

Promocijas darba kopsavilkums

Kaspars Kaprāns

PĀREJAS METĀLU OKSĪDU ELEKTRODU MATERIĀLU PĒTĪJUMI PIELIETOJUMIEM LITIJA JONU BATERIJĀS

Rīga 2024

FIZIKAS, MATEMĀTIKAS UN OPTOMETRIJAS FAKULTĀTE

Kaspars Kaprāns

PĀREJAS METĀLU OKSĪDU ELEKTRODU MATERIĀLU PĒTĪJUMI PIELIETOJUMIEM LITIJA JONU BATERIJĀS

PROMOCIJAS DARBA KOPSAVILKUMS

Zinātnes doktora grāda (Ph. D.) iegūšanai dabaszinātnēs fizikas un astronomijas nozarē

Apakšnozare: materiālu fizika

Promocijas darbs izstrādāts Latvijas Universitātes Cietvielu fizikas institūtā laika posmā no 2015. gada līdz 2023. gadam

Darbs sastāv no ievada, 4 nodaļām, nobeiguma, literatūras saraksta.

Darba forma: disertācija fizikas un astronomijas zinātņu nozarē, materiālu fizikas apakšnozarē

Darba zinātniskais vadītājs: Dr.chem. Gunārs Bajārs, vadošais pētnieks Latvijas Universitātes Cietvielu fizikas institūtā

Darba recenzenti:

- 1) Māris Knite, Dr. habil. phys., profesors, Rīgas Tehniskā universitāte;
- 2) Andris Šutka, Dr. phys., profesors, Rīgas Tehniskā universitāte;
 - 3) Tomas Šalkus, Dr., profesors, Viļņas Universitāte, Lietuva.

Promocijas darba aizstāvēšana notiks latvijas Universitātes fizikas un astronomijas zinātņu nozares promocijas padomes atklātā sēdē 2024. gada 19. aprīlī, plkst. 15:00, Latvijas Universitātes Cietvielu fizikas institūta konferenču zālē, Ķengaraga ielā 8, Rīgā.

Ar promocijas darbu un tā kopsavilkumu var iepazīties Latvijas Universitātes Bibliotēkā Rīgā, Raiņa bulvārī 19.

LU fizikas un astronomijas zinātņu nozares promocijas

padomes priekšsēdētājs /- a

_____/ Dr. habil. phys. Linards Skuja (paraksts)

promocijas padomes sekretārs/- e _____/ Sintija Siliņa /

(paraksts)

ANOTĀCIJA

Darbā pētīti ar elektroforētiskās izgulsnēšanas metodi iegūti dzelzs oksīda, titāna dioksīda un reducēta grafēna oksīda (rGO) litija jonu bateriju elektroda materiāli un novērtēta pielietojamība litija jonu baterijās.

Izpētīti un salīdzināti iegūto elektrodu materiālu sastāvi, struktūra un morfoloģija, izmantojot skenējošo elektronu mikroskopiju, atomspēku mikroskopiju, rentgenstaru difrakcijas analīzi, Ramana spektroskopiju, rentgenstaru mikrospektrālo analīzi un rentgenstaru fotoelektronu spektroskopiju.

Trīskomponentu Fe₂O₃/TiO₂/rGO anodmateriāls uzrādīja labāku elektroķīmisko veiktspēju, salīdzinot ar divkomponentu Fe₂O₃/rGO un TiO₂/rGO elektrodiem. Iegūtās lādiņietilpības pie izlādes strāvas 0.5 mA ir 571, 683, 729 mAh/g attiecīgajiem nanokompozīta elektrodu materiāliem Fe₂O₃/TiO₂ molārās attiecībās 1:1 (FT11), 2:1 (FT21) un 3:1 (FT31). Pēc 400 veiktajiem uzlādes – izlādes cikliem ar strāvu 1 mA, nanokompozīts FT11 ciklēšanas noslēgumā saglabā 58 %, FT21 - 81 % un FT31 - 17 % no sākotnējās lādiņietilpības. Pamatojoties uz ātrumspējas, ciklējamības un lādiņietilpības mērījumu rezultātiem secināts, ka nanokompozīts ar Fe₂O₃ un TiO₂ molārajām attiecībām 2:1 ir perspektīvs augstas veiktspējas elektroda materiāls litija jonu baterijām.

Darbā iegūtie rezultāti paplašina izpratni par divu pārejas metālu oksīdu mijiedarbību augstas veiktspējas litija jonu bateriju elektroda materiālu iegūšanā, izmantojot lētu, vienkāršu un videi draudzīgu metodi. Iespēja pielāgot elektroda materiāla īpašības (ātrumspēju, lādiņietilpību, ciklējamību), padara to daudzsološu tādos litija jonu bateriju pielietojumos kā portatīvie datori, elektriskie darbarīki, viedtālruņi, droni, elektromobiļi u.c.

Atslēgvārdi: elektroda materiāls, elektroforētiskā izgulsnēšana, pārejas metālu oksīdi, litija jonu baterija, uzlāde - izlāde.

ANOTĀCIJA	4
IEVADS	6
1.1. Temas aktuantate un motivacija	0
1.2. Darba mērķis un uzdevumi	7
1.3 Autora ieguldījums	7
1.4 Zinātniskā novitāte	7
1.5 Promocijas darba struktūra	8
2. TEORIJA UN LITERATŪRAS APSKATS 2.1 Baterijas uzbūve un darbība	9 9
2.2 Anodmateriāli	9
2.3 Katodmateriāli	10
2.4 Elektrolīts	11
2.5 Izmantotie materiāli	11
2.6 Nanokristālisku kārtiņu izgatavošanas tehnika	12
 3. EKSPERIMENTĀLĀS METODES 3.1 Pētāmo materiālu sagatavošana 	13 13
3.2 Iegūto kārtiņu sastāva, struktūras un morfoloģijas pētījumi	13
3.3 Elektroķīmiskie mērījumi	14
 REZULTĀTI UN DISKUSIJA 4.1. Ar elektroforētiskās izgulsnēšanas metodi iegūti dzelzs oksīda, titāna dioksīda 	15 15
un reducētas grafēna oksīda elektrovadošas piedevas elektroda materiālu pētījumi	15
4.2 Dažāda kvantitatīvā sastāva dzelzs oksīda un titāna dioksīda elektrodu kompozītmateriā pētījumi	lu 19
SECINĀJUMI	27
AIZSTAVAMAS TEZES	
Αυτυκά μυβριστά μετά μετα μετά μετα μετά μετα μετά μετα μετά μετα μετά μετα μετά μετά μετά μετά μετά μετά μετά μετά	
ZINĀTNISKIE PROIEKTI	
PATEICĪBAS	

SATURS

IEVADS

1.1. Tēmas aktualitāte un motivācija

Vārdu savienojumi "globālā sasilšana" un "alternatīvā enerģija" cilvēces apziņā tiek asociēti ar vēja ģeneratoriem vai plašiem saules bateriju laukiem, bet mūsdienās aizvien aktuālāks kļūst jautājums, kā dabai draudzīgo enerģiju uzkrāt, ne tikai saražot. Strauji pieaugošais pārnēsājamo elektroierīču tirgus un aktualizējusies zaļā domāšana padara pētījumus šajā jomā ļoti aktuālus [1]. Litija jonu baterija (LJB) ir vairākkārt uzlādējama elektriskās enerģijas uzglabāšanas ierīce. Tā sastāv no diviem elektrodiem - katoda un anoda, elektrolīta, separatora un integrētas drošības mikroshēmas, kas ļauj izvairīties no baterijas bojājumiem pārlādēšanas vai pārlieku straujas izlādes gadījumā [2]. Pārejas metālu oksīdi ir raksturīgi ar augstu teorētisko lādiņietilpību, ko nodrošina konversijas tipa reakcija elektroda materiāla kristālrežga struktūras izmaiņas, kas noved pie straujas un neatgriezeniskas lādiņietilpības samazināšanās [3]. Tā kā LJB elektroda materiāla svarīga īpašība ir arī elektriskā vadītspēja, bet pārejas metālu oksīdi ir sakturīgi parasti ir slikti elektronu vadītāji, kompozītmateriāla sintēzē tiek iekļauts arī elektronus vadošs materiāls (ogle vai tās allotropā forma). Apvienojot materiālus ar ievērojamu gravimetrisko lādiņietilpību, kas var būtiski uzlabot baterijals elektrokāfinsķo veiktspēju [8-9].

Elektroforētiskā izgulsnēšana (EPD) ir ārējā elektriskā lauka izraisīta lādētu daļiņu kustība koloidālā šķīdumā un izgulsnēšanās uz elektrisko strāvu vadošas pamatnes, veidojot plānu materiāla kārtiņu. Salīdzinot ar citām kārtiņu iegūšanas metodēm, tā ir lēta, vienkārša un netiek izmantotas toksiskas ķīmiskas vielas. Attiecībā uz materiāla kārtiņu iegūšanas procesu ir vērts pieminēt, ka metode ļauj viegli kontrolēt kārtiņas morfoloģiju un biezumu, mainot elektroforētiskās izgulsnēšanas laiku un elektriskā lauka lielumu [7].

Promocijas darbā tika pētītas elektroforētiski izgulsnētas kompozītmateriāla kārtiņas, kas sastāv no diviem pārejas metālu oksīdiem (Fe₂O₃, TiO₂) un reducēta grafēna oksīda (rGO) kā elektrovadošas piedevas. Dzelzs oksīds ir raksturīgs ar augstu teorētisko lādiņietilpību (1006 mAhg⁻¹), bet vāju elektroķīmiskās ciklēšanas noturību. Tā kā TiO₂ kristālrežģa tilpuma izmaiņas elektroda materiāla litizācijas laikā ir ≈ 4 % un tam raksturīga augsta elektroķīmiskā ciklēšanas noturība, TiO₂ tika izmantots pētāmā kompozītmateriāla elektroda elektroķīmiskās ciklēšanas stabilitātes nodrošināšanai [3]. Šobrīd LJB elektrodu materiālu sintēzei tiek izmantotas tādas plaši izplatītas metodes kā termiskā sakausēšana [4], hidrotermālā sintēze [5], ķīmiskā sintēze [6], atomāro slāņu izgulsnēšana [7] un ķīmisko tvaiku izgulsnēšana [8]. Neskatoties uz šo metožu plašo izplatību, tām ir daži nopietni trūkumi:

1. To izmantošana prasa lielus ekonomiskos resursus;

 Karsēšana augstās temperatūrās (T > 1000 K) var bojāt elektroda materiāla struktūru, paaugstinot tā trauslumu, kas rezultātā izraisa aktīvā materiāla un strāvu vadošas pamatnes elektriskā kontakta zudumu;
 Elektroda materiāla sintēzes veikšanai nepieciešamas dārgas, lielas un sarežģītas iekārtas;
 Elektroda materiāla sintēzes process ir laikietilpīgs;

5. Nevar izmantot aktīvā elektroda materiāla pamatnes materiālus, kas nav noturīgi pret augstām temperatūrām un spiedieniem;

6. Ierobežota strāvu vadošas pamatnes ģeometriskās formas izvēle, kas ir saistīta ar izmantojamās iekārtas parametriem;

7. Izmantotās vielas ir viegli gaistošas un toksiskas.

Darbā izmantotā elektroda materiāla sintēzes metode ir elektroforētiskā izgulsnēšana, kuras galvenās priekšrocības ir:

1. Samazināts (5-10 min) elektroda materiāla sintēzes laiks;

2. Elektroforētiskās izgulsnēšanas veikšanai ir nepieciešams tikai līdzstrāvas barošanas bloks un divi elektrodi, kas ievietoti suspensijā;

3. Nav ierobežoti pamatnes ģeometriskie izmēri;

4. Nav nepieciešamas saistvielas;

5. Netiek izmantotas toksiskas vielas un neveidojas bīstami atkritumi;

6. EPD metode ir ekonomiski izdevīga un vienkārši pielietojama;

7. Iespēja kontrolēt iegūstamās materiāla kārtiņas biezumu un morfoloģiju, mainot tādus EPD procesa parametrus kā ārējā elektriskā lauka lielums un izgulsnēšanas laiks.

Elektroforētiskās izgulsnēšanas metodes izmantošana elektrodu materiālu sintēzē būtiski samazina LJB ražošanas izmaksas, padara ražošanas procesu "zaļāku". Pielietojot EPD metodi, tiek paātrināts elektroda materiālu ražošanas process un nerodas bīstamie atkritumi, kas ir svarīgs apkārtējo vidi ietekmējošs faktors. Elektroforētiski iegūtais Fe₂O₃/TiO₂/rGO elektroda kompozītmateriāls apvieno divas litija jonu baterijai svarīgas īpašības: augstu gravimetrisko lādiņietilpību un ilgstošu litija jonu baterijas stabilitāti vairākkārtēju uzlādes – izlādes ciklu laikā.

