-Type Electrical Conduction

in ZnO Thin Films by Ga and N Codoping�, Jpn. J. Appl. Phys. 38,

L1205�L1207 (1999).
69S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu, �Sb-

doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting

diodes�, Appl. Phys. Lett. 92, 152103 (2008).
70D. Mora-Fonz and A. L. Shluger, �Making amorphous ZnO: Theoretical

predictions of its structure and stability�, Phys Rev B 99, 014202 (2019).

78

https://doi.org/10.1021/jz5018812
https://doi.org/10.1021/jz5018812
https://doi.org/10.1103/PhysRevB.81.113201
https://doi.org/10.1021/cm301596x
https://doi.org/10.1021/cm301596x
https://doi.org/10.1016/j.ceramint.2018.02.013
https://doi.org/10.1063/1.365556
https://doi.org/10.1016/S0040-6090(02)01184-7
https://doi.org/10.3390/ma13020267
https://doi.org/10.1143/JJAP.38.L1205
https://doi.org/10.1143/JJAP.38.L1205
https://doi.org/10.1063/1.2908968
https://doi.org/10.1103/PhysRevB.99.014202


REFERENCES

71A. Djuri²i¢, A. Ng, and X. Chen, �ZnO nanostructures for optoelectron-

ics: Material properties and device applications�, Prog Quant Electron

34, 191�259 (2010).
72D. Look, �Recent advances in ZnO materials and devices�, Mater. Sci.

Eng. B 80, 383�387 (2001).
73S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, �Doping by

Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic-

or Antimony-Doped p -Type Zinc Oxide�, Phys. Rev. Lett. 92, 155504

(2004).
74F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, �Evidence of the

Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO�, Phys.

Rev. Lett. 91, 205502 (2003).
75A. Janotti and C. G. Van de Walle, �Native point defects in ZnO�, Phys.

Rev. B 76, 165202 (2007).
76S. Lany and A. Zunger, �Dopability, intrinsic conductivity, and nonstoi-

chiometry of transparent conducting oxides�, Phys Rev Lett 98, 045501

(2007).
77J. Fan, K. Sreekanth, Z. Xie, S. Chang, and K. Rao, �P-Type ZnO

materials: Theory, growth, properties and devices�, Prog Mater Sci 58,

874�985 (2013).
78L. Pan, S. Wang, W. Mi, J. Song, J.-J. Zou, L. Wang, and X. Zhang,

�Undoped ZnO abundant with metal vacancies�, Nano Energy 9, 71�79

(2014).
79A. Renaud, L. Cario, X. Rocquefelte, P. Deniard, E. Gautron, E. Faulques,

T. Das, F. Cheviré, F. Tessier, and S. Jobic, �Unravelling the origin of

the giant Zn de�ciency in wurtzite type ZnO nanoparticles�, Sci Rep 5,

12914 (2015).
80J. L. Lyons and A. Janotti, �Why nitrogen cannot lead to P-type con-

ductivity in ZnO�, Appl. Phys. Lett. 95, 252105 (2009).
81S. Zhang, S.-H. Wei, and A. Zunger, �A phenomenological model for

systematization and prediction of doping limits in II-VI and I-III-VI2

compounds�, J Appl Phys 83, 3192�3196 (1998).

79

https://doi.org/10.1016/j.pquantelec.2010.04.001
https://doi.org/10.1016/j.pquantelec.2010.04.001
https://doi.org/10.1016/S0921-5107(00)00604-8
https://doi.org/10.1016/S0921-5107(00)00604-8
https://doi.org/10.1103/PhysRevLett.92.155504
https://doi.org/10.1103/PhysRevLett.92.155504
https://doi.org/10.1103/PhysRevLett.91.205502
https://doi.org/10.1103/PhysRevLett.91.205502
https://doi.org/10.1103/PhysRevB.76.165202
https://doi.org/10.1103/PhysRevB.76.165202
https://doi.org/10.1103/PhysRevLett.98.045501
https://doi.org/10.1103/PhysRevLett.98.045501
https://doi.org/10.1016/j.pmatsci.2013.03.002
https://doi.org/10.1016/j.pmatsci.2013.03.002
https://doi.org/10.1016/j.nanoen.2014.06.029
https://doi.org/10.1016/j.nanoen.2014.06.029
https://doi.org/10.1038/srep12914
https://doi.org/10.1038/srep12914
https://doi.org/10.1063/1.3274043
https://doi.org/10.1063/1.367120