1.2. Darba mērķis un uzdevumi

Darba mērķis ir, pielietojot elektroforētisko izgulsnēšanu, iegūt Fe₂O₃, TiO₂ un reducēta grafēna oksīda kompozītmateriāla kārtiņas. Izpētīt to fizikālās un elektroķīmiskās īpašības atkarībā no suspensijas sastāva un novērtēt to pielietojamību litija jonu baterijās. Lai to paveiktu, tika izvirzīti šādi uzdevumi:

1. Izmantojot elektroforētiskās izgulsnēšanas metodi iegūt rGO, Fe₂O₃/rGO un TiO₂/rGO kārtiņas;

2. Ar elektroforētiskās izgulsnēšanas metodi iegūt nanokompozīta kārtiņas ar dažādām pārejas metālu oksīdu molārajām attiecībām un reducēta grafēna oksīda elektrovadošu piedevu;

3. Izpētīt un salīdzināt iegūto nanokompozīta kārtiņu sastāvu, struktūru un morfoloģiju;

4. Noteikt elektrodu materiālu lādiņietilpību un novērtēt uzlādes - izlādes procesa kinētiku;

5. Izvērtēt iegūtos rezultātus un prognozēt kompozītmateriāla pielietojamību litija jonu baterijās.

1.3 Autora ieguldījums

Darba autors ir veicis:

1. Nanokompozīta kārtiņu elektroforētisko izgulsnēšanu, suspensiju sagatavošanu un analīzi un ieguvis visas darbā pētītās materiāla kārtiņas;

2. Visu iegūto materiālu retgendifrakcijas mērījumus un nanokompozītu materiālu fāžu kvantitatīvā sastāva novērtējumu izmantojot Ritvelda metodi;

3. Bateriju pusšūnu salikšanu, iegūto mērījumu vizualizāciju un rezultātu analīzi.

Darba autors ir patstāvīgi apguvis un pielietojis elektrokīmiskās impedances spektru modelēšanu un iegūto datu interpretāciju. Darba autors ir pirmais un korespondējošais autors divām zinātniskām publikācijām citējamos žurnālos par promocijas darba tēmu.

1.4 Zinātniskā novitāte

Šajā darbā padziļināti pētīts trīskomponentu Fe₂O₃/TiO₂/rGO elektroda elektroķīmiskās īpašības un analizēta baterijas veiktspēja atkarībā no Fe₂O₃ un TiO₂ molārās koncentrācijas. Starp pētāmajiem materiāliem atrasts labākais elektroda materiāla sastāvs, kas nodrošina gan augstu lādiņietilpību, gan stabilitāti daudzkārtējas uzlādes - izlādes procesa laikā. Pirmo reizi ar elektroforētiskās uznešanas metodi iegūtas dzelzs oksīda, titāna dioksīda un grafēna oksīdu nanokompozīta materiāla kārtiņas un novērtēts elektroda materiāla potenciāls pielietojumiem litija jonu baterijās atkarībā no suspensijas sastāva.

1.5 Promocijas darba struktūra

Promocijas darba nodaļās "Teorija un literatūras apskats" dots teorijas un literatūras apskats par baterijas uzbūvi, darbības principiem un ar baterijas darbību saistītajiem fizikālajiem parametriem. Tāpat arī aplūkoti izplatītākie katoda un anoda materiāli. Dots ieskats lādiņa uzglabāšanas procesos un aprakstīta elektroda – elektrolīta robežvirsmas nozīme baterijas darbības nodrošināšanā.

Nodaļā "Eksperimentālā daļa" sniegts ieskats kompozītmateriāla kārtiņu sintēzes paraugu izgatavošanas procedūrā un pētījumos izmantotajā metodikā kā arī detalizētāk aprakstīti izmantotie materiāli.

Praktiskie rezultāti apkopoti nodaļas "Rezultāti un diskusija" 2 apakšnodaļās:

1. Ar elektroforētiskās izgulsnēšanas metodi iegūti dzelzs oksīda, titāna dioksīda un reducētas grafēna oksīda elektrovadošas piedevas elektroda materiālu pētījumi.

 Dažāda kvantitatīvā sastāva dzelzs oksīda un titāna dioksīda elektrodu kompozītmateriālu pētījumi. Noslēguma daļā apkopoti secinājumi, tēzes un autora publicitāte.

2. TEORIJA UN LITERATŪRAS APSKATS

2.1 Baterijas uzbūve un darbība

Baterija ir ierīce, kas tiešā veidā pārveido tās aktīvajos materiālos uzkrāto ķīmisko enerģiju elektriskajā oksidēšanās - reducēšanās reakciju veidā. Eksistē divu veidu baterijas – primārās un sekundārās. Primārās baterijas savu ķīmisko enerģiju elektriskajā spēj pārvērst tikai vienreiz, kamēr sekundārās paredzētas vairākiem uzlādes - izlādes cikliem. Robeža starp primāro un sekundāro bateriju nav konkrēta, jo daudzas primārās baterijas noteiktos apstākļos var tikt uzlādētas atkārtoti, tomēr tās nav pārāk stabilas. Pārejas metālu un reducēta grafēna oksīda kompozītmateriāls darbā tiek pētīts kā sekundāro bateriju anodmateriāls, tāpēc ar vārdu baterija darba kontekstā tiks saprasta sekundārā baterija jeb vairākkārt uzlādējamā baterija. Baterija sastāv no savstarpēji virknē savienotām elektroķīmiskām šūnām [1]. Elektrodi tiek definēti kā katods (pozitīvais elektrods) un anods (negatīvais elektrods) kuri ievietoti elektrolītā - jonus vadošā (elektronu bloķējošā) vielā, kas parasti ir šķidrā vai cietā agregātstāvoklī. Elektrodus vienu no otra atdala separators. Atkarībā no tā vai baterija tiek uzlādēta, uz viena elektrofa notiek oksidēšanās (elektronu atdošana), uz otra vienlaicīgi reducēšanās reakcija (elektronu pievienošana). Ja ārējā ķēdē ir noslēgta, starp elektrodiem cauri elektrolītam pārvietojas joni, ārējā ķēdē – elektroni. Elektronu plūsma ārējā ķēdē nodrošina strāvu, kurai var pievienot elektroenerģijas patērētāju (**skat 2.1 att.)**.

2.1 att. Vienkāršots baterijas izlādes process [2].

Baterijas darbības laikā starp elektrodiem, kuri atrodas elektrolītā, ārēja elektriskā lauka ietekmē, plūst litija joni, kas interkalācijas un/vai konversijas reakciju rezultātā savienojas attiecīgo elektrodu, bet baterijas ārējā ķēdē plūst elektriskā strāva – elektroni. Šī iemesla dēļ LJB pieder pie "šūpuļkrēsla tipa baterijām *(rocking chair battery)*. Nosaukums veidojies Li⁺ katjoniem pārvietojoties ("šūpojoties") starp elektrodiem. Tā kā joni nevis adsorbējas uz elektroda virsmas, bet gan interkalē (ievietojas) elektrodos, tiek novērsta dendrītu (elektroda virsmas artefaktu) veidošanās un līdz ar to nevēlams elektroķīmisko šūnu īsslēguma risks.

2.2 Anodmateriāli

Pirmais izmantotais negatīvā elektroda jeb anoda materiāls litija jonu baterijās, galvenokārt augstās gravimetriskās lādiņietilpības (3800 mAhg⁻¹) dēļ, bija metālisks litijs. Litija joni izlādes procesā spēj pārvietoties cauri elektroda virsmas pasivējošajam slānim, taču uzlādes procesā tie mēdz izveidot dendrītus (lāstekveida izaugumus) uz litija elektroda virsmas, kas var radīt elektrisku kontaktu starp katodu un anodu, izraisot īsslēgumu. Tādējādi radās nepieciešamība meklēt citus anoda materiālus, kuriem būtu zemāks ķīmiskais potenciāls kā metāliskam litijam. Labs materiāls šādiem nolūkiem izrādījās grafīts, kura Fermī enerģija ir tikai par aptuveni 0.5 eV zemāka kā litijam. Litijs var atgriezeniski interkalēties grafītā, veidojot LiC₆ savienojumu [10]. Efektīva anodmateriāla meklējumi neaprobežojas tikai ar oglekli un litiju, tiek pētīts arī amorfs silīcijs [11], Si nanovadi [12], Si kompozīti [13-14], titāna dioksīds [15] un tā nanovadi [16]. Pētījumos, kuros apskatīta oglekļa savienojumu ietekme uz dzelzs oksīda anodmateriālu, secināts, ka oglekļa piedevu masas daļai ir būtiska loma bateriju šūnas ciklējamības, lādiņietilpības un vadītspējas izmaiņās [17]. Grafēns apvienojumā ar dzelzs oksīdu samazina baterijas iekšējo pretestību un saīsina litija jonu difūzijas trajektoriju kā arī kavē dzelzs oksīda graudu aglomerāciju, tādējādi novēršot lādiņietilpības samazināšanos un materiāla pulverizāciju litizācijas-delitizācijas laikā. Baterijas darbības laikā vairākkārtēji uzlādes - izlādes cikli, anodmateriālā rada mikroskopiskas tilpuma fluktuācijas, kas izraisa tā degradāciju un pulverizāciju. Grafēna vai rGO piedeva samazina šo faktoru ietekmi uz baterijas elektroķīmisko veiktspēju [18]. Iemesli, kāpēc, sintezējot jaunus anodmateriālus, veido kompozītmateriālus, ir to pozitīvo īpašību apvienošana, kas dod ieguldījumu kopējā baterijas elektroķīmiskās veiktspējas uzlabošanā un attīstīšanā. Apkopojot literatūrā iegūto informāciju, tika secināts, ka triju komponentu elektrodmateriāli uzrāda labākus baterijas kopējos rādītājus salīdzinājumā ar katru atsevišķa elektroda materiāla veiktspēju.

Interkalācijas, piemaisījuma un konversijas reakcijas ir trīs pamata mehānismi, kas dominē enerģijas uzglabāšanā LJB. Tipiskie interkalācijas anoda materiāli (grafīts, TiO₂ u.c.) ir raksturīgi ar vienu vai vairākiem jonu transporta kanāliem, kas nodrošina litija jonu interkalāciju bez būtiskām materiāla struktūras izmaiņām. Piemaisījuma gadījumā veidojas saite starp litija jonu un pamata materiāla atomu (A), piem., Si, Ge, Sn, veidojot Li-A cietvielu maisījumu. Konversijas tipa enerģijas uzglabāšanas reakcija norisinās, litija jonam saistoties ar bināras struktūras materiālu (MX), kur M pārejas metāli (Fe, Co, Cu) un X – oksidētājs (O, S, F). Procesa gaitā metāla (M) katjons tiek reducēts uz M⁰, un vienlaicīgi kā reakcijas blakusprodukts veidojas LiX [19].

2.3 Katodmateriāli

Liela daļa pētījumu litija jonu baterijas attīstībā fokusējas uz atbilstoša katodmateriāla meklējumiem, kurā būtu atvieglota litija jonu injekcija un ekstrakcija pie augstiem potenciāliem (4 V pret Li/Li⁺) [20]. Katods ir baterijas pozitīvais elektrods, uz kura izlādes laikā notiek reducēšanās reakcijas. Kā strāvas kolektoru katodmateriāla pētījumos parasti izmanto alumīniju, kas ir saistīts ar tā augsto oksidēšanās potenciālu (4.7 V pret Li/Li⁺), līdz ar to tas ir elektroķīmiski stabils. Katoda veiktspēja atkarīga no izmantotā materiāla morfoloģijas, mikrostruktūras un elektroķīmiskajām īpašībām. Enerģijas uzglabāšanu nodrošina divi galvenie mehānismi – interkalācija un konversija. Interkalācijas procesā katodmateriāla slāņiem. Konversijas tipa enerģijas uzglabāšana ir cietās vielas reducēšanās - oksidēšanās reakcijas, kurās notiek kristāliskā režģa izmaiņas ar sekojošu ķīmisko saišu saraušanu un rekombināciju. Ievērojama elektroda materiāla tilpuma izmaiņa litizācijas – delitizācijas laikā un vāja elektronu vadītspēja konversijas tipu katodmateriāla izstrādē joprojām ir liels izaicinājums pētniekiem.

Pēc enerģija uzglabāšanas tipa katodmateriāli iedalās trijās kategorijās - kalcogenīdi, pārejas metālu oksīdi un polianjonu kompozīti. Lielākā daļa pētījumu fokusējas uz pārejas metālu oksīdiem, kas saistīts ar augsto enerģijas uzglabāšanas ietilpību [21]. Pēc struktūras katodmateriāli iedalās - olivīna (olivine), slānainā (lavered) un špinela (spinel) tipa. Slānainās struktūras LiCoO₂ (LCO) ir viens no biežāk izmantotajiem katodmateriāliem, tomēr tas nav ērts lielām baterijām, jo liela daudzuma kobalta izmantošana enerģijas uzglabāšanas ierīcēs ir ekonomiski nelietderīga. Plaši izplatīti ir špineļu tipa katodmateriāli, kuru raksturīgā struktūrformula ir AB2O4, un plašāk izmantotais šīs grupas katodmateriāls ir LiMn2O4 (LMO). Viena no galvenajām priekšrocībām, salīdzinot ar citiem tipiem, ir spineļa struktūras augstā noturība atkārtotos uzlādes - izlādes ciklos, bet kā trūkumu var minēt augstu jutīgumu pret ārējās vides temperatūras izmaiņām. LFP jeb LiFePO4 olivīna tipa polianjoniski katodmateriāli joprojām tiek plaši pētīti saistībā ar materiāla pielietojumiem augstas jaudas sekundārajās baterijās un noturīgo stabilitāti pie lielām temperatūras izmaiņām. Tādi būtiski materiālu izvēles faktori kā zemas izmaksas un videi draudzīgs, padara to par piemērotu katodmateriālu bateriju ražošanai elektromobilu industrijā [22-24]. Slānveida LiNixCovMn_{1-x-v} (NMC) materiāli ir daudzsološa un ekonomiski izdevīga alternatīva LJB katodmateriālu pielietojumos. Tos var uzlādēt līdz augstākiem robežpotenciāliem (angļu val. cut-off voltage) Mn⁴⁺ klātbūtnes dēļ, kas stabilizē struktūru un nodrošina lielāku praktiski sasniedzamo lādinietilpību (>160 mAhg⁻¹). NMC uzrāda augstu teorētisko lādinietilpību (275 mAhg⁻¹) un minimālas fāžu pārejas uzlādes - izlādes ciklu laikā 2.5-4.4 V sprieguma diapazonā. Ni, Mn un Co dažādos veidos uzlabo NMC katodmateriāla veiktspēju. Ar Ni piesātināti materiāli uzrāda augstu izlādes jaudu, ar Mn - nodrošina augstu ciklēšanas ilgumu un termālo drošību, savukārt ar Co piesātināti materiāli nodrošina efektīvu ātrumspēju [67].