REFERENCES

82M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, �Nitrogen is a deep

acceptor in ZnO�, AIP Advances 1, 022105 (2011).
83B. Chavillon, L. Cario, A. Renaud, F. Tessier, F. Cheviré, M. Boujtita,

Y. Pellegrin, E. Blart, A. Smeigh, L. Hammarström, F. Odobel, and S.

Jobic, �P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Am-

bient Conditions�, J. Am. Chem. Soc. 134, 464�470 (2012).
84A. de Jamblinne de Meux, G. Pourtois, J. Genoe, and P. Heremans,

�E�ects of hole self-trapping by polarons on transport and negative

bias illumination stress in amorphous-IGZO�, J Appl Phys 123, 161513

(2018).
85A. Hino, S. Kosaka, S. Morita, S. Yasuno, T. Kishi, K. Hayashi, and T.

Kugimiya, �Direct Evaluation of Electron Traps in Amorphous In-Ga-

Zn-O Thin Film Transistors Using Transient Capacitance Technique�,

ECS Solid State Lett 1, Q51�Q53 (2012).
86S. Jeong, Y.-G. Ha, J. Moon, A. Facchetti, and T. J. Marks, �Role of

Gallium Doping in Dramatically Lowering Amorphous-Oxide Process-

ing Temperatures for Solution-Derived Indium Zinc Oxide Thin-Film

Transistors�, Adv Mater 22, 1346�1350 (2010).
87H.-H. Nahm and Y.-S. Kim, �Undercoordinated indium as an intrin-

sic electron-trap center in amorphous InGaZnO4�, NPG Asia Mater 6,

e143�e143 (2014).
88A. de Jamblinne de Meux, G. Pourtois, J. Genoe, and P. Heremans,

�Comparison of the electronic structure of amorphous versus crystalline

indium gallium zinc oxide semiconductor: Structure, tail states and

strain e�ects�, J Phys D Appl Phys 48, 435104 (2015).
89C. A. Hoel, S. Xie, C. Benmore, C. D. Malliakas, J.-F. Gaillard, and

K. R. Poeppelmeier, �Evidence for Tetrahedral Zinc in Amorphous

In2-2xZnxSnxO3 (a-ZITO)�, Z. anorg. allg. Chem 637, 885�894 (2011).
90T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H.

Ohta, M. Hirano, and H. Hosono, �Electrical Properties and Structure of

P-Type Amorphous Oxide Semiconductor xZnO·Rh2O3�, Adv. Funct.

Mater. 15, 968�974 (2005).

80

https://doi.org/10.1063/1.3582819
https://doi.org/10.1021/ja208044k
https://doi.org/10.1063/1.4986180
https://doi.org/10.1063/1.4986180
https://doi.org/10.1149/2.003206ssl
https://doi.org/10.1002/adma.200902450
https://doi.org/10.1038/am.2014.103
https://doi.org/10.1038/am.2014.103
https://doi.org/10.1088/0022-3727/48/43/435104
https://doi.org/10.1002/zaac.201000430
https://doi.org/10.1002/adfm.200400046
https://doi.org/10.1002/adfm.200400046


REFERENCES

91C. P. Liu, K. O. Egbo, C. Y. Ho, Y. Wang, C. K. Xu, and K. M.

Yu, �Wide-Gap Zn1-xNix O Alloy: A Transparent p-Type Oxide�, Phys.

Rev. Applied 13, 024049 (2020).
92M. J. Wahila, Z. W. Lebens-Higgins, A. J. Jackson, D. O. Scanlon, T.-L.

Lee, J. Zhang, K. H. L. Zhang, and L. F. J. Piper, �Band edge evolution

of transparent ZnM 2
IIIO4 (M III = Co , Rh, Ir) spinels�, Phys Rev B

100, 085126 (2019).
93E. L. Mayes, J. G. Partridge, M. R. Field, D. G. McCulloch, S. M.