2.4 Elektrolīts

Litija jonu baterijas elektrolīta funkcija ir jonu transportēšana starp katodu un anodu. Elektrolītu var uzskatīt par LJB inerto komponentu, un tam jāparāda stabilitāte gan pret katoda, gan anoda virsmu. LJB darbības laikā elektrolīts saglabā ķīmisko stabilitāti un visi faradeiskie procesi notiek elektrodos. Elektrolītam jāatbilst šādiem minimālajiem kritērijiem: 1) labs jonu vadītājs un elektronu izolators, lai jonu (Li⁺) transportēšana būtu viegla un baterijas pašizlāde būtu minimāla; 2) stabils plašā sprieguma diapazonā, saglabājot stabilitāti katoda un anoda darbības potenciālu diapazonā; 3) inerts attiecībā pret citām LJB komponentēm, piemēram, pret separatora, elektrodu pamatnes un baterijas korpusa materiāliem; 4) termiski stabils (šķidrajiem elektrolītiem gan kušanas, gan viršanas temperatūrai jābūt ārpus ekspluatācijas temperatūrām); 5) zema toksicitāte; 6) jābalstās uz ilgtspējīgu ķīmiju, kas nozīmē, ka elementiem jābūt pieejamiem un sintēzes procesam ekonomiski izdevīgam un vienkāršam; 7) pēc iespējas zemākām materiālu un ražošanas izmaksām. Elektrolītus var iedalīt: 1) neūdens elektrolītos, kas sastāv no litija sāls, kas izšķīdināta ūdenī, 3) jonu šķidrumos, kas sastāv no organiskās sāls (R⁺X⁻), kas leģēta ar litija sāls ekvivalenta daļu (Li⁺X⁻), 4) polimēru elektrolītos - gēla polimērā un cietā polimērā, un 5) hibrīda elektrolītos [68].

2.5 Izmantotie materiāli

Elektroda sintēzei tika izmantots Fe₂O₃, kam raksturīga augsta teorētiskā lādiņietilpība (1006 mAh/g), TiO₂ – piemīt augsts ciklēšanas noturīgums un reducēts grafēna oksīds (rGO) kā elektronu vadoša pildviela vāji vadošajās pārejas metālu oksīdu matricās. Katram no šiem materiāliem ir savs litija uzglabāšanas mehānisms. Raksturīgais TiO₂ interkalācijas vienādojums: $xLi^+ + TiO_2 + xe^- \leftrightarrow Li_xTiO_2$ ($0 \le x \le 1$). Titāna dioksīds ir ekoloģisks, ekonomiski izdevīgs un tam raksturīgas nelielas kristāliskā režģa tilpuma izmaiņas (≈ 4 %) elektroķīmiskās ciklēšanas laikā. Būtiskākie TiO₂ ierobežojumi bateriju pielietojumos ir tā zemā teorētiskā lādiņietilpība (335 mAhg⁻¹) un vājā elektriskā vadītspēja, kas ir robežās no 10⁻¹² līdz 10⁻⁷ Scm⁻¹ [25].

Starp pārejas metālu oksīdiem dzelzs oksīdam raksturīga viena no augstākajām teorētiskajām lādiņietilpībām. Fe₂O₃ plašāk izplatītās materiāla fāzes ir alfa (hematīts), beta, gamma (magemīts), tas pieder pie III grupas pārejas metāliem. Valences elektroni dzelzs atomā, tāpat kā visiem pārejas metāliem, izvietojas vairākās orbitālēs, tādēļ savienojumos dzelzs var mainīt oksidācijas pakāpi, no kurām biežāk sastopamās ir +2 un +3. Tā kā Fe₂O₃ ir plaši izplatīts dabā, nav toksisks, viegli iegūstams ķīmiskais elements, tas ir kļuvis par perspektīvu materiālu litija jonu bateriju elektrodu materiālu pielietojumos. Litija uzglabāšanas veids ir konversijas tipa reakcija, kurā litija jonu ievietošanās laikā dzelzs oksīds tiek reducēts Fe nanoklāsteros, kas disperģēti Li₂O matricā, savukārt elektroda materiāla delitizācijas procesā notiek atgriezeniska atjaunošanās elementu sākotnējos oksidācijas stāvokļos (**skat. 2.2 att**.). Notiekošās reducēšanās un oksidēšanās reakcijas ir: Fe₂O₃ + xLi⁺ + xe⁻ \rightarrow Li_x Fe₂O₃ un Li_xFe₂O₃ + (6-x) Li⁺ + (6-x) e⁻ \leftrightarrow 2Fe⁰ + 3Li₂O. Dzelzs (III) oksīds elektroķīmiski inducētā konversijas reakcijā saista litija jonus, un 1 mols dzelzs oksīda uzņem 6 molus litija Fe₂O₃ + 6 Li \leftrightarrow 2 Fe + 3Li₂O [26].

2.2 att. Dzelzs (III) oksīda elektroda materiāla litizācijas – delitizācijas shematisks process [26].

Grafēns ir oglekļa atomu monoslānis ar unikālām elektriskajām un mehāniskajām īpašībām. Tā kā tīra grafēna sintēze nav ekonomiski izdevīga, izmanto grafēna oksīdu, kuru reducē, tā fizikālās īpašības tuvinot grafēnam. Pētījumā kā elektrovadoša piedeva izmantots termiski reducēts grafēna oksīds no kura reducēšanas laikā tiek atdalītas = O un - OH grupas [27].

2.6 Nanokristālisku kārtiņu izgatavošanas tehnika

Lai iegūtu pētāmās kārtiņas uz nerūsējošā tērauda pamatnes, tika izmantota līdzstrāvas elektroforētiskā materiāla izgulsnēšanas metode (EPD), kas ir vienkārša un ekonomiski izdevīga, kuras veikšanai nepieciešams tikai līdzstrāvas barošanas bloks un divas strāvu vadošas pamatnes, kas ievietotas suspensijā (**skat. 2.3 att.**).

2.3 att. Elektroforētiskās izgulsnēšanas veikšanai konstruētā divu elektrodu sistēma.

Elektroforētiskās izgulsnēšanas laikā suspensijā esošās lādētās daļiņas ārējā elektriskā lauka ietekmē migrē uz vienu no elektrodiem, izgulsnējas uz tā, veidojot plānu nogulšņu kārtiņu. Darbā tika pētīta triju vielu – Fe₂O₃, TiO₂ un grafēna oksīda - kompozītmateriāla iegūšana, izmantojot elektroforētiskās izgulsnēšanas metodi. Uzsākot darbu, tika definēti eksperimenta robežnosacījumi – dispersās fāzes koncentrācija, elektriskā lauka vērtība, suspensijas pH vērtība, suspendēto daļiņu zeta potenciāls un izgulsnēšanas laiks. Viena no lielākajām EPD metodes priekšrocībām ir tās atkārtojamība un kontrolējamība. Izmantojot EPD netiek izmantotas toksiskas vielas un neveidojas bīstami atkritumi, kā arī nav nepieciešams pievienot saistvielas. EPD procesa laikā ir iespēja kontrolēt iegūstamās materiāla kārtiņas biezumu un morfoloģiju variējot ārējā elektriskā lauka lielumu un izgulsnēšanas laiku.

3. EKSPERIMENTĀLĀS METODES

3.1 Pētāmo materiālu sagatavošana

Uzsākot pētīt pārejas metālu oksīdu un elektrovadošas piedevas - reducēta grafēna oksīdu pielietojumu litija jonu baterijās, ir nepieciešams sagatavot šo materiālu darba elektrodus jeb pētāmās kārtinas. Lai sagatavotu titāna oksīda TiO₂/grafēna oksīda (GO) suspensiju, tika izmantots 22.5 mg TiO₂ nanodalinu pulveris (Sigma-Aldrich tīrība ≥99.5%, daļiņu izmērs līdz 21 nm), ko pievienoja 97.5 ml dejonizētam ūdenim (DI), kas iepriekš tika novietots uz magnētiskā maisītāja. Iegūtajai suspensijai tika pievienots 2.5 ml komerciālas GO ūdens suspensijas (BGT Materials, grafēna oksīda pārslu izmērs robežās no 1 – 20 μm, suspensijas pH 7, GO koncentrācija 1 mg/ml). Līdzīgi tika sagatavota dzelzs oksīda/grafēna oksīda suspensija (Fe₂O₃, Sigma-Aldrich tīrība ≥99.5%, daļiņu izmērs līdz 50 nm). Lai nodrošinātu vienmērīgu dalinu dispersiju ūdenī, pagatavotās suspensijas vienu stundu tika izturētas ultraskaņas vannā (Amsonic-Branson Ultrasonic cleaning tank, BC series) un pēc tam maisītas uz magnētiskā maisītāja (t=30 min, V=250 apgr/min). Lai analizētu tīra grafēna oksīda fizikālos un elektroķīmiskos parametrus, elektroforētiskai uznešanai tika izmantota iepriekš minētā tīra grafēna oksīda ūdens suspensija. Elektroforētiskā izgulsnēšana veikta istabas temperatūrā (T=293K), gavanostatiskā (konstantas strāvas) režīmā, izmantojot līdzstrāvas barošanas bloku (Agilent Technologies N5772A); nomērītais suspensijas pH = 4 (mērīts ar *pH-meter*, *Metrohm*), izgulsnēšanas laiks t = 300 s, elektriskās strāvas stiprums I = 31 mA.

Lai no grafēna oksīda iegūtu elektrovadošu piedevu – reducētu grafēna oksīdu, kā arī kristalizētu izgulsnētās kārtiņas, tika veikta paraugu karsēšana Ar/H plūsmā izmantojot programmējamo cauruļveida mufeļkrāsi *SNOL 0.2/1250*, karsēšanas solis 5°C/min. Iegūtajām materiāla kārtiņām veikta biezumu un masas noteikšana. Biezums tika noteikts izmantojot profilometru (*Veeco Dektak stylus profilometer 150*, ar adatas diametru 12.5 µm). Kārtiņas masa tika noteikta kā masu starpība starp tērauda pamatni pirms un pēc EPD procesa. Masas noteikšanai tika izmantoti analītiskie svari *Mettler Toledo XS105*, maksimālais masas robeža 41 g, precizitāte ± 0,01 mg.

Lai iegūtu elektrodu materiālus turpmākiem pētījumiem, tika sagatavotas suspensijas ar dažādām Fe₂O₃ un TiO₂ molārajām attiecībām - 1:1, 2:1 un 3:1. Termins "molārās attiecības" darba kontekstā tiks lietots, lai apzīmētu suspensiju sagatavošanas procesu, kurā iesverot materiālus, ņemtas vērā katra ķīmiskā savienojuma molmasas. Iegūtie elektroda materiāli tika marķēti ar šādiem apzīmējumiem - FT11, FT21 un FT31, kuros ietverts katra pārejas metāla oksīda latīniskā nosaukuma pirmais burts un attiecīgā suspensijas sagatavošanā izmantotā materiāla molārā masas daļa. Kā elektrovadoša piedeva tika izmantoti 10 wt% grafēna oksīda, kas pēc attiecīgo nanokompozītu kārtiņu iegūšanas tiek reducēts.

3.2 Iegūto kārtiņu sastāva, struktūras un morfoloģijas pētījumi

Lai iegūtu priekštatu par pētāmā materiāla kārtinu virsmas morfoloģiju, dalinu izmēru un homogenitāti, tika veikta skenējošā elektronu mikroskopija, izmantojot mikroskopu (SEM, Tescan Lyra 3, elektronus paātrinošais spriegums 5 - 15 kV). Rentgenstaru difrakcijas (XRD) mērījumiem tika izmantots difraktometrs Rigaku MiniFlex 600, ar Cu anodu, difrakcijas leņķa precizitāte ±0.02°, izmantotais rengenstaru viļņa garums CuK_{α} = 1.54 Å, darbības spriegums 45 kV, strāva 40 mA. Lai pārliecinātos par grafēna oksīda veiksmīgu reducēšanos uz rGO, iegūtajām materiāla kārtiņām tika veikta Ramana spektroskopija, izmantojot Ramana spektrometru TriVista CRS Confocal TR777, ražotājs "GmbH", viļņa skaitļa diapazons 10 cm⁻¹ – 9000 cm⁻¹, izšķirtspēja 0.1 cm⁻¹, izmantotais lāzera viļņa garums 532 nm. Lai veiktu iegūto materiālu kārtiņu aktīvās virsmas laukuma un porainības novērtējumu, tika veikta BET (Brunauer-Emmett-Teller) analīze izmantojot slāpekļa sorbcijas procesus uz cietās vielas dalinām (NOVA series, High speed surface area & Pore Size analyzer, LV Koksnes Kīmijas Institūts). Lai novērtētu iegūto kārtiņu reljefu, tika veikta kārtiņu virsmas analīze, izmantojot atomspēku mikroskopiju (Atomic Force Microscopy, AFM, Renishaw), pieskāršanās režīmā (Si adata, r = 10 nm). Lai iegūtu informāciju par nanokompozītu kārtiņu sastāvu un novērtētu ķīmisko elementu daudzumu, tika veikta rentgenstaru mikrospektrālā analīze (EDX), izmantojot iekārtu (SEM, Tescan Lvra 3, elektronus paātrinošais spriegums 5- 15 kV, detektors EDX Oxford X-Max 50 mm²). Lai noteiktu nanokompozītu materiālu kārtiņu virsmas sastāvā esošo ķīmisko elementu valences un ķīmisko elementu daudzumu, tika veikta rentgenstaru fotoelektronu spektroskopija (*XPS - X-ray photoelectron spectroscopy*), izmantojot mērinstrumentu (*ESCALAB Xi, "ThermoFisher"*). XPS spektri tika uzņemti vakuuma kamerā ar spiedienu zem $2 \cdot 10^{-10}$ Torr, izmantojot Al K_a rentgenstarus ar enerģiju ≈1.5 keV.