Durbin, H.-S. Kim, and M. W. Allen, �The interface structure of high

performance ZnO Schottky diodes�, Physica B Condens 407, 2867�2870

(2012).
94D. Muñoz Ramo and P. D. Bristowe, �Impact of amorphization on the

electronic properties of Zn�Ir�O systems�, J Phys Condens Matter 28,

345502 (2016).
95D. Muñoz Ramo, A. Chroneos, M. Rushton, and P. Bristowe, �E�ect

of trivalent dopants on local coordination and electronic structure in

crystalline and amorphous ZnO�, Thin Solid Films 555, 117�121 (2014).
96D. Schmeiÿer, J. Haeberle, P. Barquinha, D. Gaspar, L. Pereira, R.

Martins, and E. Fortunato, �Electronic structure of amorphous ZnO

�lms: Electronic structure of amorphous ZnO �lms�, Phys Status Solidi

C 11, 1476�1480 (2014).
97H. Tuller and A. Nowick, �Small polaron electron transport in reduced

CeO2 single crystals�, J. Phys. Chem. Solids 38, 859�867 (1977).
98E. Kroumova, J. M. Perez-Mato, and M. I. Aroyo, �WYCKSPLIT: A

computer program for determination of the relations of Wycko� posi-

tions for a group-subgroup pair�, J Appl Crystallogr 31, 646�646 (1998).
99M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor,

and A. Kirov, �Crystallography online: Bilbao Crystallographic Server�,

Bulg. Chem. Commun. 43, 183�197 (2011).
100C. Adamo and V. Barone, �Toward reliable density functional methods

without adjustable parameters: The PBE0 model�, J Chem Phys 110,

6158�6170 (1999).

81

https://doi.org/10.1103/PhysRevApplied.13.024049
https://doi.org/10.1103/PhysRevApplied.13.024049
https://doi.org/10.1103/PhysRevB.100.085126
https://doi.org/10.1103/PhysRevB.100.085126
https://doi.org/10.1016/j.physb.2011.08.032
https://doi.org/10.1016/j.physb.2011.08.032
https://doi.org/10.1088/0953-8984/28/34/345502
https://doi.org/10.1088/0953-8984/28/34/345502
https://doi.org/10.1016/j.tsf.2013.05.140
https://doi.org/10.1002/pssc.201400010
https://doi.org/10.1002/pssc.201400010
https://doi.org/10.1016/0022-3697(77)90124-X
https://doi.org/10.1107/S0021889898005524
http://bcc.bas.bg/BCC_Volumes/Volume_43_Number_2_2011/Volume_43_Number_2_2011_PDF/2011_43_2_1.pdf
https://doi.org/10.1063/1.478522
https://doi.org/10.1063/1.478522


REFERENCES

101A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria,

�In�uence of the exchange screening parameter on the performance of

screened hybrid functionals�, J Chem Phys 125, 224106 (2006).
102J. P. Perdew, K. Burke, and M. Ernzerhof, �Generalized Gradient Ap-

proximation Made Simple�, Phys. Rev. Lett. 77, 3865�3868 (1996).
103H. J. Monkhorst and J. D. Pack, �Special points for Brillouin-zone in-

tegrations�, Phys. Rev. B 13, 5188�5192 (1976).
104T. Bredow, K. Jug, and R. A. Evarestov, �Electronic and magnetic

structure of ScMnO3: Electronic and magnetic structure of ScMnO3�,

Phys Status Solidi B 243, R10�R12 (2006).
105J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández,

A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, �Comparative Study

on the Performance of Hybrid DFT Functionals in Highly Correlated

Oxides: The Case of CeO2 and Ce2O3�, J. Chem. Theory Comput. 7,

56�65 (2011).
106R. Evarestov, A. Panin, A. Bandura, and M. Losev, �Electronic struc-

ture of crystalline uranium nitrides UN, U2N3 and UN2: LCAO calcu-

lations with the basis set optimization�, in J. Phys. Conf. Ser. Vol. 117,

1 (2008), p. 012015.
107R. A. Evarestov, D. Gryaznov, M. Arrigoni, E. A. Kotomin, A. Ches-

nokov, and J. Maier, �Use of site symmetry in supercell models of defec-

tive crystals: Polarons in CeO2�, Phys. Chem. Chem. Phys. 19, 8340�

8348 (2017).
108D. Marrocchelli, S. R. Bishop, H. L. Tuller, G. W. Watson, and B.