3.3 Elektroķīmiskie mērījumi

Elektrodu materiālu elektroķīmiskās veiktspējas mērījumi tika veikti saliekot bateriju pusšūnas (half - cell), kurās kā darba jeb pētāmais elektrods tika izmantotas iegūtās materiāla kārtinas, bet pretelektrods - metālisks litijs (references elektrods). Visa sistēma atrodas elektrolītā, darba elektrodu un metālisku litiju atdala separators. Jāpiebilst, ka pilna šūna sastāv no bateriju šūnas, kurā kā elektrodi ir gan katodmateriāls, gan anodmateriāls. Bateriju pusšūnas veiktspējas mērījumi Fe₂O₃/rGO, TiO₂/rGO un rGO elektroda materiāliem tika veikti Swagelok tipa šūnā, materiāls - nerūsējošais tērauds 316, iekšējais diametrs – 12.7 mm. Bateriju pusšūnas tika saliktas ar argonu pildītā cimdu kastē ("Glove Box", Unilab Pro Eco 4 gloves, ražotājs "MBraun", O2 0.5 ppm, H2O 0.5 ppm), izmantojot komerciālu elektrolītu LiPF6 1M škīdums etilēnkarbonātā (EC) un dimetilkarbonātā (DMC), škīdinātāju masas attiecība - 1:1 (Sigma-Aldrich, tīrība >98.0%). Elektrolīta precīza tilpuma mērīšanai izmantota mikropipete Proline Plus (ražotājs "Sartorius") (20-200 µL, ±0.02 µL). Izmantotais separators -Whatman stikla mikroškiedras filtrs GF/F (poru vidējais diametrs 0.7 µm) un atskaites elektrods metālisks litijs (Sigma Aldrich, 0.75 mm x 19 mm). Lai nodrošinātu stabilas, homogēnas elektroda elektrolīta robežvirsmas veidošanos, tika izmantota 5 wt% fluoretilēnkarbonāta (FEC) piedeva. Bateriju mērījumi (ātrumspēja, ciklējamība, cikliskā voltamperometrija - CV un elektrokīmiskā impedances spektroskopija - EIS) tika veikti, izmantojot potenciostatu - galvanostatu BioLogic VMP3. Impedances ekvivalento shēmu rezultāti iegūti un analizēti izmantojot EC-Lab V11.41, Z-FIT-Bio-Logic programmatūru.

4. REZULTĀTI UN DISKUSIJA

4.1. Ar elektroforētiskās izgulsnēšanas metodi iegūti dzelzs oksīda, titāna dioksīda un reducētas grafēna oksīda elektrovadošas piedevas elektroda materiālu pētījumi

 Fe_2O_3/rGO , TiO₂/rGO un rGO kārtiņu masas tika novērtētas diapazonā no 0.35 - 0.65 \pm 0.01 mg, bet biezumi robežās no 2.2 - 4.8 \pm 0.1 µm. Skenējošās elektronu mikroskopijas (SEM) analīze uzrāda Fe_2O_3 un TiO₂ nanodaļiņu un aglomerātu ievietošanos rGO slāņos un piesaistīšanos uz tā virsmas (**skat. 4.1 att.**). Noteiktais titāna dioksīda graudu izmērs no 30-50 nm. Dzelzs oksīda graudu izmērs 300-500 nm.

Rentgendifrakcijas (XRD) analīze uzrāda, ka kārtinas sastāv no dzelzs oksīda v-Fe₂O₃ (magemīta). anatāza fāzes TiO₂ un nelielu rutila fāzes TiO₂ piejaukumu. TiO₂/rGO sastāvā identificēts rGO. Aprēķinātais kristalītu vidējais izmērs: 19.5 nm (Fe₂O₃/rGO) un 42.8 nm (TiO₂/rGO). Analizējot Ramana spektrus, tika novērota reducēta grafēna oksīda klātbūtne iegūtajos nanokompozītos un konstatēts, ka G joslas intensitāte pie vilna skaitla vērtības 1600 cm⁻¹ ir nedaudz augstāka par D joslas intensitāti pie 1350 cm⁻¹, ko apliecina arī aprēķinātā I_D/I_G joslu intensitāšu attiecības vērtības samazināšanās. Grafēna oksīda D un G joslu intensitāšu attiecības aprēķinātā vērtība ir 1.1, savukārt pēc tā reducēšanas attiecīgi $I_D/I_G = 0.96$, kas liecina, ka reducēšanas procesā D un G joslu intensitāšu attiecība ir samazinājusies par 13 %, grafēna oksīda reducēšanas process noritējis veiksmīgi un notikusi daļēja oglekļa atomārās struktūras atjaunošanās. Plats maksimums viļņa skaitļa robežās no 2500 līdz 3500 cm⁻¹ liecina par daudzslānu grafēna (FLG - Few Layered Graphene) klātbūtni iegūtajās materiāla kārtiņās [28-30]. Veicot BET analīzi tika konstatēts, ka lielāko virsmas laukumu $50.2 \pm 0.1 \text{ m}^2\text{g}^{-1}$ un poru tilpumu 0.16 ± 0.05 cm³g⁻¹ uzrādīja TiO₂/rGO materiāla kārtiņa, un abas nomērītās vērtības ir tuvas zinātniskajā literatūrā aprakstītajiem rezultātiem. Tika konstatēts, ka vidējais poru diametrs abām pārejas metālu oksīdu kārtinām ir aptuveni 12 nm [31]. Jāpiebilst, ka Fe₂O₃/rGO un TiO₂/rGO uzrādīja augstākas poru tilpuma un vidējā poru diametra vērtības, salīdzinot ar tīru reducēta grafēna oksīda kārtinu.

Veicot iegūto elektrodmateriālu ātrumspējas testus un palielinot bateriju pusšūnai pielikto strāvu no 0.5C līdz 2C, pētāmo elektroda materiālu Fe₂O₃/rGO, TiO₂/rGO un rGO attiecīgās gravimetriskās lādiņietilpības samazinājās par 64 %, 73 % un 77 %. Iegūtais rezultāts norāda uz to, ka visaugstāko toleranci pret strāvas pieaugumu uzrāda Fe₂O₃/rGO. Lai identificētu iespējamos plato pie noteiktām sprieguma vērtībām un raksturotu pētāmo elektrodu materiālu uzlādes – izlādes līknes, tika konstruēti galvanostatiskie profili (**skat. 4.2 att.).**

4.2 att. Fe₂O₃/rGO, TiO₂/rGO un rGO elektroda materiālu galvanostatiskie profili.

Analizējot pētāmo elektrodu materiālu galvanostatiskās uzlādes – izlādes līknes, netika konstatēti izteikti uzlādes izlādes plato, kuri raksturotu pētāmo materiālu elektroķīmisko veiktspēju. Elektroda materiāls Fe₂O₃/rGO pie strāvas stipruma 0.5 C uzrādīja nelielu izlādes plato pie 0.8 V, kas raksturīgs pakāpeniskam Fe₂O₃ reducēšanas procesam no Fe³⁺ uz Fe⁰. TiO₂/rGO un rGO elektrodu materiāliem tika konstatēts neizteikts plato sprieguma diapazonā no 0.6 – 0.9 V, kas atbilst litija jona interkalācijai elektroda materiāla struktūrā [32-33]. Augstākās pētāmo elektroda materiālu gravimetriskās lādiņietilpības pie izlādes strāvas 0.5 C tika noteiktas: Fe₂O₃/rGO = 604 mAhg⁻¹, TiO₂/rGO = 280 mAhg⁻¹ un rGO = 473 mAhg⁻¹. Veicot pētāmo elektrodu materiālu ciklējamības mērījumus tika konstatēts, ka augstāko ciklēšanas stabilitāti uzrāda TiO₂/rGO elektroda materiāls (**skat. 4.3 att.**), ko raksturo pēc ciklēšanas procentuāli saglabātā lādiņietilpība. Tas paver iespēju izmantot TiO₂ kā stabilizējošu matricu, lai uzlabotu citus iespējamos LJB elektroda materiālus ar zemākiem ciklējamības rādītājiem.

4.3 att. Lādiņietilpība kā funkcija no izlādes ciklu skaita.

Tā kā šī darba mērķis ir veikt pārejas metālu oksīdu LJB elektroda materiālu pētījumus, bet rGO šī darba kontekstā tiek izmantots kā elektronus vadoša piedeva pie vāji vadošām Fe₂O₃ un TiO₂ matricām, tad turpmākā pētījuma gaitā rGO elektroķīmiskā aktivitāte vairs netiek aplūkota. Veicot Fe₂O₃/rGO, TiO₂/rGO elektrodu materiālu cikliskās voltamperometrijas (CV) mērījumus (**skat. 4.4 att.**), tika konstatēti Fe₂O₃ un TiO₂ raksturīgie litija injekcijas un ekstrakcijas maksimumi un augsts oksidēšanās reducēšanās reakciju apgriezeniskums, ko apliecina vairāku CV ciklu pārklāšanās.

4.4 att. Fe₂O₃/rGO un TiO₂/rGO elektroda materiālu pirmo četru ciklu CV līknes. Sprieguma izvērses ātrums 1 mVs⁻¹, sprieguma diapazons 0.05-3 V.

 Fe_2O_3/rGO elektroda materiālā novērota cauri elektrodam plūstošās strāvas palielināšanās pieaugot uzlādes – izlādes ciklu skaitam, kas sakrīt ar elektroķīmiskās impedances spektroskopijā iegūtajiem rezultātiem. Novērotās parādības iespējamie cēloņi ir: pārejas metālu oksīdu secīgas uzlādes - izlādes laikā veidojas metāla nanodaļiņas, kas uzlabo elektroda elektrisko vadītspēju [34] un elektroķīmiskā ciklēšana optimizē nanokompozīta elektrodu materiāla nanodaļiņu savstarpējo mijiedarbību, kas uzlabo tā elektrisko vadītspēju un litija jonu kinētiku [35]. TiO₂/rGO elektroda materiālu litija injekcijas strāvas vērtības vairākkārtēju CV ciklu laikā nedaudz samazinās, kas liecina par elektroda polarizāciju un SEI (*solid – electrolyte interface*) slāņa augšanu [36]. Izmantojot Randlesa – Sevčika vienādojumu [2-3], tika aprēķināti katodiskā cikla litija ķīmiskie difūzijas koeficienti: D(Fe₂O₃/rGO) = $16 \cdot 10^{-14}$ cm²/s un D(TiO₂/rGO) = $1 \cdot 10^{-14}$ cm²/s. Salīdzinot pētāmo elektrodu cikliskās voltamperometrijas līknes ar uzlādes - izlādes profiliem, tika secināts, ka katodisko litija injekcijas maksimumu sprieguma vērtībām ir zināms tuvinājums ar identificētajiem izlādes plato reģioniem uzlādes - izlādes profilos (skat 4.2 att.).

Analizējot rezultātus, kas iegūti pielietojot elektroķīmiskās impedances spektroskopiju (EIS), tika novērota laba eksperimentālo un aprēķināto spektru sakritība. Noteiktā lādiņa pārneses pretestība TiO₂/rGO elektrodam ir 15 Ω /cm², kas ir būtiski mazāka kā Fe₂O₃/rGO elektroda materiālam (131 Ω /cm²). Iegūtais rezultāts demonstrē stratēģiju lādiņa pārneses atvieglošanai, piemēram, integrējot abus pārejas metālu oksīdus vienā elektroda materiālā. Analizējot EIS spektru ekvivalentās shēmas modelēšanas rezultātus, tika konstruēti grafiki - lādiņa pārneses pretestības un Varburga impedance kā funkcija no bateriju pusšūnas sprieguma (skat. 4.5 att.).

4.5 att. Fe₂O₃/rGO un TiO₂/rGO elektrodu materiāla lādiņa pārneses pretestība (A, C) un Varburga impedance (B, D) kā funkcija no baterijas pusšūnas sprieguma.

Aplūkojot iegūtos grafikus, tika konstatēts, ka, jo vairāk tiek izlādēta bateriju pusšūna un pētāmais elektrods tiek piesātināts ar litija joniem, jo vairāk samazinās lādiņa pārneses (R_{et}) un litija difūzijas pretestība. Novērotā eksponenciālā sakarība eventuāli rada iespēju izstrādāt metodi, kurā LJB uzlādes stāvoklis, tiktu novērtēts pamatojoties uz R_{et} un Varburga impedances vērtību. Fe₂O₃/rGO un TiO₂/rGO elektrodu materiālu Varburga impedance pieaug (**skat 4.5 att. B, D**), palielinoties bateriju pusšūnas spriegumam. Aprēķinātie litija difūzijas koeficienti samazinās pieaugot spriegumam, jo ir apgriezti proporcionāli Varburga impedances vērtībām. Varburga impedances jeb difūzijas pretestības maksimālās vērtības korelē ar difūzijas koeficienta minimumu. Litija difūzijas koeficients, kas noteikts ar EIS metodi uzrāda vērtības, kas noteiktas ar CV un EIS metodēm atšķiras pat par vairākām kārtām, kam cēlonis vēl tiek pētīts, bet ar abām metodēm noteikto difūzijas koeficientu atšķirību novērojuši arī citi autori [39].

4.2 Dažāda kvantitatīvā sastāva dzelzs oksīda un titāna dioksīda elektrodu kompozītmateriālu pētījumi

Izmantojot analītiskos svarus un virsmas profilometriju, tika noteiktas iegūto FT11, FT21 un FT31 nanokompozīta kārtiņu masas un biezumi, kuru intervāls attiecīgi no $0.55 - 0.93 \pm 0.01$ mg, bet biezumi no $3.8 - 6.1 \pm 0.1 \mu m$. Analizējot iegūtos SEM attēlus, tika novērota reducēta grafēna oksīda matrica, kurai piesaistījušās Fe₂O₃ un TiO₂ nanodaļiņas un to aglomerāti. (skat. 4.6 att. A). Uz nanokompozīta virsmas konstatēta atsevišķa rGO pārsla, kas noklāta ar Fe₂O₃ un TiO₂ nanodaļiņām (skat. 4.6 att. B). Tas liecina par nanodaļiņu augsto adhēzijas spēju. Reducēta grafēna oksīda pārslas nanokompozīta materiāla struktūrā pilda stabilizatora funkciju, piesaistot nanodaļiņas uz virsmas vai arī iekļaujot tās rGO slāņainajā struktūrā. Iegūtais materiāls ir mehāniski noturīgs un nodrošina Fe₂O₃ kristāliskās struktūras saglabāšanos elektroda elektroķīmiskās ciklēšanas laikā [40].

4.6 att. Skenējošās elektronu mikroskopijas attēli: A - FT11, B - FT21, C - FT31 un D - grafēna oksīda pārslas.

Turpinot SEM attēlu analīzi, konstatēts, ka, izgulsnējot grafēna oksīda pārslas, iegūst daudzslāņu grafēna oksīda materiāla kārtiņas (**skat. 4.6 att. C**), ko apliecina arī Ramana spektroskopijas rezultāti. Grafēna oksīda vidējie pārslu izmēri ir 3114 µm (garums) un 1554 µm (platums), (**skat. 4.6 att. D**). Pētāmās kārtiņas tika novērtētas kā nehomogēnas un graudainas, kā arī konstatēti daļiņu aglomerāti, ko apliecina arī atomspēku mikroskopijas rezultāti. Apkopojot novērojumus, secināts, ka elektroforētiskās izgulsnēšanas procesā iegūstamā materiāla kārtiņa uzklājas uz tērauda pamatnes gan no atsevišķām Fe₂O₃ un TiO₂ nanodaļiņām, gan to aglomerātiem. Konstatēts, ka FT11, FT21 un FT31 materiāliem noteiktais daļiņu vidējais diametrs ir līdzīgs robežās no 98-120 nm, tomēr novērota neliela izmēra

pieauguma tendence, palielinoties Fe2O3 daudzumam nanokompozītā.

Veicot pētāmo materiālu kārtiņu aktīvās virsmas laukumu un porainības novērtējumu, tika konstatēts, ka ka, palielinoties Fe_2O_3 daudzumam pētāmajās kārtiņās, aktīvās virsmas laukums un poru tilpums samazinās. Vidējais nanokompozītu kārtiņu poru diametrs ir ≈ 12.5 nm. Lai novērtētu iegūto FT11, FT21 un FT31 nanokompozīta kārtiņu reljefu, tika veikta kārtiņu virsmas analīze (**skat. 4.7 att.**), izmantojot atomspēku mikroskopiju.

4.7 att. Atomspēku mikroskopijas rezultāti A, B - FT11, C, D - FT21, E, F - FT31.

Analizējot iegūtos attēlus, pētāmajām nanokompozītu kārtiņām tika novēroti Fe₂O₃ un TiO₂ nanodaļiņu aglomerāti, ar diametru 2-3 µm robežās (**skat 4.7 att. B, D, F**), kas sakrīt ar SEM metodē iegūtajiem rezultātiem. Starp graudiem novērojamas reljefa izmaiņas – galvenokārt padziļinājumi un paaugstinājumi, taču plaisas netika konstatētas, kas liecina par kārtiņas noturību karsēšanas procesā. Viena aglomerāta ietvaros augstuma izmaiņas ir robežās no 1-3 µm. Apkopojot rezultātus, tika secināts, ka reljefs būtiski palielina reālo kārtiņas virsmu - visām pētāmajām kārtiņām uz virsmas novērojami nanodalinu aglomerāti.

Analizējot rentgenstaru difrakcijas ainas konstatēts, ka iegūtās nanokompozīta kārtiņas sastāv no magemīta fāzes Fe_2O_3 (apzīmēts ar F) un anatāza fāzes TiO_2 (apzīmēts ar T) ar nelielu rutila fāzes TiO_2 piejaukumu [164], kas apliecina, ka, pirmo reizi, izmantojot līdzstrāvas elektroforētisko izgulsnēšanu, tika veiksmīgi iegūtas Fe_2O_3 un TiO_2 kompozītmateriāla kārtiņas. Lai noskaidrotu, vai iegūtajās nanokompozīta kārtiņās ir dažāds Fe_2O_3 daudzums, tika konstruēts grafiks, kurā attēlota katra raksturīgā dzelzs oksīda maksimuma intensitātes skaitliskā vērtība kā funkcija no rentgenstaru difrakcijas leņķa [41-42] (**skat. 4.8 att.**).

4.8 att. FT11, FT21 un FT31 nanokompozītu rentgenstaru difraktogrammu intensitāšu salīdzinājums.

Izmantojot atvērtā koda programmu (*Profex BGMN 5.2.0*), veikta nanokompozītu fāzu daudzuma novērtēšana izmantojot Ritvelda metodi (**skat. 4.1 tab.**). Analizējot kārtiņu sastāvu, tika konstatēts, ka nanokompozīti FT21 un FT31 atbilst tām molārajām vielu attiecībām, kas tika definētas sagatavojot suspensijas materiālu elektroforētiskai izgulsnēšanai. Nelela novirze no sākotnējā daudzuma tika konstatēta nanokompozītam FT11, kur aprēķinātie svara procenti ir 55:45 wt.%, kaut gan suspensijā sagatavotā svara procentu attiecība bija 60:30 wt.%. Elektroforētiski izgulsnētajā FT11 nanokompozīta kārtiņā konstatētā novirze no sākotnējā uzstādījuma ļauj secināt, ka suspensijā, kurās ir paaugstināta TiO2 nanodaļiņu koncentrācija, to uznešanas process norisinās straujāk, palielinot TiO2 daudzumu izgulsnētajā kārtiņā.

Apkopojot Ramana spektroskopijas rezultātus, secināts, ka grafēna oksīda reducēšanas process noritējis veiksmīgi un pieaugusi reducēta grafēna oksīda kristalizācija, ko apliecina aprēķinātie rGO kristalīta izmēri. I_D un I_G joslu intensitāšu attiecība, kas raksturo oglekļa defektu un sakārtotās struktūras klātbūtni materiālā, pēc grafēna oksīda reducēšanas samazinājusies par 8 %, kas apliecina veiksmīgu reducēšanās procesa norisi [43].

Lai iegūtu informāciju par nanokompozītu kārtiņu sastāvu un novērtētu ķīmisko elementu daudzumu, tika veikta rentgenstaru mikrospektrālā analīze (*EDX*) un rentgenstaru fotoelektronu spektroskopija (*XPS*). Apkopojot iegūtos rezultātus, tika konstatēts, ka pētāmie nanokompozīta materiāli sastāv no Fe, Ti un O, kas ietilpst to materiālu sastāvā, kas tika izmantoti sākotnējās suspensijas pagatavošanai. Ķīmisko elementu kvantitatīvā analīze uzrādīja pakāpenisku Fe daudzuma palielināšanos iegūtajās kārtiņās, palielinoties tā daudzumam sagatavotajās suspensijās.

Tika konstatēts ka līdz ar Fe₂O₃ nanodaļiņu koncentrācijas palielināšanos suspensijā pieaug arī EPD procesā izgulsnēto TiO₂ nanodaļiņu daudzumsAnalizējot EDX spektrus, secināts, ka nomērītie Fe intensitāšu maksimumu novietojumi uz x-ass atbilst dzelzs oksīda magemīta fāzei [44], bet Ti intensitāšu maksimumi atbilst titāna dioksīda anatāza fāzei [46]. Fe, Ti un O sadalījums visos pētāmajos materiālos ir relatīvi homogēns, kas apliecina vienmērīgu materiāla izgulsnēšanos EPD laikā [45]. Nanokompozītā FT31 tika konstatēti vairāki apgabali, kuros Ti koncentrācija ir palielināta, kas varētu liecināt par paaugstinātu TiO₂ nanodaļiņu aglomerāciju sagatavotajā suspensijā vai arī elektroforētiskās izgulsnēšanas laikā. Šo aglomerātu klātbūtne izgulsnētajā kārtiņā izskaidro palielināto Ti daudzumu FT31 nanokompozīta materiālā.

Veicot XPS spektru analīzi, tika konstatēta tipiskie Fe, Ti, C un O atomu enerģētiskajiem pamatlīmeņiem raksturīgie maksimumi. Nomērīto XPS spektru maksimumu abscisu ass vērtības pētāmajiem materiāliem ir līdzīgas, bet raksturīgie laukumi zem līknes ir atšķirīgi. Pamatojoties uz iepriekš minēto secināts, ka pētāmie nanokompozītu materiāli sastāv no vieniem un tiem pašiem ķīmiskajiem elementiem, kuru daudzums katrā kompozītmateriālā ir atšķirīgs. Ķīmisko elementu kvantitatīvā analīze uzrādīja pakāpenisku Fe daudzuma pieaugumu un Ti daudzuma samazināšanos pētāmajos materiālos proporcionāli sagatavoto suspensiju sastāvam. Augstākā titāna svara procentu skaitliskā vērtība tika novērota nanokompozītā FT11, kas saskan ar rentgenstaru difrakcijas analīzē izmantotās Ritvelda metodes aprēķinu. Salīdzinot kvantitatīvos aprēķinus, kas veikti ar XPS, EDX un XRD, tika konstatēts, ka visas izmantotās materiālu pētīšanas metodes uzrāda Fe daudzuma

palielināšanos, pieaugot dzelzs molārajai daļai suspensijā (**skat. 4.1 tab.**). Minētais novērojums ļauj secināt, ka ar EPD metodi var pielāgot pētāmā materiāla sastāvu, sagatavojot suspensijas ar noteiktām materiālu molārajām attiecībām. *4.1 tabula. FT11, FT21, FT31 nanokompozīta sastāva kvantitatīvais novērtējums*

Nano - kompozīta materiāls	Vidējais kristalītu izmērs, nm	Ķīmisko elementu daudzums noteikts ar EDX, wt%		Ķīmisko elementu daudzums noteikts ar XPS, wt%			entu cts ar	Ar Ritvelda metodi no XRD datiem aprēķinātie materiāla fāzu daudzumi, wt%			
		Fe	Ti	0	Fe	Ti	0	С	Fe ₂ O ₃ , (magemīta fāze)	TiO ₂ , (anatāza fāze)	TiO ₂ , (rutila fāze)
FT11	37 ± 2	67	4	29	62	30	6	2	55±0.01	35±0.01	10±0.01
FT21	24 ± 2	72	5	23	71	23	3	3	79±0.02	14±0.01	7±0.02
FT31	32 ± 2	76	7	17	80	13	2	5	88±0.02	9±0.01	3±0.01

Lai novērtētu FT11, FT21 un FT31 nanokompozītu materiālu pielietojumu litija jonu baterijās tika saliktas bateriju pusšūnas un veikti elektroķīmiskās veiktspējas mērījumi. Veicot galvanostatisko uzlādes - izlādes līkņu analīzi (**skat. 4.9 att.**), konstatēts, ka starp pētāmajiem elektroda materiāliem augstākā lādiņietilpība ir FT31 nanokompozītam - 729 mAh/g jeb 68 % no teorētiskās lādiņietilpības, kas ir par 17 % vairāk kā Fe₂O₃/rGO (604 mAhg⁻¹). Dažas pētnieku grupas ziņo par Fe₂O₃ un TiO₂ nanokompozīta elektroda uzlabotu lādiņietilpību salīdzinājumā ar katra atsevišķa pārejas metāla oksīda elektroda materiāliem, kas liecina, ka Fe₂O₃ un TiO₂ nanodaļiņu elektroķīmiskā aktivitāte efektīvi mijiedarbojas, radot elektroda materiālu ar augstāku gravimetrisko lādiņietilpību [47-51].

4.9 att. FT11, FT21 un FT31 nanokompozīta elektrodu galvanostatiskās uzlādes - izlādes līknes uzņemtas pie strāvas stiprumiem 0.5C, 1C un 2C un lādiņietilpība kā funkcija no izlādes strāvas stipruma.

Pie strāvas vērtības 0.5C, uzlādes – izlādes līknes uzrāda nelielus, kvazi - lineārus apgabalus sprieguma intervālā no 0.4 līdz 0.8 V, kas atbilst Fe₂O₃ pakāpeniskam reducēšanās procesam, kurā Fe³⁺ mainās oksidācijas pakāpe uz Fe⁰. Šajā procesā kā blakusprodukts veidojas Li₂O un formējas elektroda – elektrolīta robežvirsmas (SEI) slānis [47]. Nanokompozītu elektrodu materiālu FT11 lādiņietilpības ir attiecīgi 571 mAh/g jeb 77 % no teorētiskās lādiņietilpības, FT21 ir 683 mAh/g jeb 88 % no teorētiskās lādiņietilpības.