Yildiz, �Charge localization increases chemical expansion in cerium-

based oxides�, Phys. Chem. Chem. Phys. 14, 12070 (2012).
109D. Marrocchelli, S. R. Bishop, H. L. Tuller, and B. Yildiz, �Under-

standing Chemical Expansion in Non-Stoichiometric Oxides: Ceria and

Zirconia Case Studies�, Adv. Funct. Mater. 22, 1958�1965 (2012).
110D. Fuks, D. Gryaznov, E. Kotomin, A. Chesnokov, and J. Maier, �Dopant

solubility in ceria: Alloy thermodynamics combined with the DFT+U

calculations�, Solid State Ion 325, 258�264 (2018).

82

https://doi.org/10.1063/1.2404663
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1002/pssb.200541403
https://doi.org/10.1021/ct100430q
https://doi.org/10.1021/ct100430q
https://doi.org/10.1088/1742-6596/117/1/012015
https://doi.org/10.1039/C6CP08582B
https://doi.org/10.1039/C6CP08582B
https://doi.org/10.1039/c2cp40754j
https://doi.org/10.1002/adfm.201102648
https://doi.org/10.1016/j.ssi.2018.08.019


REFERENCES

111G. Kresse and D. Joubert, �From ultrasoft pseudopotentials to the pro-

jector augmented-wave method�, Phys. Rev. B 59, 1758�1775 (1999).
112P. E. Blöchl, �Projector augmented-wave method�, Phys. Rev. B 50,

17953�17979 (1994).
113S. L. Dudarev, D. N. Manh, and A. P. Sutton, �E�ect of Mott-Hubbard

correlations on the electronic structure and structural stability of ura-

nium dioxide�, Phil. Mag. B. 75, 613�628 (1997).
114L. Shi, E. Vathonne, V. Oison, M. Freyss, and R. Hayn, �First-principles

DFT+U investigation of charged states of defects and �ssion gas atoms

in CeO2�, Phys. Rev. B 94, 115132 (2016).
115M. B. Kanoun, A. H. Reshak, N. Kanoun-Bouayed, and S. Goumri-Said,

�Evidence of Coulomb correction and Spin�Orbit coupling in rare-earth

dioxides CeO2, PrO2 and TbO2: An ab initio study�, J. Mag. Mag.

Mater. 324, 1397�1405 (2012).
116W. Tang, E. Sanville, and G. Henkelman, �A grid-based Bader analysis

algorithm without lattice bias�, J. Phys.: Condens. Matter 21, 084204

(2009).
117M. Yu and D. R. Trinkle, �Accurate and e�cient algorithm for Bader

charge integration�, J. Chem. Phys. 134, 064111 (2011).
118A. G. Khachaturyan, Theory of structural transformations in solids

(John Wiley & Sons, New York, Nov. 9, 1983), 574 pp.
119A. Khachaturyan and B. Pokrovskii, �Concentration wave approach

in structural and thermodynamic characterization of ceramic crystals�,

Prog Mater Sci 29, 1�138 (1985).
120E. M. Lifshitz, �On the theory of phase transitions of the second order

I.�, J. Phys. (USSR) VI, 61�74 (1942).
121E. M. Lifshitz, �On the theory of phase transitions of the second order

II.�, J. Phys. (USSR) VI, 251�263 (1942).
122A. F. Jankowski and T. Tsakalakos, �Phase stability by the arti�cial

concentration wave method�, Metall Trans A 20, 357�362 (1989).
123M. Finnis, A. Lozovoi, and A. Alavi, �The Oxidation of NiAl: What

Can We Learn from Ab Initio Calculations?�, Annu. Rev. Mater. 35,

167�207 (2005).

83

https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1080/13642819708202343
https://doi.org/10.1103/PhysRevB.94.115132
https://doi.org/10.1016/j.jmmm.2011.11.050
https://doi.org/10.1016/j.jmmm.2011.11.050
https://doi.org/10.1088/0953-8984/21/8/084204
https://doi.org/10.1088/0953-8984/21/8/084204
https://doi.org/10.1063/1.3553716
https://doi.org/10.1016/0079-6425(85)90008-8
https://doi.org/10.1007/BF02653914
https://doi.org/10.1146/annurev.matsci.35.101503.091652
https://doi.org/10.1146/annurev.matsci.35.101503.091652


REFERENCES

124P. Linstrom, NIST Chemistry WebBook, NIST Standard Reference

Database 69 (National Institute of Standards and Technology, 1997).
125S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, �A consistent and

accurate ab initio parametrization of density functional dispersion cor-

rection (DFT-D) for the 94 elements H-Pu�, J. Chem. Phys. 132, 154104

(2010).
126L. Kaufman and H. Bernstein, Computer Calculation of Phase Dia-

grams: With Special Reference to Refractory Metals, Refractory Mate-

rials Monograph (Academic Press Inc, New York, May 1970), 334 pp.
127A. Chesnokov, D. Gryaznov, and E. Kotomin, �First principles calcula-

tions on CeO2 doped with Tb3+ ions�, Opt. Mater. 90, 76�83 (2019).
128Y. Ping, G. Galli, and W. A. Goddard, �Electronic Structure of IrO2 :

The Role of the Metal d Orbitals�, J Phys Chem C 119, 11570�11577

(2015).
129D. Gryaznov, E. Blokhin, A. Sorokine, E. A. Kotomin, R. A. Evarestov,

A. Bussmann-Holder, and J. Maier, �A Comparative Ab Initio Ther-

modynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis

on Phonon Contribution�, J. Phys. Chem. C 117, 13776�13784 (2013).
130F. Pascale, C. M. Zicovich-Wilson, F. López Gejo, B. Civalleri, R. Or-

lando, and R. Dovesi, �The calculation of the vibrational frequencies of

crystalline compounds and its implementation in the CRYSTAL code:

Crystalline Compounds and the CRYSTAL Code�, J Comput Chem 25,

888�897 (2004).
131C. M. Zicovich-Wilson, F. Pascale, C. Roetti, V. R. Saunders, R. Or-

lando, and R. Dovesi, �Calculation of the vibration frequencies of α-

Quartz: The e�ect of Hamiltonian and basis set�, J Comput Chem 25,

1873�1881 (2004).
132S. Jantrasee, S. Pinitsoontorn, and P. Moontragoon, �First-Principles

Study of the Electronic Structure and Thermoelectric Properties of Al-

Doped ZnO�, J Electron Mater 43, 1689�1696 (2014).
133V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D.

Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hasha-

gen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R.

84

https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1016/j.optmat.2019.02.016
https://doi.org/10.1021/acs.jpcc.5b00861
https://doi.org/10.1021/acs.jpcc.5b00861
https://doi.org/10.1021/jp400609e
https://doi.org/10.1002/jcc.20019
https://doi.org/10.1002/jcc.20019
https://doi.org/10.1002/jcc.20120
https://doi.org/10.1002/jcc.20120
https://doi.org/10.1007/s11664-013-2834-2


REFERENCES

Schlögl, �The electronic structure of iridium and its oxides: The elec-

tronic structure of iridium and its oxides�, Surf Interface Anal. 48, 261�

273 (2016).
134M. Dekkers, G. Rijnders, and D. H. A. Blank, �ZnIr2O4, a p-Type

transparent oxide semiconductor in the class of spinel zinc-d6-transition

metal oxide�, Appl. Phys. Lett. 90, 021903 (2007).
135Y. Liu, H. Masumoto, and T. Goto, �Electrical and Optical Properties of

IrO2 Thin Films Prepared by Laser-ablation�, Mater. Trans. 45, 3023�

3027 (2004).
136W. D. Ryden, A. W. Lawson, and C. C. Sartain, �Electrical Transport

Properties of IrO2 and RuO2�, Phys Rev B 1, 1494�1500 (1970).
137S. G. Bhat, A. M. Koshy, S. Pittala, and P. S. A. Kumar, �Tuning the

growth of IrO2 on SrTiO3 (100) for spin-hall e�ect based oxide devices�,

in AIP Conf. Proc. Vol. 1859 (2017), p. 020007.