FT21 nanokompozīta elektroda materiāls uzrādīja lādiņietilpības vērtību, kas ir vistuvāk tā teorētiskajai lādiņietilpībai. No minētā novērojuma var secināt, ka FT21 elektroda materiālam raksturīga augstākā litija injekcijas spēja un elektroķīmiskā aktivitāte. Veicot FT11, FT21 un FT31 elektroda materiālu ātrumspējas testus, konstatēts, ka palielinoties bateriju pusšūnai pieliktajam strāvas stiprumam, visu pētāmo elektroda materiālu lādiņietilpība pakāpeniski samazinās. Tā, piemēram, strāvas stipruma vērtībai pieaugot no 0.5C līdz 2C, pētāmo elektroda materiālu FT11, FT21 un FT31 attiecīgās gravimetriskās lādiņietilpības samazinājās par 85 %, 77 % un 64 %. No visiem elektrodu materiāliem augstāko toleranci pret strāvas stipruma pieaugumu uzrāda FT31 nanokompozīta elektrods.

Lai novērtētu pētāmo elektroda materiālu spēju saglabāt lādiņietilpību vairākkārtēju uzlādes izlādes ciklu laikā konstruēts grafiks – izlādes lādiņietilpība kā funkcija no uzlādes – izlādes ciklu skaita (skat. 4.10 att.)

4.10 att. FT11, FT21 un FT31 nanokompozīta elektrodu lādiņietilpība kā funkcija no izlādes ciklu skaita.

No ciklējamības līknēm ir redzams, ka visiem pētāmajiem elektroda materiāliem sākotnējo uzlādes – izlādes ciklu laikā novērojama lādiņietilpības samazināšanās, kas ir saistīta ar Fe₂O₃ daļiņu pulverizāciju litija injekcijas - ekstrakcijas laikā, izraisot elektriskā kontakta zudumu starp elektroda materiāla daļiņām un tērauda strāvas kolektoru. Pulverizācija ir elektroda materiāla daļiņu homogēnās struktūras zaudēšana stiepes un/vai spiedes rezultātā, kuras cēlonis ir atkārtota daļiņu tilpuma izmaiņa litija injekcijas un ekstrakcijas procesā [66]. Salīdzinot iegūtās ciklējamības līknes, tika konstatēts, ka vislēnākā lādiņietilpības samazināšanās sākotnējo uzlādes – izlādes ciklu laikā novērojama FT11 un FT21 elektroda materiāliem. Uzlabotā elektroķīmiskā veiktspēja, iespējams, saistīta ar palielināto TiO₂ daudzumu elektroda materiālā. (**skat. 4.1 tab.**). Titāna dioksīda nanodaļiņas kavē Fe₂O₃ daļiņu pulverizāciju, saglabājot to struktūras integritāti, ko var novērot nanokompozītu FT11 un FT21 ciklējamības līkņu stabilizācijā pēc simts uzlādes - izlādes cikliem. Augstākā lādiņietilpības saglabāšanās novērota nanokompozīta elektroda materiālam FT21, kas pēc 129 uzlādes - izlādes cikliem saglabā 69 % no sākotnējās lādiņietilpības vērtības. Turpinoties ciklēšanas procesam, FT21 elektroda materiāla gravimetriskā lādiņietilpība pieaug un iegūst vērtību 508 mAh/g jeb 81 % no sākotnējās lādiņietilpības.

Lādiņietilpības palielināšanās elektroda materiāla elektroķīmiskās ciklēšanas laikā nav raksturīga tikai nanoizmēra Fe₂O₃ kompozītiem, bet tika novērota arī citiem konversijas tipa 3D pārejas metālu oksīdiem, kā piemēram Co₂O₃ un MnO₂ [52]. Lādiņietilpības palielināšanās skaidrojumam tika izvirzīti vairāki mehānismi:

1) zema sprieguma intervālā 0 - 1.9 V, elektrolītam reducējoties, apkārt metāla nanodaļiņām veidojas organiska polimēra - želejveida kārtiņa, kurā ievietojas litija joni, nodrošinot papildus lādiņietilpību līdz pat 800 uzlādes – izlādes cikliem [53-54],

 metāla nanodaļiņu un elektrolīta robežvirsmas telpā uzkrājas nekompensēti litija joni, ko kompensē elektroni no nanodaļiņu virsmas [55-57],

ciklēšanas laikā elektroda materiālā veidojas arvien jaunas litija injekcijas "vietas", t.i. palielinās elektroķīmiski aktīvie apgabali, kas rezultātā rada papildus elektroda materiāla lādiņietilpību [6; 58],
 Fe nanodaļiņas, kas veidojas kā neatgriezenisko reakciju blakusprodukts un lokalizējas Fe₂O₃/TiO₂ graudu robežvirsmā, uzlabo aktīvā materiāla elektrisko vadītspēju un atvieglo oksidēšanās - reducēšanās reakciju norisi, kas rezultātā rada papildus elektroda materiāla lādiņietilpību [6; 59-61].

Papildu lādiņietilpības rašanās, kas tika novērota FT11 un FT21 nanokompozītiem, iespējams, saistīta ar uz elektroda materiāla virsmas notiekošajiem procesiem. Uz virsmas notiekošos lādiņa uzglabāšanu iedala faradeiskos (pseidokapacitāte) un nefaradeiskos (elektriskā dubultslāņa kapacitāte) procesos. Pseidokapacitatīvais lādiņa uzglabāšanas mehānisms vairāk attiecas uz lādiņa uzglabāšanu SEI slānī un metāla nanodaļinu/Li₂O robežvirsmā. Elektriskā dubultslāņa enerģijas uzkrāšanas mehānisms attiecas uz statisku elektriskā lādina uzkrāšanu materiālos ar palielinātu aktīvo virsmas laukumu [62]. Lai iegūtu informāciju par FT11, FT21 un FT31 elektrodu materiālu litija jonu injekcijas - ekstrakcijas maksimumiem, materiāla elektroķīmisko aktivitāti un aprēķinātu litija jonu difūzijas koeficientu, tika veikta cikliskā voltamperometrija (CV), (skat. 4.11 att.).

4.11 att. FT11, FT21 un FT31 nanokompozītu elektrodu pirmo četru ciklu cikliskās voltamogrammas pie sprieguma izvērses ātruma 1 mVs⁻¹. F - Fe₂O₃ un T – TiO₂ materiālam raksturīgie strāvas maksimumi. A – FT11, FT21 un FT31 elektroda materiāla pirmais CV cikls.

Salīdzinot iegūtās CV līknes, tika konstatēts, ka nanokompozītiem FT11 un FT31 izlādes ciklā, katodiskās strāvas maksimuma intensitāte pie ≈ 0.6 V ir augstākā pirmajā ciklā. Nākamajos ciklos minētā strāvas maksimuma intensitāte samazinās, kas liecina par neatgriezeniskām ķīmiskām reakcijām pētāmajā elektroda materiālā un daļēju sākotnējās lādiņietilpības zudumu, kas norisinās elektroda elektroda materiāla un daļēju sākotnējās lādiņietilpības zudumu, kas norisinās elektroda elektroda materiāla un daļēju sākotnējās strāvas maksimumu (I=2.2 mA) (skat. 4.11 att. A) un labāko reakcijas apgriezeniskumu, kas apliecina elektroda materiāla augsto elektroķīmisko aktivitāti un litija injekcijas spēju. Izmantojot ar CV metodi iegūtos datus, tika aprēķināti litija difūzijas koeficienti. Apkopotos reultātus, secināts, ka lielāko katodiskās un anodiskās strāvas litija difūzijas koeficientu uzrāda FT11 un FT21 nanokompozīta elektroda materiāls. Analizējot iegūtos ciklējamības, elektroķīmiskās aktivitātes un litija difūzijas koeficienta rezultātus, turpmākiem pētījumiem tika izvēlēts padziļināti analizēt FT11 un FT21 nanokompozīta elektroda materiālus.

Analizējot rezultātus, kas iegūti pielietojot elektroķīmiskās impedances spektroskopiju (EIS), secināts, ka mazākā lādiņa pārneses pretestība (R_{ct}) pie baterijas pusšūnas sprieguma U = 0.5 V novērota FT21 elektrodam (R_{ct} =15.4 Ω), kas ir par 40 % mazāka kā FT11 elektroda materiālam. Samazinātā R_{ct} vērtība norāda uz efektīvu lādiņa pārnesi un līdz ar to augstāku FT21 elektroda materiāla ātrumspēju [212], ko apliecina arī iepriekš veiktie FT21 ātrumspējas mērījumi. Nanokompozīta elektrodam FT21 tika novērota laba eksperimentālā EIS spektra sakritība ar aprēķināto (**skat. 4.12 att**.).

4.12 att. FT11 un FT21 elektrodu eksperimentālie un aprēķinātie EIS spektri pie U = 0.5 V.

Lai analizētu lādiņa pārneses pretestību kā funkciju no baterijas pusšūnas uzlādes sprieguma, tika konstruēti grafiki R_{ct}=f(U), (skat. 4.13 att.).

4.13 att. FT11 un FT21 elektrodu lādiņa pārneses pretestība kā funkcija no baterijas pusšūnas uzlādes stāvokļa.

Veicot pētāmo elektroda materiālu $R_{et} = f(U)$ grafiku analīzi, tika konstatēta būtiska R_{et} atkarība no bateriju pusšūnas uzlādes stāvokļa. Lādiņa pārneses pretestības vērtība samazinās, bateriju pusšūnai uzlādējoties līdz aptuveni 60 % jeb $\approx 2V$ un tad atkal palielinās, tuvojoties un pat pārsniedzot R_{et} sākotnējo vērtību pie 100 % uzlādētas bateriju pusšūnas. Ir vērts piebilst, ka sprieguma vērtība 2 V ir vienāda ar baterijas pusšūnas atvērtās ķēdes potenciālu jeb līdzsvara spriegumu. Šāda lādiņa pārneses pretestības atkarība no baterijas pusšūnas uzlādes stāvokļa sakrīt arī ar citu autoru novēroto [63-64]. Litija difūzijas koeficients, kas noteikts ar EIS metodi uzrāda vērtības D(FT11) = 7 $\cdot 10^{-16}$ cm²/s, bet D(FT21) = 9 $\cdot 10^{-16}$ cm²/s. Lai veiktu aprēķināto difūzijas koeficientu salīdzināšanu visiem iegūtajiem elektrodu materiāliem, tika izveidota **tabula 4.2**.

	Cikliskā	Elektroķīmiskā impedances
	voltamperometrija,	spektroskopija,
	D, cm^2/s	D, $cm^2/s \cdot 10^{-16}$
Fe ₂ O ₃ /rGO	1.6 ·10 ⁻¹³	1
TiO ₂ /rGO	1 .10-14	5
FT11	6 ·10 ⁻¹³	7
FT21	1.2 ·10 ⁻¹²	9

4.2 tabula. Ar EIS un CV metodēm noteiktie litija difūzijas koeficienti.

No tabulas redzams, ka ar abām metodēm iegūtie litija difūzijas koeficienti ir augstāki Fe₂O₃ un TiO₂

nanokompozīta materiāliem, kas norāda uz abu pārejas metālu oksīdu apvienošanas pozitīvo ietekmi uz litija difūziju elektroda materiālā.

SECINĀJUMI

Izpildot izvirzītos darba uzdevumus ir sasniegts darba mērķis - pielietojot elektroforētisko izgulsnēšanu, iegūtas Fe₂O₃, TiO₂ un reducēta grafēna oksīda kompozītmateriāla kārtiņas. Izpētītas to fizikālās un elektroķīmiskās īpašības atkarībā no suspensijas sastāva un novērtēta elektrodmateriāla pielietojamība litija jonu baterijās. Atbilstoši darba nodaļām, kurās rezultāti apskatīti, ir 2 galvenie secinājumi.