85

https://doi.org/10.1002/sia.5895
https://doi.org/10.1002/sia.5895
https://doi.org/10.1063/1.2431548
https://doi.org/10.2320/matertrans.45.3023
https://doi.org/10.2320/matertrans.45.3023
https://doi.org/10.1103/PhysRevB.1.1494
https://doi.org/10.1063/1.4990160


ACKNOWLEDGEMENTS

Having reached this milestone in my academic journey, I feel the need to

express my gratitude to the numerous individuals, institutions, and organi-

zations that have contributed their support and encouragement throughout

my doctoral research.

First and foremost I would like to thank my supervisor Dr.rer.nat.

Denis Grjaznov, who has guided and assisted me throughout the entire

course of my doctoral research. Your mentorship has not only honed my

scholarly skills but also instilled in me a passion for pushing the boundaries

of knowledge.

My heartfelt appreciation extends to the members of the Laboratory

of Kinetics in Self-Organizing Systems and the Laboratory of Computer

Modeling of Electronic Structure of Solids at the Institute of Solid State

Physics. I appreciate the leadership of Dr.habil.phys. Vladimir Kuzovkov,

Dr.habil.phys. Eugene Kotomin, and Dr.rer.nat. Sergei Piskunov, who

have maintained an atmosphere that fosters a collaborative spirit. In-

novative insights that emerged from these environments have shaped my

research experience.

I am thankful to all my colleagues, especially Dr.rer.nat. Yuri Mas-

trikov and Dr.phys. Alexander Platonenko, for their assistance in problem-

solving. I am also thankful to people who have helped me bridge the gap

between computational studies and experiments, most notably Dr.phys.

Alexei Kuzmin of the EXAFS Spectroscopy laboratory, and Dr.habil.phys.

Juris Purans of the Thin Films Laboratory.

I am thankful to grant agencies that support theoretical studies such

as this one. In particular, I would like to thank projects, which have funded

various parts of this work: Latvian Council of Science (projects LZP-

2021/1-0203, and LZP-2018/1-0147), HPC-EUROPA3 initiative (project

INFRAIA-2016-1-730897, with the support of the EC Research Innovation

Action under the H2020 Programme), project 1.1.1.1/18/A/073 within the

86



REFERENCES

European Regional Development Fund, and European Council's Frame-

work project EC 7FP GREEN-CC. Institute of Solid State Physics, Uni-

versity of Latvia as the Center of Excellence has received funding from

the European Union's Horizon 2020 Framework Programme H2020-WIDE-

SPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508,

project CAMART2.

I also want to thank the Faculty of Physics, Mathematics and Op-

tometry of the University of Latvia for the support during studies and

research. I am thankful for �nancial support from the University of Latvia

Foundation: Arnis Riekstins's �MikroTik� donation and the project No.

8.2.2.0/20/I/006, �Strengthening of the capacity of doctoral studies at the

University of Latvia within the framework of the new doctoral model�,

administrated by the University of Latvia Foundation.

None of this would be possible nor would ever come to fruition

without the unwavering support of my family, friends, and loved ones.

Your encouragement, understanding, and patience have been my pillars of

strength throughout this arduous journey. I am forever thankful for each

and every kind word and deed I have received over these years.

87


	AC_thesis_short_EN_A5.pdf
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	General introduction and motivation
	Aim and objectives of the work
	The scientific novelty of the work
	Author’s contribution

	Theory
	Crystallography fundamentals
	Supercell model and splitting of Wyckoff positions
	Basics of DFT approximation
	Theoretical background of vasp calculations
	Electronic groundstate in vasp

	Theoretical background of crystal calculations
	Construction of atomic orbitals in crystal
	Boltzmann transport equation in crystal

	Cerium dioxide
	Zinc oxide

	The case of Cerium Dioxide
	Oxygen vacancy in undoped CeO2
	Supercell selection
	Computational details
	Oxygen vacancies and electronic localization

	Tb in CeO2
	Supercell selection
	Computational details
	The method of concentration waves
	Formation energy
	Tb solubility in CeO2
	Reduced Tb and oxygen vacancy in CeO2


	The case of Zinc Oxide
	Supercell selection
	Computational details
	DFT parameters
	O incorporation
	Thermoelectric parameters

	Conductivity baselines
	Structural description
	Relaxation and Ir–O complexes
	Electronic structure

	Thermoelectric properties

	Summary and conclusions
	Main Theses
	Author's publication list
	Participation in conferences
	Participation in international schools
	References
	Acknowledgements