- 1. Ar elektroforētiskās izgulsnēšanas metodi no Fe₂O₃, TiO₂ un reducēta grafēna oksīda elektrovadošas piedevas iespējams veiksmīgi iegūt mehāniski noturīgas un porainas divkomponentu bateriju elektrodu materiālu kārtiņas, kurās pārejas metālu oksīdu nanodaļiņas un to aglomerāti veiksmīgi apvienojas ar reducētu grafēna oksīdu Fe₂O₃/rGO un TiO₂/rGO. Neskatoties uz augsto dzelzs oksīda teorētisko lādiņietilpību (1006 mAh/g), praktiski sasniegtā vērtība ir 604 mAh/g, kas liek meklēt jaunas pieejas, kā paaugstināt dzelzs oksīda eksperimentālo lādiņietilpību un stabilitāti. No cikliskās voltamperometrijas rezultātiem noteikts, ka augstākais litija difūzijas koeficients ir Fe₂O₃/rGO elektroda materiāla (1.6·10⁻¹³ cm²/s) un secināts, ka, pieaugot ciklu skaitam, palielinās cauri elektrodam plūstošā strāva. TiO₂/rGO elektroda materiāls uzrādīja strauju lādiņietilpības samazināšanos, pieaugot izlādes strāvai, bet augstu stabilitāti ciklējamības mērījumos, kas paver iespējas tā izmantošanai augstas lādiņietilpības elektrodu materiālu ciklēšanas rādītāju uzlabošanā.
- 2. Ar elektroforētiskās izgulsnēšanas metodi pirmo reizi iegūtas trīskomponentu Fe₂O₃/TiO₂/rGO nanokompozīta kārtiņas ar dažādām pārejas metālu oksīdu masas daļām. Konstatēts, ka dzelzs oksīda un titāna dioksīda masas dala iegūtajās kārtinās ir līdzīga masas dalai sagatavotajās suspensijās, ko apliecina rentgenstaru difrakcijas analīze un Ritvelda metode materiāla fāžu daudzuma novērtēšanai. Konstatēts, ka nanokompozītam FT21 ir augstākais litija injekcijas strāvas maksimums un lielākais litija difūzijas koeficients (1.2·10⁻¹² cm²/s) kā arī augsts reakcijas apgriezeniskums, kas saistīts ar materiāla augsto elektroķīmisko aktivitāti. Nanokompozītiem FT11 un FT21 tika novērota lādiņietilpības palielināšanās elektroda materiāla elektroķīmiskās ciklēšanas laikā, kas ir saistīta ar faradeisko un nefaradeisko elektriskā lādina uzglabāšanas mehānismu. Piemēram, FT21 gravimetriskā lādiņietilpība ciklēšanas laikā pieaug no 442 mAh/g līdz 508 mAh/g jeb 81 % no sākotnējās lādinietilpības. Salīdzinot ar katra atseviška pārejas metāla oksīda elektroda materiālu, Fe₂O₃ un TiO₂ nanokompozītam ir augstāks litija difūzijas koeficients, kas apliecina abu izmantoto materiālu apvienošanas pozitīvo ietekmi uz litija difūzijas procesiem. Nanokompozīta FT21 elektroda materiāla gravimetriskā lādiņietilpība pie izlādes strāvas 0.5 C ir 683 mAh/g, kas ir 88 % no tā teorētiski aprēkinātās lādinietilpības. Pamatojoties uz ātrumspējas, ciklējamības un lādiņietilpības mērījumu rezultātiem secināts, ka nanokompozīts ar Fe2O3 un TiO2 molārajām attiecībām 2:1 (FT21) ir perspektīvs augstas veiktspējas elektroda materiāls litija jonu baterijām.

AIZSTĀVAMĀS TĒZES

Litija jonu bateriju anoda materiāla optimizēšanai ir izstrādāts elektronus un litija jonus vadošs plānās kārtiņas dzelzs (III) oksīda/titāna dioksīda/grafēna oksīda kompozītmateriāls un videi draudzīga un ekonomiski izdevīga tā iegūšanas tehnoloģija.

- Elektroforētiskās izgulsnēšanas metode var tikt sekmīgi izmantota Fe₂O₃, TiO₂ un grafēna oksīda nanokompozītu kārtiņu iegūšanai no komerciāli pieejamiem materiāliem. Iegūtās kārtiņas ir porainas un mehāniski stabilas bez saistvielām.
- Divkomponentu dzelzs oksīda Fe₂O₃/reducētā grafēna oksīda (rGO) materiāls kā bateriju elektrods uzrāda lielāku lādiņietilpību, savukārt titāna dioksīda TiO₂/rGO elektrods augstāku stabilitāti uzlādes izlādes ciklu laikā. Fe₂O₃/rGO augstā lādiņietilpība varētu būt saistīta gan ar dzelzs oksīda litizācijas procesam raksturīgo konversijas tipa reakciju, kas ir daudzelektronu process, kura laikā uz vienu molu Fe₂O₃ tiek pārnesti 6 elektroni un 6 litija joni, gan ar pseidokapacitatīvo lādiņa uzglabāšanas mehānismu, kas raksturīgs dzelzs oksīda un oglekļa heterostruktūrām. Savukārt titāna dioksīda augstā stabilitāte saistīta ar Li⁺ un Ti³⁺ jonu rādiusu līdzīgajiem izmēriem, kā rezultātā litija interkalācijas procesam raksturīgas minimālas (≈ 4 %) TiO₂ kristāliskās struktūras izmaiņas, saglabājot materiāla integritāti.
- Trīskomponentu Fe₂O₃/TiO₂/rGO elektroda elektroķīmiskās īpašības un līdz ar to baterijas veiktspēju ir iespējams uzlabot variējot Fe₂O₃ un TiO₂ molārās attiecības suspensijā. Starp pētāmajiem materiāliem atrasts labākais elektroda materiāla sastāvs, ar Fe₂O₃ un TiO₂ molārajām attiecībām 2:1 (FT21), kas nodrošina gan augstu lādiņietilpību, gan stabilitāti daudzkārtējas uzlādes izlādes procesa laikā.

LITERATŪRA

- M. Wakihara, O. Yamamoto, Lithium Ion Batteries, Fundamentals and Performance, WILEY-VCH, ISBN: 978-3-527-61198-0, November 2008, 261 Pages.
- [2] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of Power Sources, Volume 195, Issue 9, 2010, Pages 2419-2430, ISSN 0378-7753.
- [3] C. G. Zosky, Handbook of Electrochemistry, Elsevier, 2007, ISBN-13: 978-0-444-51958-0.
- [4] F.G. Hone, N.A, Tegegne, D.M. Andoshe, Advanced Materials for Energy Storage Devices, Electrode Materials for Energy Storage and Conversion; CRC Press: Boca Raton, 2021.
- [5] Y. Zhong, Y. Ma, Q. Guo, et al., Controllable Synthesis of TiO₂@Fe₂O₃ Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes, Sci Rep 7, 40927, 2017.
- [6] J. Luo, et al., Rationally designed hierarchical TiO₂@Fe₂O₃ hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.
- [7] L. Besra, M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, 52, Issue 1, 2007, Pages 1-61, ISSN 0079-6425.
- [8] G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: A review, Journal of Power Sources, 240, 2013, Pages 66-79, ISSN 0378-7753,
- [9] H. Zhang, et al., Micro-structured Si@Cu₃Si@C ternary composite anodes for high performance Liion batteries, 2019, Ionics 25(10):4667–4673.
- [10] D. Linden, T. B. Reddy, Handbook of Batteries, 3rd Edition. McGraw-Hill, 2002. ISBN 0-07-135978-8.
- [11] H. Jung, M. Park, Y. G. Yoon, G. B. Kim, and S. K. Joo, Amorphous silicon anode for lithium-ion rechargeable batteries J. Power Sources, Seoul, vol. 115, pp. 346-351, April 2003.
- [12] W. Xu, S. S. S. Vegunta, J. C. Flake, Surface-modified silicon nanowire anodes for lithium-ion batteries, Journal of Power Sources, 196, Issue 20, 2011, Pages 8583-8589, ISSN 0378-7753.
- [13] M. Thakur, M. Isaacson, S. L. Sinsabaugh, M. S. Wong, S. L. Biswal, Gold-coated porous silicon films as anodes for lithium ion batteries, Journal of Power Sources, Volume 205, 2012, Pages 426-432, ISSN 0378-7753.
- [14] B. Fuchsbichler, C. Stangl, H. Kren, F. Uhlig, S. Koller, High capacity graphite-silicon composite anode material for lithium-ion batteries, Journal of Power Sources, Volume 196, Issue 5, 2011, Pages 2889-2892, ISSN 0378-7753.
- [15] P. M. Dziewoński, M. Grzeszczuk, Lithium ion intercalation in partially crystalline TiO₂ electrodeposited on platinum from aqueous solution of titanium (IV) oxalate complexes, Journal of Power Sources, Volume 190, Issue 2, 2009, Pages 545-552, ISSN 0378-7753.
- [16] F. Wu, et al., A novel method to synthesize anatase TiO₂ nanowires as an anode material for lithiumion batteries, Journal of Alloys and Compounds, Volume 509, Issue 8, 2011, Pages 3711-3715, ISSN 0925-8388.

- [17] Y. Wang, et al., Facile Synthesis of Fe₂O₃-graphite Composite with Stable Electrochemical Performance as Anode Material for Lithium Ion Batteries, Electrochimica Acta, Volume 125, 2014, Pages 421-426, ISSN 0013-4686.
- [18] S.K. Yadav, J.W. Cho, Functionalized Graphene Nanoplatelets for Enhanced Mechanical and Thermal Properties of Polyurethane Nanocomposites, 2013, Applied Surface Science, 266, 360-367.
- [19] Y. Yuan, et al., Understanding materials challenges for rechargeable ion batteries within situ transmission electron microscopy. Nat Commun 8, 15806, 2017.
- [20] A. Eftekhari, Low voltage anode materials for lithium-ion batteries, Energy Storage Materials, 7, 2017, Pages 157-180, ISSN 2405-8297.
- [21] S.B. Chikkannanavar, D.M. Bernardi, L. Liu, A review of blended cathode materials for use in Liion batteries. J. Power Sources 2014, 248, 91–100.
- [22] Y. Mekonnen, A. Sundararajan and A. I. Sarwat, A review of cathode and anode materials for lithium-ion batteries, SoutheastCon 2016, Norfolk, VA, USA, 2016, pp. 1-6.
- [23] Y. Zhang, et al., High-energy cathode materials for Li-ion batteries: A review of recent developments. Sci. China Technol. Sci. 58, 1809–1828, 2015.
- [24] C. Daniel, D. Mohanty, J. Li, D. L. Wood, Cathode materials review, AIP Conference Proceedings 16 June 2014; 1597 (1): 26–43.
- [25] D. Wang, D. Choi, et al., Self-assembled TiO₂-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano 3 (4), 2009, 907–914.
- [26] J. H. Kwon, et al., Reversible Conversion Reactions of Mesoporous Iron Oxide with High Initial Coulombic Efficiency for Lithium-ion Batteries." ACS sustainable chemistry & engineering, v. 9,49 pp. 16627-16636.
- [27] B.L. Dasari, et al., Graphene and derivatives Synthesis techniques, properties, and their energy applications. Energy. 140, 766-778, 2017.
- [28] H. Dong, et al., An overview on limitations of TiO₂-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, Volume 79, 2015, Pages 128-146, ISSN 0043-1354.
- [29] H. Liu, et al., Synthesis of TiO₂/SiO₂@Fe₃O₄ magnetic microspheres and their properties of photocatalytic degradation dyestuff, Catalysis Today, Volume 175, Issue 1, 2011, Pages 293-298, ISSN 0920-586.
- [30] M.N. Tahir, et al., Extraordinary Performance of Carbon-Coated Anatase TiO₂ as Sodium-Ion Anode. Adv Energy Mater. 2016 Feb;6(4):1501489.
- [31] A. Wanag, et al., Influence of rGO and Preparation Method on the Physicochemical and Photocatalytic Properties of TiO₂/Reduced Graphene Oxide Photocatalysts, Catalysts 2021, 11, 1333.
- [32] I.S. Ahmed, M.S. Sanad, Maghemite-based anode materials for Li-Ion batteries: The role of intentionally incorporated vacancies and cation distribution in electrochemical energy storage, Journal of Alloys and Compounds, Volume 861, 2021, 157962, ISSN 0925-8388.
- [33] M. Madian, A. Eychmüller, L. Giebeler, Current Advances in TiO₂-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4, 7.

- [34] H. Xia, W. Xiong, C.K. Lim, et al., Hierarchical TiO₂-B nanowire@α-Fe₂O₃ nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 7, 1797–1808 (2014).
- [35] J. Chen, X. Hu, H. Gao, S. Yan, S. Chen, X. Liu, Graphene-wrapped MnCO₃/Mn₃O₄ nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances, Journal of Materials Science & Technology, Volume 99, 2022, Pages 9-17, ISSN 1005-0302.
- [36] R. A. Adams, et al., Binder Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries, ACS Applied Materials & Interfaces, 2017; 9, 17872–17881.
- [37] B. Tian, et al., Insight into lithium diffusion in conversion-type iron oxide negative electrode, 2015, J. Phys. Chem., C 119:919–925.
- [38] S. Lee, W. Eom, H. Park, and T. H. Han, High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes, ACS Applied Materials & interfaces, 2017, 9 (30), 25332-25338.
- [39] X.H. Rui, N. Yesibolati, S.R. Li, C.C. Yuan, C.H. Chen, Determination of the chemical diffusion coefficient of Li⁺ in intercalation-type Li₃V₂(PO₄)₃ anode material, Solid State Ionics, Volume 187, Issue 1, 2011, Pages 58-63, ISSN 0167-2738.
- [40] I.S. Lyubutin, A.O. Baskakov, S.S. Starchikov, Kun-Yauh Shih, Chun-Rong Lin, Yaw-Teng Tseng, Shou-Shiun Yang, Zhen-Yuan Han, Yu.L. Ogarkova, V.I. Nikolaichik, A.S. Avilov, Synthesis and characterization of graphene modified by iron oxide nanoparticles, Materials Chemistry and Physics, Volume 219, 2018, Pages 411-420, ISSN 0254-0584.
- [41] S. Hillier, Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner. 2000, 35, 291–302.
- [42] X. Zhou, et al., XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review, Solid Earth Sci. 2018, 3, 16–29.
- [43] N. Kumar and V.C. Srivastava, Simple Synthesis of Large Graphene Oxide Sheets via Electrochemical Method Coupled with Oxidation Process, Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India, ACS Omega 2018, 3, 10233–10242.
- [44] H. Xu, et al., A new nano-mineral of Fe₂O₃ polymorph with giant coercive field, American Mineralogist 102, 2017, 711 - 719.
- [45] H. Xia, W. Xiong, C,K. Lim, et al., Hierarchical TiO₂-B nanowire@α-Fe₂O₃ nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 7, 1797–1808 (2014).
- [46] K. Huang, L. Chen, J. Deng, J. Xiong, Enhanced Visible-Light Photocatalytic Performance of Nanosized Anatase TiO₂ Doped with CdS Quantum Dots for Cancer-Cell Treatment, Journal of Nanomaterials, vol., 2012, Article ID 720491, 12 pages.
- [47] L. Zuniga, et al., Centrifugally Spun α-Fe₂O₃/TiO₂/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Appl. Sci. 2019, 9, 4032.
- [48] S. Li, et al., Bio-Inspired Hierarchical Nanofibrous Fe₃O₄-TiO₂-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 17343–17351.

- [49] L. Gao, et al., Hierarchical 3D TiO₂@Fe₂O₃ nanoframework arrays as high-performance anode materials. Nanoscale 2014, 6, 6463–6467.
- [50] Y. Fu, et al., Sun, S. Stem-like nano-heterostructural MWCNTs/α-Fe₂O₃@TiO₂ composite with high lithium storage capability. J. Alloys Compd. 2016, 684, 419–427.
- [51] T.G. Qin, et al., Fabrication of Fe₂O₃@TiO₂ core-shell nanospheres as anode materials for lithiumion batteries. J. Mater. Sci.-Mater. Electron. 2018, 29, 12944–12950.
- [52] M. Liang, J. Zou, X. Zeng, W. Ding, Nanostructured Fe₂O₃ Based Composites Prepared through Arc Plasma Method as Anode Materials in the Lithium-Ion Battery, Journal of Nanomaterials, 2016, art. no. 1207907.
- [53] L.Y. Beaulieu, et al., Reaction of Li with grain-boundary atoms in nanostructured compounds. J. Electrochem. Soc. 147, 3206–3212, 2000.
- [54] S. Laruelle, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149, A627–A634, 2002.
- [55] P. Balaya, et al., Fully reversible homogeneous and heterogeneous Li storage in RuO₂ with high capacity. Adv. Funct. Mater. 13, 621–625, 2003.
- [56] H. Li, P. Balaya, J. Maier, Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885, 2004.
- [57] H. Li, G. Richter, J. Maier, Reversible formation, and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736– 739, 2003.
- [58] S. Guo, S. Wang, N. Wu, J. Liu, Y. Nic, W. Liu, Facile synthesis of porous Fe₂TiO₅ microparticulates serving as anode material with enhanced electrochemical performances, RSC Adv. 5, 2015, 103767e103775.
- [59] S. Guo, et al., Porous TiO₂–FeTiO₃@Carbon nanocomposites as anode for high-performance lithium-ion batteries, Journal of Alloys and Compounds, Volume 858, 2021, 157635, ISSN 0925-8388.
- [60] Y. Yang, et al., Enhanced electrochemical performance of alpha-Fe₂O₃ grains grafted onto TiO2-Carbon nanofibers via a Vapor-Solid reaction as anode materials for Li-Ion batteries. Appl. Surf. Sci. 2019, 463, 322–330.
- [61] K. Redel, et al., Origin of extra capacity in advanced Li–Rich cathode materials for rechargeable Li–Ion batteries, Chemical Engineering Journal, Volume 424, 2021, 130293, ISSN 1385-8947.
- [62] K. Thanapalan, M. Bowkett, J. Williams, M. Hathway, T. Stockley, Advanced EIS Techniques for Performance Evaluation of Li-ion Cells, IFAC Proceedings Volumes, Volume 47, Issue 3, 2014, Pages 8610-8615, ISSN 1474-6670.
- [63] S. Hink, et al., Impedance Spectroscopic Investigation of Proton Conductivity in Nafion Using Transient Electrochemical Atomic Force Microscopy (AFM), Membranes, 2012, 2, 237-252.
- [64] Y. Yang, et al., Enhanced electrochemical performance of α-Fe₂O₃ grains grafted onto TiO₂-Carbon nanofibers via a vapor-Solid reaction as anode materials for Li-Ion batteries, Applied Surface Science, Volume 463, 2019, Pages 322-330.
- [65] H. Xia, et al., Hierarchical TiO₂-B nanowire@α-Fe₂O₃ nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res. 7, 1797–1808.

- [66] A. Casimir, et al., Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy, Volume 27, 2016, Pages 359-376, ISSN 2211-2855.
- [67] N. Srivastava, et al., Electrochemical performance of Li-rich NMC cathode material using ionic liquid based blend polymer electrolyte for rechargeable Li-ion batteries, Journal of Alloys and Compounds, Volume 843, 2020, 155615, ISSN 0925-8388.
- [68] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment, Volume 1, Issue 1, 2016, Pages 18-42, ISSN 2468-0257.

AUTORA PUBLICITĀTE

Autora publikāciju citējamības Hirša indekss ir 4, kopā SCOPUS datubāzē 5 publikācijas. Ar promocijas darba saturu saistītās publikācijas:

- K. Kaprans, J. Mateuss, A. Dorondo, G. Bajars, G. Kucinskis, P. Lesnicenoks, Electrophoretically deposited α-Fe₂O₃ and TiO₂ composite anchored on rGO with excellent cycle performance as anode for lithium-ion batteries. Solid State Ionics 319, 1-6 (2018), (Citēts 23 reizes). https://doi.org/10.1016/j.ssi.2018.01.042
- K. Kaprans, G. Bajars, G. Kucinskis, A. Dorondo, J. Mateuss, J. Gabrusenoks, Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery, IOP Conference Series: Materials Science and Engineering 77 (1), 012042 (2015), (Citēts 6 reizes). https://iopscience.iop.org/article/10.1088/1757-899X/77/1/012042

Ar darba tēmu mazāk saistītās publikācijas:

- G.Kucinskis, G.Bajars, K.Bikova, K.Kaprans, J.Kleperis, Microstructural Influence on Electrochemical Properties of LiFePO4/C/Reduced Graphene Oxide Composite Cathode, Russian Journal of Electrochemistry 55, 517-523 (2019).
- A. Plavniece, A. Volperts, G. Dobele, A. Zhurinsh, **K. Kaprans**, I. Kruusenberg, Wood and black liquor-based N-doped activated carbon for energy application, Sustainability 13 (16), 923, (2021).
- P. Lesnicenoks, M. Zvine, A. Januskevica, V.L.Muzikants, M.K.Jurjans, K.Kaprans, A.Volperts, G.Kucinskis, G. Bajars, G. Dobele, J. Kleperis, Nanostructured carbon materials as promoters of energy storage, Bulgarian Chemical Communications 48, 365-372, (2016).

KONFERENČU TĒŽU SARAKSTS

- K. Kaprans, Synergistic Behaviour of TiO₂/Fe₂O₃/rGO Ternary Nanocomposite as Anode for Lithium-Ion Battery" Scholars Frontiers in Nanoscience and Nanotechnology Congress" NANOTEK2023, 2023, London, Great Britain, March 27 -28.
- K. Kaprans, G. Bajars, G. Kucinskis, Investigation of Fe₂O₃ and TiO₂ molar ratio impact on lithium ion battery electrode performance, international conference on batteries BATTERIES EVENT 2022, October 18-21, 2022.
- K. Kaprans, Synergistic behaviour of TiO₂/ Fe₂O₃/rGO ternary nanocomposite as Anode for Lithium Ion batteries, 7th International Conference on Multifunctional, Hybrid and Nanomaterials (HYMA -2022), October 19-22, 2022, Genoa, Italy, Available at SSRN: https://ssrn.com/abstract=4240892.
- K. Kaprans, A. Volperts, G. Bajars, G. Kucinskis, G. Dobele, J. Kleperis, Nanostructured porous hybrid network of nitrogen-doped carbon as anode for Li-ion batteries, Functional Materials and Nanotechnologies, Vilnius, Lithuania, November 23-26, 2020, Book of Abstracts p.76
- G.Bajars, G.Kucinskis, K. Kaprans, J.Kleperis, Recent developments of electrode materials for lithium ion batteries, 16th International Symposium on Systems with Fast Ionic Transport, Chernogolovka, Russia, 2018, Book of Abstracts: p. 47
- K. Kaprans, J. Mateuss, A. Dorondo, G. Bajars, J. Kleperis, Nanostructured Fe₂O₃, TiO₂ and reduced graphene oxide with excellent electrochemical performance as anode material for lithium ion batteries, COST TO-BE FALL-2017, Riga, Latvia, June 11–13, 2017.
- K.Kaprans, J.Mateuss, A. Dorondo, G.Bajars, J. Kleperis, Electrophoretically deposited α-Fe₂O₃ and TiO₂ composite anchored on rGO with excellent cycle performance as anode for lithium - ion batteries, 21st International Conference on Solid State Ionics, Padua, Italy, June 18-23, 2017, Book of Abstracts p.222
- K. Kaprans, J. Mateuss, A. Dorondo, G. Bajars, G.Kucinskis, J. Kleperis, Electrophoretically deposited graphene oxide/TiO₂ and ultrasmall Fe₂O₃ nanoparticles thin film composite as anode for highperformance lithium ion batteries, 12th International Symposium of Systems with Fast ionics transport (ISSFIT -12), Kaunas, Lithuania, July 3-7, 2016.

- K. Kaprans, G. Bajars, A. Dorondo, J.Mateuss, G. Kucinskis, J. Gabrusenoks, J. Kleperis, A. Lusis, Electrophoretic Graphene Film Electrode for Lithium Ion Battery, Joint 12th Russia/CIS/Baltic/Japan Symposium on Ferroelectricity and 9th International Conference Functional Materials and Nanotechnologies, September 29 October 2 Riga, 2014, Book of Abstracts p.410
- Latvijas Universitātes Cietvielu fizikas institūta gadskārtējās zinātniskās konferences (2014-2021).

ZINĀTNISKIE PROJEKTI

Promocijas darbs ir saistīts ar šādu zinātnisko projektu izpildi:

- 1. "LU doktorantūras kapacitātes stiprināšana jaunā doktorantūras modeļa ietvarā" nr. 8.2.2.0/20/I/006», 01.07.2021.-31.10.2023.
- Latvijas Zinātnes padomes fundamentālo un lietišķo pētījumu projektam nr. lzp-2020/1-0425 «Litija jonu akumulatoru elektrodu un šūnu dzīves cikla prognoze, izmantojot strāvas un sprieguma mērījumus», 2021-2023.
- Nanostrukturēti ar slāpekli dopēti oglekļa materiāli kā enerģijas ieguves un uzglabāšanas tehnoloģiju veicinātāji, 2018. – 2021., NN-CARMA.
- 4. LU CFI Studentu un jauno zinātnieku projekts Nr. SJZS/2020/9, 2020.
- H2020 SPIRE projekts, "Etilēna oksīda elektrokatalītiska sintēze no CO2" (COEXIDE), 2018 -2019.
- A/S Sidrabe un Valsts Kompetences centra projekts, Litija vakumpārklājumu pielietojumi bateriju anodmateriālos, 2018 – 2019.
- Latvijas zinātņu padomes sadarbības projekts "Kontrolējamas porainības kompozītmateriālu sintēze un pētījumi plāno slāņu un to sistēmu iegūšanai enerģijas uzkrāšanas un pārveidošanas pielietojumiem ", projekts nr. 666/2014, 2014 – 2018.

Latvijas Universitātes Cietvielu fizikas institūts kā Ekselences centrs ir saņēmis Eiropas Savienības pamatprogrammas "Apvārsnis 2020" uzsaukuma H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 projekta CAMART2, līguma Nr. 739508, atbalstu.

PATEICĪBAS

Vēlos izteikt pateicību darba vadītājam Dr. chem. Gunāram Bajāram par neizmērojamo palīdzību darba izstrādē, sniedzot vērtīgus padomus gan par rezultātu plānošanu, gan datu analīzi un interpretāciju. Viņa milzīgās zināšanas, bagātīgā pieredze un nepārtrauktais atbalsts ir iedrošinājuši mani visu pētījuma laiku un ikdienā. Esmu patiesi pateicīgs par iespēju strādāt viņa vadībā.

Laboratorijas vadītājs Dr. phys. Gintam Kučinskim par vērtīgajiem padomiem un motivāciju turpināt darbu.

Reinim Ignatānam un Līgai Ignatānei par padomiem XRD datu interpretācijā.

Liels paldies arī pārējiem kolēģiem Enerģijas iegūšanas un uzglabāšanas laboratorijā.

Līgai Britālai par SEM un EDX mērījumiem.

Kārlim Kundziņam par SEM attēliem.

Ingaram Lukoševičam par XPS mērījumiem.

Jevgēņijam Gabrusenokam par Ramana spektru mērījumiem un auglīgām zinātniskām diskusijām.

Vēlos pateikties Dievam par vadību, kas man deva iespēju sasniegt savus mērķus un gūt panākumus.

Vēlos pateikties mammai un tētim par audzināšanu un par nenogurstošo darbu un atbalstu, lai sasniegtu savus sapņus un mērķus.

Vēlos pateikties savai sievai Rutai un dēliem Jēkabam, Kārlim un jaundzimušajai meitai Martai par pacietību un sapratni disertācijas izstrādes laikā.

Vēlos pateikties Cietvielu fizikas institūtam par to, ka tā ir jauka vieta, kur strādāt un attīstīt savu karjeru. Papildus vēlos izteikt pateicību Latvijas Universitātes Cietvielu fizikas institūtā īstenotajam zinātniskās pētniecības projektam studentiem un jaunajiem pētniekiem Nr. SJZS/2020/9, 2020. gadā.

Finansējums promocijas darba izstrādei tika saņemts no granta projekta "Doktorantūras kapacitātes stiprināšana Latvijas Universitātē jaunā doktorantūras modeļa ietvarā", identifikācijas Nr. 8.2.2.0/20/I/006.

IEGULDĪJUMS TAVĀ NĀKOTNĒ